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ABSTRACT  26 

Serotype 19A strains have emerged as a cause of invasive pneumococcal disease after the 27 

introduction of the seven-valent pneumococcal conjugate vaccine (PCV7) and serotype 19A 28 

has now been included in the recent thirteen-valent vaccine (PCV13). Genetic analysis has 29 

revealed at least three different capsular serotype 19A subtypes and nutritional environment 30 

dependent variation of the 19A capsule structure has been reported. Pneumococcal vaccine 31 

effectiveness and serotyping accuracy might be impaired by structural differences in 32 

serotype 19A capsules. We therefore analyzed the distribution of 19A subtypes collected 33 

within a Swiss national surveillance program and determined capsule composition in 34 

different nutritional conditions with high-performance liquid chromatography (HPLC), gas 35 

chromatography – mass spectrometry (GC-MS) and nuclear magnetic resonance 36 

spectroscopy (NMR). After the introduction of PCV7 a significant relative increase of subtype 37 

19A-II and decrease of 19A-I occurred. Chemical analyses showed no difference in the 38 

composition as well as the linkage of 19A subtype capsular saccharides grown in defined 39 

and undefined growth media being consistent with a trisaccharide repeat unit composed of 40 

rhamnose, N-acetyl-mannosamine and glucose. In summary, our study suggests that no 41 

structural variance dependent of the nutritional environment or the subtype exists. The 42 

serotype 19A subtype shift observed after the introduction of the PCV7 can therefore not be 43 

explained by selection of a capsule variant. However, capsule composition analysis of 44 

emerging 19A clones is recommended in cases where there is no other explanation for a 45 

selective advantage such as antibiotic resistance or loss or acquisition of other virulence 46 

factors  47 

  48 
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INTRODUCTION 49 

The polysaccharide capsule is a major virulence factor of the human pathogen 50 

Streptococcus pneumoniae (pneumococcus) and more than 90 different capsular types are 51 

known today, which differ in the chemical structure of their capsular polysaccharides (1). 52 

These differences are reflected in the type-specific reaction with anticapsular antibodies, by 53 

which a serotype is determined and cross-reactive serotypes are pooled into serogroups.  54 

The serogroup 19 contains, among others, serotypes 19F and 19A, which belong to the 55 

clinically most relevant serotypes (2). Based on both genetic background and chemical 56 

analyses the serotype 19A and 19F oligosaccharide repeating unit structures have been 57 

determined to be trisaccharides of glucose (Glc), rhamnose (Rha) and N-acetyl-58 

mannosamine (ManNAc), differing only in the glycosidic linkage between glucose and 59 

rhamnose: 60 

19F: →2)-α-L-Rha-(1→PO4→4)-β-D-ManNAc-(1→4)-α-D-Glc-(1→   61 

19A: →3)-α-L-Rha-(1→PO4→4)-β-D-ManNAc-(1→4)-α-D-Glc-(1→  (1, 3-5). 62 

Based on chemical analyses two types of 19A oligosaccharide structures have been 63 

described (6, 7). In addition to the genetically proposed structure above, an alternative with a 64 

serotype 19F backbone and two side chains of β-D-GlcNAc-(1→3)-β-D-Gal- (1→P→2) and 65 

α-L-Fuc-(1→P→3)  has been reported based on chemical analysis (7). The polysaccharide 66 

structures appear to vary with different in vitro growth conditions (6). Influence of the 67 

nutritional environment on the pneumococcal polysaccharide capsule could have biological 68 

consequences, as this would potentially impair any intervention or test targeting the 69 

pneumococcal capsule. For example, the fungus Cryptococcus neoformans is known to be 70 

able to change the capsule structure in vitro and also during infection (8-11), and those 71 

changes have been shown to lead to altered antigenicity (8, 11).  72 

Because polysaccharides for pneumococcal vaccine production are derived from in vitro 73 

cultures, a nutrient-dependent variation could lead to antigenic preparations which differ from 74 

the in vivo antigen.  75 
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Capsule variation could also impair diagnostic procedures such as classical serotyping, 76 

which is based on polysaccharide specific antigen-antibody reaction.  77 

Serotype 19A strains have emerged after the introduction of the seven-valent pneumococcal 78 

vaccine, and were subsequently included in the thirteen-valent vaccine now recommended 79 

in most countries (12, 13). The emergence of serotype 19A after the introduction of the 80 

seven-valent vaccine was surprising, as a cross-protection was expected due to close 81 

chemical similarity to the serotype 19F capsule as it was observed for serotypes 6A and 6B 82 

which also differ only by one glycosidic linkage (14, 15). Furthermore, 19F-19A cross-83 

protection had been observed to a certain degree in an animal model (16). Recent work 84 

suggests a conformational difference in polysaccharide structure, which might explain the 85 

reduced cross-protection (17, 18).  86 

At least three different 19A capsule subtypes are known based on the genetic arrangement 87 

of the capsule gene locus compared to a reference strain (19). In addition to various SNPs 88 

along the capsule operon, most characteristically, subtypes I and II have an inverted rmlD 89 

gene, which is the last gene in the rhamnose synthesis pathway (3). To our knowledge, no 90 

variations in the capsule structure have been described for different subtypes.  91 

Given the recent discovery of 19A capsular subtypes and previous reports of structural 92 

variants as well as the introduction of serotype 19A in the 13- valent pneumococcal 93 

conjugate vaccine (PCV13) we aimed to determine the epidemiology and capsule 94 

composition of different 19A subtypes in different nutritional environments.  95 
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MATERIAL AND METHODS 96 

Bacterial strains and serotype 19A subtype analysis. Serotype 19A subtype strains were 97 

selected from a Swiss national pneumococcal surveillance program (20). In order to detect 98 

the different described 19A subtypes (19) we analyzed 158 pneumococcal serotype 19A 99 

isolates derived from the upper respiratory tract of infant and adult outpatients with signs of 100 

upper respiratory tract infection (20). Antimicrobial susceptibility for penicillin, 101 

sulfamethoxazole / trimethoprim (SXT) and erythromycin was determined as previously 102 

described (20). In brief, minimum inhibitory concentration (MIC) for penicillin non-103 

susceptibility was ≥ 0.06 mg/L while for erythromycin and SXT the disk diffusion method was 104 

performed (intermediate and resistant were considered as non-susceptible). A two-step PCR 105 

protocol was used to determine the 19A subtype of each strain using the following 106 

conditions. The first PCR was done with two primer pairs: rmlb_1_f -GAT GGT GAG AAG 107 

