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Nonsingular Subsampling for Regression S Estimators with Categorical
Predictors
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Abstract Simple random subsampling is an integral part of S estimation algorithms for linear
regression. Subsamples are required to be nonsingular. Usually, discarding a singular subsample
and drawing a new one leads to a sufficient number of nonsingular subsamples with a reasonable
computational effort. However, this procedure can require so many subsamples that it becomes
infeasible, especially if levels of categorical variables have low frequency.

A subsampling algorithm called nonsingular subsampling is presented, which generates only
nonsingular subsamples. When no singular subsamples occur, nonsingular subsampling is as fast
as the simple algorithm, and if singular subsamples do occur, it maintains the same computational
order. The algorithm works consistently, unless the full design matrix is singular. The method is
based on a modified LU decomposition algorithm that combines sample generation with solving
the least squares problem. The algorithm may also be useful for ordinary bootstrapping.

Since the method allows for S estimation in designs with factors and interactions between
factors and continuous regressors, we study properties of the resulting estimators, both in the
sense of their dependence on the randomness of the sampling and of their statistical performance.

Keywords robust regression, MM estimate, S estimate, resampling, collinearity, bootstrap,
dummy variables

1 Introduction

S estimators are an important class of robust estimators for linear regression models. Computing
them requires solving a non-convex optimization problem, which is possible only for very small
number p of coefficients to be estimated. The algorithms used in practice are based on drawing
random subsamples. These determine the starting points for local optimization. Then the best
local optimum determines the estimate.

The most commonly used version draws subsamples of size p from the n observations. Such a
subsample I = {i1, i2, ..., ip} is called an “elemental subset” because it allows the coefficients to
be determined by solving the respective ordinary linear system of equations XIβ = Y I – if the
design matrix XI is nonsingular.

Since the number of different elemental subsets,
(
n
p

)
, increases with an order of np, it is feasible to

enumerate all of them only for very small datasets. In practice, random subsamples are drawn. If one
obtains at least one outlier-free subsample with nonsingular XI , and if one can choose the number
s of nonsingular subsamples so that this is achieved with high probability (see Section 2), then the
resulting estimator will remain robust in the sense of avoiding breakdown. The computational effort
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2 Manuel Koller, Werner A. Stahel

needed to arrive at the number s depends critically on the probability with which a subsample
produced by the algorithm is nonsingular, that is, has a nonsingular XI .

For continuous regressors, simple random subsamples of the design matrix are almost surely
nonsingular under a mild and obvious regularity condition called “general position”. In this case,
the simple random subsampling algorithm is a good choice. Even if some singular samples occur,
e.g., because of rounding effects, it will work by simply discarding any singular subsample and
drawing another one in its place. For categorical predictors, however, singular subsamples can have
an arbitrarily high probability; thus, the number of trials it takes to obtain a desired number of
nonsingular subsamples may tend to infinity.

The problem can be illustrated with a simple example: Imagine a one-way ANOVA with 3
groups and 3 repetitions each. If we use treatment contrasts to encode the grouping structure, we
get the following regression model Y = Xβ + ε with

Xᵀ =

0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1


The size of an elemental subset is 3. We can estimate the coefficients β only if the subsample
contains at least one observation of each group. Of all 84 possible subsamples, only 27 are good in
this way. Even in this very simple example, there is about a two-thirds probability that collinearities
will necessitate discarding a subsample. The probability of discard increases steeply when some
levels of factors are relatively infrequent. In this case, the discard rate is excessive and requires an
enormous number of primary subsamples before the desired number of nonsingular ones is reached.
In this situation, simple random subsampling algorithms are infeasible.

Instead of discarding the whole subsample, we solve this problem by drawing observations
sequentially and discarding any observation that causes singularity. We call this refined subsampling
strategy nonsingular subsampling. The algorithm is much faster than simple random subsampling
for solving hard problems, and it is just as fast for solving easy problems.