AAC AAT AAG; rmlb_2_f - GAC GGT GAG AAG AAC AAC AAG; rmld_1_r- CTT CAT TAC 108 

GTT CAT CCA ATA and rmld_2_r  CAG CTG AAG ACA CCA CTT GGT. PCR conditions 109 

were initial heat activation 6 min 95°C, 30 cycles of 30s 95°C, 20s of 60°C and 90s of 72°C 110 

with a final extension of  5 min 72°C. The reaction mixture contained 2.5 μL of FastStart Taq 111 

reaction buffer without MgCl2, 2.7 μL of 25 mM MgCl2 stock solution, 4 μL of 1.25 mM 112 

deoxynucleoside triphosphates (0.2 mM final), 0.2 μL (1 U) of FastStart Taq polymerase (all 113 

from Roche Molecular Biochemicals, Rotkreuz, Switzerland), and 0.25 μL of each primer 114 

(100 μM stock resulting in 1 μM final concentration, Microsynth AG, Balgach, Switzerland) in 115 

a total volume of 25 μL. PCR products were visualized on 1% agarose gels. A resulting PCR 116 

product of 560 bp indicated subtypes 19A-I and 19A-II whereas a band of 425 bp indicated 117 

subtype 19A-III. For isolates within the first group (19A-I/19A-II), a second PCR reaction was 118 

performed to discriminate between the two groups using the following primers: wzg_2_f -119 

AGT TGA TTC GTC CAT CCA CAC T; wzg_3_f -GGA ATT GAC ACA TAT GGT CCT and 120 

wzh_r -GCC AAG AGA GCC TTG CTT TCC. The resulting PCR products were 654 bp and 121 

833 bp for types 19A-I and 19A-II, respectively.  122 
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Strains were further characterized with plyNCR-RFLP as previously described (21, 22). We 123 

selected the following strains for further analysis of the capsule composition (Table 1): 124 

109.44 and 501.14 (subtype 19A-I), 501.24 (subtype 19A-II), and 412.49 (subtype 19A-III). 125 

For all selected subtype test strains, multi locus sequence typing (MLST) was determined as 126 

previously described (22). In addition, we included the internationally spread Hungary-19A-6 127 

strain (23), which was classified as a 19A III. Serotype 19F strains 505.32 and B201.73 were 128 

selected for comparison as the polysaccharide repeat unit contains the same backbone 129 

monosaccharides but different glycosidic linkages between the repeat units. Both strains are 130 

clinical isolates derived from Swiss national surveillance programs (20, 24). In addition a 131 

capsule knockout mutant of strains B201.73 was generated as previously described (25, 26) 132 

to assess the amount of background signal in capsule extracts. Commercially available 133 

capsule polysaccharide of serotype 19A from the American Type Culture Collection (ATCC, 134 

Molsheim Cedex, France) was used as a reference standard.  135 

Chi-Square and Fisher exact tests were used to calculate p values for epidemiological 136 

analyses. A value of p ≤ 0.05 was considered significant. In addition, we used a multivariate 137 

logistic regression model to ascertain the strength of the association between PCV7 era and 138 

19A subtypes, and adjusted for potential confounders like age (0-1 (base), 2-4, 5-15 and >15 139 

years), sex (male gender as base), penicillin resistance (susceptible chosen as base), 140 

erythromycin resistance (susceptible chosen as base), SXT resistance (susceptible chosen 141 

as base) and geopraphical origin (east Switzerland as base). Adjusted odds ratios (aOR) 142 

with 95% confidence intervals (95%CI) were received (table S1). Trends over time in the 143 

prevalence of different 19A subtypes before the introduction of PCV7 were analyzed using 144 

linear regression. 145 

Growth conditions, polysaccharide purification, hydrolysis and high performance 146 

liquid chromatography (HPLC). Strains were handled and grown as described previously 147 

(25). The undefined growth medium pneumococcal inoculation medium (PIM) which has 148 

been reported to alter 19A capsule composition (6), as well as a chemically defined medium 149 
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(CDM) by van den Rijn and Kessler (27) were used. CDM was supplemented with 5 mg/L 150 

choline chloride (28), but made without monosaccharides to allow modification of the type 151 

and concentration of the carbon source for each experiment. Monosaccharides were added 152 

to the CDM and the mixture was sterile filtrated using a 0.22 µm filter unit (TPP, 153 

Trasadingen, Switzerland). Two forms of CDM were created, one supplemented with 55 mM 154 

Glucose and the other one mimicking the composition of the salivary mucin MG1, i.e.: N-155 

aceteylneuraminic acid (NeuNAc):fucose (Fuc):galactose (Gal):N-acetylglucosamine 156 

(GlcNAc):N-acetylgalactosamine (GalNAc) = 1:5:4:3:1 (29)). For one experiment pooled 157 

human saliva from ten healthy volunteers was collected using Salivette (Sarstedt, 158 

Nümbrecht, Germany). After centrifugation with 1500 x g for 2 minutes samples were pooled 159 

and sterile filtrated with 0.22μm centrifugal filter units (Millipore, Billerica, MA) at 5000 x G for 160 

20 minutes as previously described (30). 161 

Capsules of strains grown in different growth media were released by overnight incubation in 162 

1% phenol, separated from the bacteria by centrifugation and filtration, and then purified with 163 

sodium acetate/ethanol precipitation, followed by protease and nuclease digestion of 164 

remaining contaminants, and finally cut-off filtrated as described (25). The extracted 165 

polysaccharides were then completely hydrolyzed by trifluoroacetic acid (TFA) (31). The 166 

monosaccharide composition of capsular polysaccharides of strains grown in CDM was 167 

determined by high performance liquid chromatography (HPLC) analysis of fluorescently 168 

labelled monosaccharides as previously described (25, 32-35), whereas the PIM extracts 169 

were analyzed on a system consisting of an  ASI-100 autosampler and P680 HPLC pump 170 

(DIONEX, Sunnyvale, CA, USA) with an injection volume of 20 µL per sample. Separation of 171 

the monosaccharide was done with a flow rate of 0.85 mL/min as follows: 6% solvent B 172 

isocratic for 35 minutes followed by a linear gradient from 6 to 12% solvent B over 20 173 

minutes. Then, the column was washed with 100% solvent B for 10 minutes and 100% 174 

solvent A for 15 minutes followed before re-equilibrating the system with 6% solvent B for 10 175 

minutes. Total run time was 90 minutes and data was collected for 55 minutes using an L-176 

7480 Fluorescence Detector (Merck Hitachi, Darmstadt, Germany). A Luna 5 mm, C18 177 
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column (Phenomenex, Torrance, CA) was used for separation and column temperature was 178 

maintained at 24 °C using a TCC-100 column oven (Thermo Scientific Dionex, Reinach, 179 

Switzerland). Peaks were identified by comparing retention time with monosaccharide 180 

standards analyzed in the same run (Figure S1A). As N-acetylated aminosugars are 181 

deacetylated during hydrolysis with TFA (36), deacetylated aminosugars were used as 182 

standards for their acetylated counterpart (e.g., mannosamine for N-acetyl-mannosamine). 183 

Negative controls included in each experiment were medium negative control for growth, 184 

extraction, hydrolysis and HPLC. HPLC raw data was exported into GraphPad Prism 185 

(Version 5, GraphPad Software, Inc.) for creating figures.  186 

Gas chromatography – mass spectrometry (GC-MS). GC-MS analysis of alditol acetates 187 

of the polysaccharide hydrolysates from strains 109.44 grown in PIM and 501.24 grown in 188 

PIM, pooled saliva, and CDM glucose was performed as a control, as previously described 189 

(37, 38).  190 

Nuclear magnetic resonance spectroscopy (NMR). NMR data were collected on a Bruker 191 

Avance II (500 MHz; 1H) spectrometer equipped with a 1.7 mm triple-resonance (1H, 13C, 192 

31P) microprobe head. The samples were extracted as described above and prepared as 193 

follows: The full amount of each capsule extract (~4 – 5 mg) was dissolved in 50 µl of D2O 194 

and 40 µl of the resulting mixtures were transferred into 1.7 mm NMR tubes. The water 195 

resonance was suppressed using a classical presaturation scheme. HSQC spectra were 196 

collected on a Bruker Avance III HD (600 MHz) spectrometer equipped with an inverse 5mm 197 

TCI helium cryoprobe. All spectra were acquired at a regulated temperature of 298 K and 198 

calibrated to the residual water peak (4.766 ppm). For the interpretation of the received 199 

carbon and hydrogen shifts, results from previous studies were used as guidance for the 200 

capsule structure determination of the 19A capsule extracts (4, 39, 40). 201 

 202 

  203 
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RESULTS 204 

Epidemiology of non-invasive 19A subtypes. We first aimed at analyzing the distribution 205 

of the different pneumococcal serotype 19A subtypes within the Swiss Sentinel Network 206 

collection of upper respiratory tract isolates. PCV7 had been recommended in Switzerland 207 

since late 2005 to all children under the age of 24 months in a three dose schedule given at 208 

2, 4 and 12 months and since August 2006 the vaccine has been fully reimbursed by the 209 

mandatory Swiss health insurance. Serotype 19A strains isolated from the upper respiratory 210 

tract between 1998 and 2011 were analyzed. In total, 158 19A isolates were screened for 211 

the three described subtypes using a two-step PCR protocol described above. Between 212 

1998 and 2005, we identified 30 (57.7%), 5 (9.6%) and 17 (32.7%) isolates belonging to 213 

subgroups 19A-I, 19A-II, and 19A-III, respectively. After 2006 until 2011, a significant relative 214 

difference was noted overall (p=0.02) but also individually for the subgroups 19A-I (p=0.02) 215 

and 19A-II (p=0.02) as 40 (37.7%), 28 (26.4%) and 38 (35.8%) isolates were detected with 216 

the 19A-I, 19A-II, and 19A-III subtypes, respectively (Figure 1A). There was still a significant 217 

shift even after data from the PCV7 introduction year (2006) were excluded (p=0.03). We 218 

found no evidence for a difference of 19A subtypes distribution according to age (Pre versus 219 

post introduction of PC7 eras over age groups of ≤1, 2-4, 5-15 and >15 years; Fisher’s exact 220 

test; p= 0.3). In addition, there was no indication of a time trend for the frequency of 19A 221 

subtypes before the PCV7 was present (Data not shown). As for molecular types derived by 222 

plyNCR-RFLP typing, plyNCR-RLPF types 1 (55.7%) and 16 (18.4%) were the most 223 

frequent within the 158 strains but we did not detect a significant shift of molecular types 224 

between pre and post PCV7 introduction era (Figure 1B). In addition we revealed that 225 

antibiotic resistances within the 19A strains were generally high and that 19A II is 226 

significantly more susceptible towards penicillin, erythromycin, and SXT as compared to the 227 

other subtypes (Figure 1C). However, calculating a multivariate logistic regression model  we 228 

confirmed that there was strong evidence that, compared to 19A I, the odds of observing 229 

subtype 19A II after introduction of PCV7 was 6 times higher than before PCV7, and that this 230 
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association was independent of antimicrobial resistance, geographical region, age or sex 231 

(p = 0.005; Table S1). 232 

We then selected at least one strain of each subtype for further laboratory analysis to 233 

determine capsular composition of the different subtypes (Table 1). Selected subtype strains 234 

represented different genetic backgrounds as indicated by MLST and plyNCR-RFLP 235 

analysis (Table 1). 236 

Method validation. To assess the degree of contamination of capsule extracts with cell wall 237 

and other components, we first compared the monosaccharide composition of hydrolyzed 238 

capsule extracts of a serotype 19F clinical isolate B201.73 with extracts of its isogenic 239 

capsule knockout mutant (B201.73∆cps) by HPLC with fluorescence detection (Figure S1B). 240 