Maronna and Yohai (2000) proposed another approach to the problem. They used a combination
of M and S estimators, called an M-S estimator. An M estimator obtains the coefficients for the
categorical variables, while an S estimator determines the coefficients for the continuous variables.
Their approach works well for models containing only main effects of categorical and continuous
variables. For models with interactions of categorical and continuous variables, however, it is not
clear how the model matrix should be split. Using the M estimator for the interaction will decrease
robustness, but using the S estimator will produce singular subsamples.

For models with categorical predictors, the breakdown points of the estimators are generally
lower than for data with only continuous predictors. The maximum possible breakdown point
depends on the design matrix. Several authors have considered the problem of breakdown in data
with categorical predictors (Davies and Gather, 2005; Hampel, 1975; Mili et al, 1991; Ruckstuhl,
1995; Stahel et al, 1994). Mili and Coakley (1996) showed that S estimators reach the maximum
possible breakdown point. Replacing ordinary subsampling with nonsingular subsampling does not
change the breakdown point of the S estimator, i.e., for designs where the S estimator can be
computed using ordinary subsampling, the S-estimator computed with the new method with the
same number of nonsingular subsamples will have exactly the same breakdown point (and other
properties).

S estimators may not work well for designs with factors. This is reflected in an instability of
the estimates with respect to the randomness of the subsampling, whether classical subsampling
could be successfully applied or nonsingular subsampling was used.

In the next section, we introduce the notation, provide essential definitions, and describe the
basic algorithm for computing S estimates. In Section 3, the nonsingular subsampling algorithm
is introduced. Some definitions and findings about the estimators in which the algorithm is used
are recalled in Section 4. We analyze an example in Section 5, and then, in Section 6, we ask if
choosing appropriate values for the algorithm’s control parameters will allow us to strike a balance
between performance and computing. In Section 7, we assess the quality of the resulting estimates.
We conclude with Section 8.
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Nonsingular Subsampling for Regression S Estimators with Categorical Predictors 3

2 S estimators

Consider the standard multiple linear regression model,

yi = xᵀ
i β + εi, εi ∼ N

(
0, σ2

)
, i = 1, . . . , n,

with εi i.i.d., independent of xi, and β a vector of length p. Throughout this text, we assume that
the design matrix X with row vectors xi, is of full rank p. For singular design matrices, one has
to select a subset of columns of full rank, and apply the methods to this design matrix. We denote
residuals as ri(β̂) = yi − xᵀ

i β̂.

Simultaneous M estimates of regression and scale are defined as the solutions β̂ and σ̂ to,

n∑
i=1

ψ
(
ri

(
β̂
)/

σ̂
)
xi = 0, (1)

1

n

n∑
i=1

χ
(
ri

(
β̂
)/

σ̂
)

= κ, (2)

where ψ is a ψ-function, χ is a ρ-function, and κ is a scalar used to achieve Fisher consistency. A ρ-
function, as defined in Maronna et al (2006), is a non-decreasing function of |r|, with ρ(0) = 0, which
strictly increases for r > 0 with ρ(r) < ρ(∞). If ρ is bounded, we also assume it is standardized to
ρ(∞) = 1. A ψ-function is proportional to the derivative of a ρ-function (generally different from
χ) and is usually standardized to ψ′(0) = 1. A ψ-function that is not monotonically non-decreasing
is called a redescending ψ-function. A solution σ̂(r) to (2) for a given vector r is called M estimate

of scale. The solution vector β̂ to (1) is called an M estimate of regression.

An S estimate of regression is the parameter value β̂ that minimizes the M estimate of scale
σ̂ = σ̂(r(β̂)) of the associated residuals,

β̂ = argmin
β

σ̂(r(β)) . (3)

The maximal finite sample breakdown point of the S estimate in continuous designs is (1−p/n)/2,
attained when using κ = (1 − p/n)/2. Note that any solution of (3) is also the solution to the
corresponding simultaneous M estimation of regression and scale problem, where ψ(r) ∝ χ′ (r).
For an introduction to M estimation and details about S estimates, see Maronna et al (2006).

We mentioned in the Introduction that minimization is carried out in practice by choosing
subsamples of size p, solving the corresponding linear system, and using the result for a local
optimization. We call the last step, the local optimization, refinement. The refinement itself consists
of an iteration of refinement steps. This is expressed in Algorithm 1, for the case in which exhaustive
resampling (running over all possible subsamples with a well-defined solution of the linear system

β̂I) is feasible.