No rhamnose peaks were detected for the strain without a capsule, but small amounts of 241 

glucose and higher amounts of amino sugars including mannosamine could be detected, 242 

most likely deriving from cell wall polysaccharide (CWPS) and from murein layer. 243 

Furthermore, hydrolysis with TFA is known to produce varying amounts of hydrolysis-derived 244 

(di)saccharides (Figure S1B). This contamination was usually present in capsule extracts 245 

from tested strains and was higher in amount as compared to the commercially available 246 

purified pneumococcal polysaccharide (Figure 2). Furthermore, after complete hydrolysis a 247 

linkage analysis is not possible and only monosaccharide determination can be done (e.g., 248 

same chromatogram for serotype 19A and 19F). Therefore, we used the HPLC method only 249 

as a screening tool for additional neutral monosaccharides under different growth conditions 250 

(i.e. galactose and fucose).  251 

Capsule composition analysis of 19A subtypes by HPLC and GC-MS. We then analyzed 252 

the capsule composition of a strain for each subgroup (109.44 and 501.14 (subtype 19A-I), 253 

501.24 (subtype 19A-II), and Hungary-19A-6 and 412.49 (subtype 19A-III) grown in CDM 254 

supplemented with 55 mM glucose. We did not detect additional neutral monosaccharides 255 

and comparison of the used isolates revealed no differences among the strains indicating 256 
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the same monosaccharide backbone built of glucose, rhamnose and (N-acetyl)-257 

mannosamine. As expected, HPLC chromatograms were not able to differentiate 19A from 258 

19F as both serotypes contain the same monosaccharide compositions (Figure 2A). We 259 

then analyzed the capsular extracts from the ATCC standard (Figure 2B) and from 19A 260 

subtypes grown in the undefined medium PIM (Figure 2C). Again, no additional neutral 261 

monosaccharides were detected and thus reported additional monosaccharides (galactose 262 

and fucose would have been expected on the neutral side based on the literature (6)) were 263 

not seen in our preparations. As HPLC allows only the identification of peaks based on their 264 

retention time in comparison to standards, the presence of the neutral monosaccharides in 265 

capsule extracts was confirmed for 109.44 (19A-I) grown in CDM with 55 mM Glucose 266 

(Figure S3A) and PIM (Figure S3B) and 501.24 (19A-II) grown in PIM (Figure S3C) with GC-267 

MS (which revealed glucose and rhamnose in all preparations). GC-MS also confirmed a 268 

lower degree of contamination with cell wall and other compounds in the ATCC standard 269 

compared to subtype capsule extracts (Figure S3D). 270 

To mimic saccharide nutrients present in the natural human environment of S. pneumoniae, 271 

109.44 (19A-I) was grown in CDM with monosaccharides contained in human mucin (5.5 272 

mM total concentration of the mucin building monosaccharides in ratios as determined for 273 

the salivary mucin MG1) and 501.24 (19A-II) was also grown in pooled human saliva 274 

collected from 10 healthy volunteers after sterile filtration. No additional neutral 275 

monosaccharides were identified to be present in the polysaccharide capsule extracted from 276 

the strains grown under these conditions compared to capsule extracted from strains grown 277 

in CDM supplemented with glucose or PIM but the signal to noise ratio was much lower in 278 

saliva grown capsule (Figure S2 and S3E). 279 

NMR analyses reveal no structural difference between subtypes. 280 

In order to confirm the proposed structures of the oligosaccharides we compared the 281 

anomeric region (4.8-6.0 ppm) in the 1H-NMR of all strains grown in CDM supplemented with 282 

55mM glucose (Figure 3A). We were able to clearly differentiate the capsule of serotype 19A 283 
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strains from 19F capsule. Comparison of carbon and hydrogen shifts with previously 284 

reported NMR spectra confirmed the following structures for serotype 19F: →2)-α-L-Rha-285 

(1→PO4→4)-β-D-ManNAc-(1→4)-α-D-Glc-(1→  and for serotype 19A: →3)-α-L-Rha-286 

(1→PO4→4)-β-D-ManNAc-(1→4)-α-D-Glc-(1→ . In addition, no differences among the 287 

serotypes 19A subtypes were detected. We then performed an identical 1H-NMR analysis of 288 

all strains grown in PIM which has been reported to alter the composition of 19A capsule (6). 289 

The spectra were again consistent within 19A subtypes but different from serotype 19F 290 

capsular polysaccharide (Figure 3A). Based on those results, it can be stated that the 291 

capsule composition is independent of tested growth medium as the patterns were identical 292 

to each other and to the ATCC reference 19A polysaccharide. Only a slight shift was 293 

observed for the capsule analysis of the Hungary 19A-6 strain. However, the overlay of the 294 

2D 1H-13C HSQC-NMR spectra of this isolate grown in PIM and CDM supplemented with 295 

glucose revealed identical patterns for the H-atoms of the anomeric region as illustrated for 296 

rhamnose, N-acetyl mannosamine and glucose (Figure 3B). The full 2D Spectrum is shown 297 

in Figure S4. 298 

  299 
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DISCUSSION 300 

In this study we demonstrated that the distribution of pneumococcal serotype 19A subtypes 301 

changed after the implementation of PCV7 in Switzerland. However, all analyzed capsular 302 

extracts from serotype 19A subtypes grown in defined medium CDM and the undefined 303 

medium PIM showed a capsule composition which was consistent with the one proposed 304 

based on genetic analysis. Furthermore, we did not find any evidence for additional side 305 

chains altered repeat units or linkage changes under different nutritional conditions. .  306 

During the time of widespread use of PCV7 in Switzerland the serotype 19A subtype 307 

distribution changed substantially compared to the pre-vaccine period. Similar shifts with 308 

decreasing 19A-I and increasing 19A-II subtypes after the introduction of PCV7 have also 309 

been reported in the Netherlands (19). Furthermore, although classified as group III by PCR, 310 

based on its genome sequence the Hungary 19A-6 strain contains an additional insertion 311 

element downstream of the last cps gene (rmlD) and differs from the subgroup III strains as 312 

defined by Elberse et al. (19) which could suggest an additional serotype 19A subgroup.  313 

Given the identical capsule structure for all tested 19A subtypes as revealed for the first time 314 

in our study using NMR, HPLC and GC-MS, no alteration of vaccine effectiveness due to 315 

capsular differences between individual subtypes is suggested. Furthermore, the lack of anti-316 

19F antibody cross-protection against serotype 19A can therefore not be explained by 317 

selection of 19A subtypes with altered capsule structures which supports recent discoveries 318 

suggesting a general low protection due to conformational difference in polysaccharide 319 

structures of 19F and 19A (17, 18).  320 

 321 

However, other factors could explain the observed subtype shift after the introduction of 322 

PCV7 in Switzerland. For example, changes in 19A subtypes could be due to changes in 323 

clonal distribution although we did not detect a significant shift of molecular types as 324 

determined by plyNCR-RFLP. However, additional typing methods or whole genome 325 
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sequencing might be more appropriate to investigate this hypothesis.  As for antibiotic 326 

resistance being a potential driver for the subtype shifts, we revealed that 19A II is 327 

significantly more susceptible to antibiotics as compared to the other subtypes indeed, but 328 

as 19A II increases in the PCV7 era, increasing antibiotic resistance can therefore not 329 

explain the changes in the distribution, though antibiotic resistance within serotype 19A 330 

strains is generally high as previously shown (41). A subtype redistribution under increasing 331 

vaccine selection pressure after the introduction of PCV13 would be unexpected, although it 332 

has been speculated that there might be a difference in capsule thickness for different 333 

subtypes which might lead to differences in opsonophagocytotic susceptibility (19).  334 

Previously reported experiments showing additional side chains in 19A isolates grown in PIM 335 

could not be replicated (6).  An explanation for this finding might be a strain-specific genetic 336 

alteration in previous studies. Indeed, it has been recently reported that serotype 11D has 337 

two different capsular polysaccharide repeating units in a ratio of 1:3 (25% and 75%, 338 

respectively) due to a bispecific transferase WcrL (42). Although precursors of capsular 339 

galactose and N-acetyl-glucosamine might be available due to their synthesis in other 340 

pathways (43), the (environment-dependent) addition of 2 side chains comprised of three 341 

additional monosaccharides is expected to be reflected with at least additional 342 

glycosyltransferase enzymes within the capsule locus involved in their linkage, and a switch 343 

of the glycosidic linkage between rhamnose and glucose would suggest mutations resulting 344 

in bispecificity or two copies of the wzy polymerase (3). To our knowledge, neither of these 345 

two possibilities have been detected in 19A strains (3). However, variation of the repeat unit 346 

structure would be suspected to have an influence on the antigenicity thus resulting in 347 

suspect serotyping results (i.e., less reactive with anti-19A antiserum) which were not 348 

observed in this study. However, given the increasing vaccine selection pressure after the 349 

introduction of PCV13, we recommend capsule structure determination of emerging clones 350 

and/or serotypes given recent discoveries of novel serotypes and capsule variants (42, 44-351 

47). The importance of chemical capsule structure analysis is also highlighted by a recent 352 
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analysis of serotype “6E” capsule, demonstrating that this potential new serotype determined 353 

at the genetic level produces capsular polysaccharide identical to 6B capsular 354 

polysaccharide (48). 355 

A particular strength of this study is the use of multiple techniques for capsule structure 356 

determination, which enhances the reliability of reported findings. We first used an HPLC 357 

based approach to determine if additional neutral sugars were incorporated into the capsule 358 

and validated the methodology with GC-MS. As this technique requires complete hydrolysis 359 

a linkage analysis was not possible in this first step. Furthermore, although this method has 360 

been demonstrated to have high normalized recoveries of neutral monosaccharides 361 

rhamnose and glucose of serotype 19F monosaccharides (32), TFA hydrolysis has also 362 

been reported to be less satisfactory for polysaccharides with aminosugar moieties (32) and 363 

it has been reported that disaccharides can be formed during hydrolysis based on different 364 

stability of intramolecular bonds (32) which also occurred in our experiments. 365 

Results showed traces of contamination of cell-wall components in our preparations, which 366 

is a common co-extracted compound in pneumococcal capsule preparations probably 367 

because the capsule is covalently linked to the cell wall (32, 49, 50). To determine linkage 368 

analysis and further characterization of the capsule oligosaccharide repeat units, we 369 

performed additional 1D and 2D NMR analysis of polysaccharides from unhydrolyzed 370 

capsule extracts. The major limitation of this study is that the number of different 19A 371 

subtype strains analyzed was rather small. However, we chose at least one sample of each 372 

of the currently known subtypes and it can therefore be expected that our study is 373 

representative. Although we did not find evidence for nutrition-dependent variations of 374 

capsule structures, this cannot be considered as final proof for an absence of such 375 

variations. Furthermore, we did not have the same strains or capsule extracts for which a 376 

nutrient-dependent variation has been reported as a reference for the assays used (6).  377 

In summary, the polysaccharide capsule composition for tested serotype 19A subtypes was 378 

consistently composed of the same trisaccharide repeat unit. Although we therefore do not 379 
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expect a structural advantage for certain subtypes it remains to be determined how the 19A 380 

subtype distribution will be affected by PCV13. We did not detect any nutritional 381 

environment-dependent alterations of the capsule composition. However, given the genetic 382 

plasticity of S. pneumoniae and current vaccine selection pressure, we propose to test the 383 

capsule composition of emerging serotype 19A clones, especially in cases where there is no 384 

other explanation for a selective advantage such as antibiotic resistance or loss or 385 

acquisition of other virulence factors.  386 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


17 
 

ACKNOWLEDGMENTS 387 

We would like to thank Professors Adrian F. Brugger, Peter Bütikofer, Johannis P. 388 

Kamerling, Vincent Perreten and Jean-Louis Reymond for advice and help with chemical 389 

questions and Suzanne Aebi for excellent technical assistance. We are grateful to Dr. 390 

Lindsey Bomar for critical comments and helpful discussions. We also thank Dr. Sandra 391 