Data: n× p matrix X, response vector y.
Result: β̂, σ̂.

1 σ̂ ←∞
2 for each elemental subset I ⊂ {1, . . . , n} of size p do
3 if design matrix XI contains no collinearities then

4 β̂I0 ←X−1I yI
5 β̂I , σ̂I ← Refine β̂I0 by solving (2) and (1) using an iterative reweighing algorithm.
6 if σ̂I < σ̂ then
7 σ̂ ← σ̂I

8 β̂ ← β̂I

Algorithm 1: Basic algorithm for the computation of S estimates.

The number of possible subsamples increases with order np. When this number is large, it
is neither feasible nor necessary to look at all subsamples. A random set of subsamples can be
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4 Manuel Koller, Werner A. Stahel

considered instead. Depending on the expected proportion of outliers, simple combinatorics can
be used to determine the number of random subsamples required to select at least one outlier-
free subsample with a probability of, say, 0.99 (see Table 5.3 of Maronna et al, 2006). The number
required grows exponentially with p. Since this number is often still too high, a number of s = 1000
is a pragmatic choice.

Since the refinement step is the most computationally intensive part of Algorithm 1, it is
the most attractive part to be optimized for speed. Salibian-Barrera and Yohai (2006) propose
calculating only one or a few refinement steps for each subsample in a first phase, and carrying
out full refinement iterations for only a few candidates to obtain a number h of “best” values in
a second phase. This modified algorithm is therefore characterized by 3 control parameters: the
number of subsamples to be generated; the number of refinement steps calculated for each of them;
and the number of candidates for which the full refinement iteration is done. We come back to
these choices in Section 5.

3 Nonsingular subsampling

Nonsingular subsampling avoids the problem of generating singular subsamples. We start by de-
scribing a method from numerical mathematics.

An LU decomposition of a square matrix A is defined as the product of a unit lower-triangular
matrix L and an upper-triangular matrix U . Such a decomposition generally exists only if one
allows for suitable re-ordering of rows (by a permutation matrix P ). This leads to

A = PLU .

The ordering is best chosen to minimize numerical errors, and the procedure, useful for solving
systems of linear equations Aβ = y, is called an LU decomposition with partial pivoting.

The Gaxpy variant (Golub and Van Loan, 1996) increases speed and computes the LU decom-
position observation by observation. To compute the ith column of L, only columns 1 to i of U are
needed. This is a useful feature if there are singularities. When a singularity is detected, the ith
observation can be dropped, and we repeat only the last step with the following observation. Prior
results do not need to be recomputed. The computational cost of detecting a singular subsample
is one step in the LU decomposition algorithm. With this modification, if the full design matrix
has full rank, the algorithm always ends up with a nonsingular subsample, except for ill condi-
tioned matrices where the algorithm might fail because of numerical instabilities (see Remark 1).
A detailed description is given in Algorithm 2.

If there is no collinearity, the algorithm reduces to one of the preferred numerical algorithms to
solve the system for the subsample. The subsample is identical to what would have been obtained
by simple random subsampling. Randomly permuting all observations and then starting with the
first observation achieves random selection of the subsample.
Remark 1. The numerical stability of the algorithm can be improved by using a matrix pre-
conditioning technique to lower the condition number of the design matrix. We propose to use
equilibration, described, e.g., in Demmel (1997). It is sufficient to apply this method to the com-
plete design matrix, even if only submatrices are used in the procedure.
Remark 2. Initial nonsingularity of the sample does not guarantee that the fit will stay nonsingu-
lar in the refinement step. In this step, observations can be removed from the sample by assigning
a zero robustness weight, which may lead to a singular design matrix. Examples of this can be
easily constructed. Using one-step updates for both the regression coefficients and the scale, rather
than full iterations for scale estimation, can mitigate the problem. A ψ-function that always gives
positive weights may be used to avoid that problem altogether.
Remark 3. For data with little contamination, a slightly different sampling strategy will be
preferable: Instead of applying the algorithm for each new sample to a new permutation of the
data, a single permutation can be used to generate up to n/p samples. Each new sample is started at
the first observation that has not yet been used by the previous samples. When a later sample runs
out of observations, the first few observations can be recycled, and then a new random permutation
must be drawn. If fewer than n/p observations are contaminated, this modification guarantees at
least one clean subsample for each run through the permuted dataset.
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Nonsingular Subsampling for Regression S Estimators with Categorical Predictors 5