Loss and Dr. Aitor Moreno from Bruker AG, Fällanden, Switzerland for their valuable support 392 

and providing access to their NMR facility and the Department of Anesthesiology, University 393 

Hospital Bern, Inselspital for providing the HPLC instrument. We also acknowledge the 394 

physicians who participate in the Sentinella surveillance system and who provided non-395 

invasive sample material. The prospective surveillance study on colonising pneumococci 396 

within Sentinella has been funded by the FOPH (Federal Office of Public Health). 397 

 398 

  399 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


18 
 

REFERENCES 400 

1. Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins 401 

M, Donohoe K, Harris D, Murphy L, Quail MA, Samuel G, Skovsted IC, Kaltoft 402 

MS, Barrell B, Reeves PR, Parkhill J, Spratt BG. 2006. Genetic analysis of the 403 

capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2:e31. 404 

2. Hausdorff WP, Bryant J, Paradiso PR, Siber GR. 2000. Which pneumococcal 405 

serogroups cause the most invasive disease: implications for conjugate vaccine 406 

formulation and use, part I. Clin Infect Dis 30:100-121. 407 

3. Morona JK, Morona R, Paton JC. 1999. Comparative genetics of capsular 408 

polysaccharide biosynthesis in Streptococcus pneumoniae types belonging to 409 

serogroup 19. J Bacteriol 181:5355-5364. 410 

4. Katzenellenbogen E, Jennings HJ. 1983. Structural determination of the capsular 411 

polysaccharide of Streptococcus pneumoniae type 19A (57). Carbohydr Res 412 

124:235-245. 413 

5. Kamerling JP. 2000. Pneumococcal polysaccharides: a chemical view, p81-114. In 414 

Tomasz A (ed), Streptococcus pneumoniae: molecular biology & mechanisms of 415 

disease. Mary Ann Liebert, Inc., Larchmont, NY. 416 

6. Lee CJ, Fraser BA, Boykins RA, Li JP. 1987. Effect of culture conditions on the 417 

structure of Streptococcus pneumoniae type 19A(57) capsular polysaccharide. Infect 418 

Immun 55:1819-1823. 419 

7. Lee CJ, Fraser BA. 1980. The structures of the cross-reactive types 19 (19F) and 57 420 

(19A) pneumococcal capsular polysaccharides. J Biol Chem 255:6847-6853. 421 

8. Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. 422 

2009. The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl 423 

Microbiol 68:133-216. 424 

9. Garcia-Hermoso D, Dromer F, Janbon G. 2004. Cryptococcus neoformans capsule 425 

structure evolution in vitro and during murine infection. Infect Immun 72:3359-3365. 426 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


19 
 

10. Cherniak R, Morris LC, Belay T, Spitzer ED, Casadevall A. 1995. Variation in the 427 

structure of glucuronoxylomannan in isolates from patients with recurrent 428 

cryptococcal meningitis. Infect Immun 63:1899-1905. 429 

11. McFadden DC, Fries BC, Wang F, Casadevall A. 2007. Capsule structural 430 

heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot Cell 431 

6:1464-1473. 432 

12. Tan TQ. 2012. Pediatric invasive pneumococcal disease in the United States in the 433 

era of pneumococcal conjugate vaccines. Clin Microbiol Rev 25:409-419. 434 

13. Gervaix A, Ansaldi F, Brito-Avo A, Azzari C, Knuf M, Martinon-Torres F, 435 

Tuerlinckx D, Tin Htar MT, Syrogiannopoulos GA. 2014. Pneumococcal 436 

vaccination in Europe: schedule adherence. Clin Ther 36:802-812 e801. 437 

14. Whitney CG, Pilishvili T, Farley MM, Schaffner W, Craig AS, Lynfield R, Nyquist 438 

AC, Gershman KA, Vazquez M, Bennett NM, Reingold A, Thomas A, Glode MP, 439 

Zell ER, Jorgensen JH, Beall B, Schuchat A. 2006. Effectiveness of seven-valent 440 

pneumococcal conjugate vaccine against invasive pneumococcal disease: a 441 

matched case-control study. Lancet 368:1495-1502. 442 

15. Vakevainen M, Eklund C, Eskola J, Kayhty H. 2001. Cross-reactivity of antibodies 443 

to type 6B and 6A polysaccharides of Streptococcus pneumoniae, evoked by 444 

pneumococcal conjugate vaccines, in infants. J Infect Dis 184:789-793. 445 

16. Jakobsen H, Sigurdsson VD, Sigurdardottir S, Schulz D, Jonsdottir I. 2003. 446 

Pneumococcal serotype 19F conjugate vaccine induces cross-protective immunity to 447 

serotype 19A in a murine pneumococcal pneumonia model. Infect Immun 71:2956-448 

2959. 449 

17. Kuttel M, Gordon M, Ravenscroft N. 2014. Comparative simulation of 450 

pneumococcal serogroup 19 polysaccharide repeating units with two carbohydrate 451 

force fields. Carbohydr Res 390:20-27. 452 

18. Kuttel MM, Jackson GE, Mafata M, Ravenscroft N. 2015. Capsular polysaccharide 453 

conformations in pneumococcal serotypes 19F and 19A. Carbohydr Res 406:27-33. 454 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


20 
 

19. Elberse K, Witteveen S, van der Heide H, van de Pol I, Schot C, van der Ende A, 455 

Berbers G, Schouls L. 2011. Sequence diversity within the capsular genes of 456 

Streptococcus pneumoniae serogroup 6 and 19. PLoS One 6:e25018. 457 

20. Muhlemann K, Matter HC, Tauber MG, Bodmer T, Sentinel Working G. 2003. 458 

Nationwide surveillance of nasopharyngeal Streptococcus pneumoniae isolates from 459 

children with respiratory infection, Switzerland, 1998-1999. J Infect Dis 187:589-596. 460 

21. Hathaway LJ, Brugger S, Martynova A, Aebi S, Muhlemann K. 2007. Use of the 461 

Agilent 2100 bioanalyzer for rapid and reproducible molecular typing of 462 

Streptococcus pneumoniae. J Clin Microbiol 45:803-809. 463 

22. Zhou J, Enright MC, Spratt BG. 2000. Identification of the major Spanish clones of 464 

penicillin-resistant pneumococci via the Internet using multilocus sequence typing. J 465 

Clin Microbiol 38:977-986. 466 

23. McGee L, McDougal L, Zhou J, Spratt BG, Tenover FC, George R, Hakenbeck R, 467 

Hryniewicz W, Lefevre JC, Tomasz A, Klugman KP. 2001. Nomenclature of major 468 

antimicrobial-resistant clones of Streptococcus pneumoniae defined by the 469 

pneumococcal molecular epidemiology network. J Clin Microbiol 39:2565-2571. 470 

24. Meichtry J, Born R, Kuffer M, Zwahlen M, Albrich WC, Brugger SD, Muhlemann 471 

K, Hilty M. 2014. Serotype epidemiology of invasive pneumococcal disease in Swiss 472 

adults: a nationwide population-based study. Vaccine 32:5185-5191. 473 

25. Hathaway LJ, Brugger SD, Morand B, Bangert M, Rotzetter JU, Hauser C, 474 

Graber WA, Gore S, Kadioglu A, Muhlemann K. 2012. Capsule type of 475 

Streptococcus pneumoniae determines growth phenotype. PLoS Pathog 476 

8:e1002574. 477 

26. Trzcinski K, Thompson CM, Lipsitch M. 2003. Construction of otherwise isogenic 478 

serotype 6B, 7F, 14, and 19F capsular variants of Streptococcus pneumoniae strain 479 

TIGR4. Appl Environ Microbiol 69:7364-7370. 480 

27. van de Rijn I, Kessler RE. 1980. Growth characteristics of group A streptococci in a 481 

new chemically defined medium. Infect Immun 27:444-448. 482 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


21 
 

28. Desai BV, Reiter H, Morrison DA. 2003. Choline starvation induces the gene licD2 483 

in Streptococcus pneumoniae. J Bacteriol 185:371-373. 484 

29. Thomsson KA, Prakobphol A, Leffler H, Reddy MS, Levine MJ, Fisher SJ, 485 

Hansson GC. 2002. The salivary mucin MG1 (MUC5B) carries a repertoire of unique 486 

oligosaccharides that is large and diverse. Glycobiology 12:1-14. 487 

30. Shelburne SA, 3rd, Sumby P, Sitkiewicz I, Granville C, DeLeo FR, Musser JM. 488 

2005. Central role of a bacterial two-component gene regulatory system of previously 489 

unknown function in pathogen persistence in human saliva. Proc Natl Acad Sci U S A 490 

102:16037-16042. 491 

31. Albersheim P. 1968. A method for the analysis of sugars in plant cell wall 492 

polysaccharides by gas liquid chromatography. Carbohydr Res 5:340-345. 493 

32. Talaga P, Vialle S, Moreau M. 2002. Development of a high-performance anion-494 

exchange chromatography with pulsed-amperometric detection based quantification 495 

assay for pneumococcal polysaccharides and conjugates. Vaccine 20:2474-2484. 496 

33. Anumula KR. 1994. Quantitative determination of monosaccharides in glycoproteins 497 

by high-performance liquid chromatography with highly sensitive fluorescence 498 

detection. Anal Biochem 220:275-283. 499 

34. Anumula KR, Dhume ST. 1998. High resolution and high sensitivity methods for 500 

oligosaccharide mapping and characterization by normal phase high performance 501 

liquid chromatography following derivatization with highly fluorescent anthranilic acid. 502 

Glycobiology 8:685-694. 503 

35. Saddic GN, Dhume ST, Anumula KR. 2008. Carbohydrate composition analysis of 504 

glycoproteins by HPLC using highly fluorescent anthranilic acid (AA) tag. Methods 505 

Mol Biol 446:215-229. 506 

36. Kwon H, Kim J. 1993. Determination of monosaccharides in glycoproteins by 507 

reverse-phase high-performance liquid chromatography. Anal Biochem 215:243-252. 508 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


22 
 

37. Lehr T, Geyer H, Maass K, Doenhoff MJ, Geyer R. 2007. Structural 509 

characterization of N-glycans from the freshwater snail Biomphalaria glabrata cross-510 

reacting with Schistosoma mansoni glycoconjugates. Glycobiology 17:82-103. 511 

38. Geyer R, Geyer H, Kuhnhardt S, Mink W, Stirm S. 1982. Capillary gas 512 

chromatography of methylhexitol acetates obtained upon methylation of N-513 

glycosidically linked glycoprotein oligosaccharides. Anal Biochem 121:263-274. 514 

39. Abeygunawardana C, Williams TC, Sumner JS, Hennessey JP, Jr. 2000. 515 

Development and validation of an NMR-based identity assay for bacterial 516 

polysaccharides. Anal Biochem 279:226-240. 517 

40. Jennings HJ, Rosell KG, Carlo DJ. 1980. Structural Determination of the Capsular 518 

Polysaccharide of Streptococcus pneumoniae Type-19 (F-19). Canadian Journal of 519 

Chemistry-Revue Canadienne De Chimie 58:1069-1074. 520 

41. Hauser C, Kronenberg A, Allemann A, Muhlemann K, Hilty M. 2016. 521 

Serotype/serogroup-specific antibiotic non-susceptibility of invasive and non-invasive 522 

Streptococcus pneumoniae, Switzerland, 2004 to 2014. Euro Surveill 21. 523 

42. Oliver MB, Jones C, Larson TR, Calix JJ, Zartler ER, Yother J, Nahm MH. 2013. 524 

Streptococcus pneumoniae serotype 11D has a bispecific glycosyltransferase and 525 

expresses two different capsular polysaccharide repeating units. J Biol Chem 526 

288:21945-21954. 527 

43. Yother J. 2011. Capsules of Streptococcus pneumoniae and other bacteria: 528 

paradigms for polysaccharide biosynthesis and regulation. Annu Rev Microbiol 529 

65:563-581. 530 

44. Park IH, Geno KA, Yu J, Oliver MB, Kim KH, Nahm MH. 2015. Genetic, 531 

biochemical, and serological characterization of a new pneumococcal serotype, 6H, 532 

and generation of a pneumococcal strain producing three different capsular repeat 533 

units. Clin Vaccine Immunol 22:313-318. 534 

45. Camilli R, Spencer BL, Moschioni M, Pinto V, Berti F, Nahm MH, Pantosti A. 535 

2014. Identification of Streptococcus pneumoniae serotype 11E, serovariant 11Av 536 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