4 MM and SMDM estimators

S estimators achieve a high breakdown point at the cost of low asymptotic efficiency. Thus, S es-
timates are typically not used alone, but as an auxiliary ingredient of MM estimates. These es-
timators can attain a high breakdown point and high asymptotic efficiency. MM estimates are
computed in two steps. In the first step, a high-breakdown regression and scale estimate, typically
an S estimate, is computed. In the second step, an M estimator of regression with a redescending
ψ-function, tuned for higher asymptotic efficiency, is computed in an iterative procedure that starts
from the estimate found in the first step. For designs with categorical variables, an M-S estimator

Data: n× p matrix X, response vector y, singularity threshold ε.
Result: Return code (0 for success, otherwise number of failing step), initial estimate β̂.
## Initialize variables:
## pivoting table p, selected subsample index vector s, counter k

1 U ← 0; L← I; p← 1 : p; s← 1 : p; k ← 1
## Permute observations randomly

2 t← perm(1 : n)
3 A←Xᵀ

t,1:p

4 y ← yt
5 for j in 1 to p do ## Find nonsingular subsample and calculate LU decomposition
6 if j == 1 then v1:p ← A1:p,k

7 else ## (Forward)solve to get required column of U

8 U1:j−1,j ← L−11:j−1,1:j−1A1:j−1,k
9 vj:p ← Aj:p,k −Lj:p,1:j−1U1:j−1,j

10 if j < p then ## Find pivot
11 µ← argmaxpl=j |vl|
12 if |vµ| ≥ ε then ## Subsample is still nonsingular
13 pj ← µ

14 sj ← k
## Swap elements of v and rows of A

15 vj ↔ vµ
16 Aj,k+1:n ↔ Aµ,k+1:n

## Update L
17 Lj+1:p,j ← vj+1:p/vj

## Swap rows of L
18 Lj,1:j−1 ↔ Lµ,1:j−1

19 if |vj | < ε then ## Singularity detected: skip column and try again if possible
20 if k < n then
21 k ← k + 1
22 Goto 6

23 else ## Return with an error
24 return j

25 U j,j ← vj
26 k ← k + 1

## Solve X−1s,1:pys and undo pivoting

27 β̂ ← L−
ᵀ
U−

ᵀ
ys

28 for j in p− 1 to 1 do β̂j ↔ β̂pj

29 return 0, β̂

Algorithm 2: Constrained subsampling using modified Gaxpy variant of LU decomposition. We
use vector index notation to select subvectors and submatrices. The index vector 1 : p − 1 in
v1:p−1 indicates that an operation only acts on the elements 1 to p− 1 of the vector.
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6 Manuel Koller, Werner A. Stahel

(Maronna and Yohai (2000)) can be used in the first step instead of an S estimator. For details
about MM estimates, see Maronna et al (2006).

MM estimators use the scale parameter of the initial estimator for standardizing residuals
before the ψ-function in the M step is applied. Koller and Stahel (2011) showed that a further
refinement is useful for improving the properties of the final estimator. We suggested re-estimating
the scale based on residuals of the MM estimate, and adding another M step for the regression
coefficients. For the scale step, we used the so called Design Adaptive Scale (DAS), and called it a
D step. The final result therefore builds on four consecutive steps and is called an SMDM estimator.
In this notation, MM estimators should be called SM estimators, and, when combined with M-
S initialization, may be called (M-S)M, possibly refined to (M-S)MDM.