23 
 

and mixed populations by high-resolution magic angle spinning nuclear magnetic 537 

resonance (HR-MAS NMR) spectroscopy and flow cytometric serotyping assay 538 

(FCSA). PLoS One 9:e100722. 539 

46. Oliver MB, van der Linden MP, Kuntzel SA, Saad JS, Nahm MH. 2013. Discovery 540 

of Streptococcus pneumoniae serotype 6 variants with glycosyltransferases 541 

synthesizing two differing repeating units. J Biol Chem 288:25976-25985. 542 

47. Calix JJ, Porambo RJ, Brady AM, Larson TR, Yother J, Abeygunwardana C, 543 

Nahm MH. 2012. Biochemical, genetic, and serological characterization of two 544 

capsule subtypes among Streptococcus pneumoniae Serotype 20 strains: discovery 545 

of a new pneumococcal serotype. J Biol Chem 287:27885-27894. 546 

48. Burton RL, Geno KA, Saad JS, Nahm MH. 2016. Pneumococcus with the "6E" cps 547 

Locus Produces Serotype 6B Capsular Polysaccharide. J Clin Microbiol 54:967-971. 548 

49. Sorensen UB, Henrichsen J, Chen HC, Szu SC. 1990. Covalent linkage between 549 

the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus 550 

pneumoniae revealed by immunochemical methods. Microb Pathog 8:325-334. 551 

50. Talaga P, Bellamy L, Moreau M. 2001. Quantitative determination of C-552 

polysaccharide in Streptococcus pneumoniae capsular polysaccharides by use of 553 

high-performance anion-exchange chromatography with pulsed amperometric 554 

detection. Vaccine 19:2987-2994. 555 

 556 

  557 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


24 
 

TABLE 1. Streptococcus pneumoniae strains used in this study 558 

ID Serotype Subtype* plyNCR-RFLP** MLST 

109.44 19A 19A-I 16 ST 276 

501.14 19A 19A-I 1 ST 416 

501.24 19A 19A-II 1 ST 199 

412.49 19A 19A-III 14 ST 1151 

Hungary 19A-6 

(ATCC 700673) 

19A 19A-III  20 ST 268*** 

505.32 19F 19F 4 ST 179 

B201.73 19F 19F 40 ST 43 

 559 

ND: Not done; MLST: Multi Locus Sequencing Typing; ST: Sequence Type; RFLP: 560 

Restriction Fragment Length Polymorphism 561 

* Defined as previous described (19) 562 

** Done as previously described (21). 563 

*** According to: http://spneumoniae.mlst.net/sql/fulldetails.asp?id=689 564 

 565 

 566 

 567 

  568 

 on S
eptem

ber 7, 2016 by U
niversitaetsbibliothek B

ern
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/


25 
 

FIGURE LEGENDS 569 

FIGURE 1. A. Epidemiology of 19A subtypes (19A-I, 19A-II, and 19A-III) 1998-2011. A 570 

total of 158 serotype 19A strains isolated within the Swiss Sentinel Network (outpatients with 571 

upper respiratory tract infections) were analyzed. 1998-2005 was considered as pre-572 

conjugate vaccine (PCV7) era. The % of tested isolates and subgroup assignment for both 573 

periods is shown. There was an overall significance as derived by Fisher exact test 574 

(P=0.02). Chi-Square test revealed significant changes in relative frequency between the 575 

two periods for subtypes 19A-I (p=0.02) and 19A-II (p=0.02). 95% confidence intervals (CI) 576 

are indicated. B. Distribution of molecular types as determined by plyNCR-RFLP 1998-577 

2011. Shown are the most frequent plyNCR-RFLP types (Types 1 and 16). The remaining 578 

types were pooled within ‘others’. There was no overall significance as derived by Fisher 579 

exact test for the two different eras. 95% confidence intervals (CI) are indicated. C. 580 

Antibiotic resistance of serotype 19A isolates against penicillin, erythromycin, and 581 

sulfamethoxazole / trimethoprim (SXT), 1998-2011. Minimum inhibitory concentration 582 

(MIC) for penicillin non-susceptibility was ≥ 0.06 mg/L while for erythromycin and SXT the 583 

disk diffusion method was performed (intermediate and resistant were considered as non-584 

susceptible. 19A II is significantly more susceptible towards penicillin (Fisher exact test; p< 585 

0.001), erythromycin (p= 0.014), and SXT (p< 0.001) as compared to the other subtypes. 586 

95% confidence intervals (CI) are indicated. 587 

FIGURE 2. HPLC chromatograms of serotype 19A subtypes and 19F strain B201.73 588 

grown in CDM and PIM. HPLC composition analysis of hydrolyzed polysaccharide capsule 589 

of clinical isolates of serotype 19A subtypes grown in chemically defined medium with 55 590 

mM glucose (A) compared to ATCC purified pneumococcal serotype 19A polysaccharide 591 

(B), and the pneumococcal inoculation medium PIM (C). Y-axis shows fluorescence (FU) 592 

and chromatograms were stacked to facilitate comparison. Peaks of mannosamine (Man-N), 593 

rhamnose (Rha) and glucose (Glc) are labeled. 594 
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FIGURE 3. A. 1D NMR spectra of serotype 19A subtypes. Shown are 1H NMR spectra of 595 

capsular polysaccharide purified from each subtype grown in CDM 55 mM glucose (black) 596 

and PIM (red) compared to serotype 19F and ATCC 19A purified pneumococcal 597 

polysaccharide. B. 2D NMR. Shown is a superimposition of 1H-13C HSQC-NMR spectra of 598 

the anomeric region from PS from Hungary 19A-6 capsule grown in CDM and PIM.  599 
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