These estimators are conceived as approximate solutions of implicit equations and should, in
principle, be independent of the initial estimate on which they rely–as long as they have a high
breakdown point. However, the scale estimate obtained in the initial step (S or M-S) is influenced
by the random selection of subsamples. The result of the subsequent step still reflects this random
variability – more so for the simple M than a MDM version. In order to minimize this artificial
randomness of the estimate for a given dataset, we will iterate the D and M steps until convergence
in this study. Calling an M step preceded by a D step MD, this results in the estimators SMD and
(M-S)MD.

In the following sections, we assume that S estimates have been computed using nonsingular
subsampling.

5 Example

As an example, we analyze NOx air pollution data, a typical medium-sized environmental data
set distributed with the R package robustbase (Rousseeuw et al, 2015). The dataset consists of
hourly measurements of NOx pollution content in the ambient air (NOx) near a busy motorway,
along with hourly sums of NOx emission on the motorway (NOxEm) and wind speed (WS). We use a
subset of the dataset consisting of 11 days. We choose the 7 days with the most number of outliers,
according to the robust fit to the full data set without interactions. We add four other days to
complete the example dataset.

To study effects of group frequency, we choose three days with complete hourly observations
(24 observations, days 403, 407 and 694), three with 19 (405, 624, 522) and 13 (396, 453, 509)
and two with seven observations (461, 606). Within each day, we take a random sample to get the
desired number of observations1.

We fit the model log(NOx) ∼ 0 + day + day:log(NOxEm) + day:sqrt(WS), where day is the
(categorical) measurement day. This results in 33 coefficients; 11 of these belong to dummy vari-
ables. To make the results below independent of contrast choice, the model specification does not
include an intercept nor the main effects for the two continuous variables.

It is impossible to fit models with that many dummy (or mixed) variables by using simple
random subsampling. The probability that a random subsample is nonsingular (contains at least
one observation from each day) is simply too low.

For the M-S estimator proposed by Maronna and Yohai (2000), we allocate the interaction terms
to the S part (lmrob options init="M-S" and split.type="f") and use nonsingular subsampling
as well (default). Note that allocating the interaction terms to the M part would leave no variables
for the S part, leading to an L1 estimator. The control parameters for the S estimator, see next
section, are r = 1000, k = 2, and h = 20.

In Figure 1, we compare the fits for the measurements taken on day 693 for the S and the
M-S estimator and two different seeds for the random number generator. The 5 observations in
the lower right corner are outliers in the predictor space. Both estimators produce a multitude of
solutions when varying the seed. For some seeds the outliers in the predictor space are rejected

1 We used observations 311, 313, 318:319, 323, 326, 332, 502, 505:506, 508:509, 511:514, 516, 520:522, 669:692,
717, 719, 721:725, 727:730, 732, 734:740, 765:788, 1631, 1633:1636, 1639, 1641:1643, 1645:1646, 1648:1649, 1823,
1825, 1828:1829, 1831:1832, 1836, 2920, 2922, 2924, 2927, 2929:2930, 2932, 2934, 2937:2941, 3184:3186, 3188:3189,
3191, 3193:3194, 3196:3199, 3201:3207, 5573:5575, 5577:5581, 5583:5584, 5586, 5588:5591, 5593:5596, 7177:7200 of
the NOxEmissions dataset from the R package robustbase (Rousseeuw et al, 2015).
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Fig. 1 Comparison of the fits for two different seeds. The 3d-scatterplot shows the original and fitted values of day
693, the planes of the fitted values for the S estimator (magenta) and the M-S estimator (blue). The L1 and Least
Squares fits are similar to the the M-S estimator. Observations rejected by each estimator are marked according to
the legend.

while for others, they are not. Maronna and Yohai (2000, page 209) already noted “[...] the effect
of subsampling to be nontrivial.”

The L1 and least squares estimates are similar to the two fits that include the outliers in the
predictor space (not shown on the plot).

6 Control parameters of the S step

The established algorithm for calculating an S estimator–a version of Algorithm 1–includes three
steps, which give room for three control parameters:

– A number r of nonsingular subsamples of size p is drawn, each of which determines a “candidate”
coefficient vector βI0 through solving the corresponding linear equation (corresponding to step
4 of Algorithm 1). The control parameter r is called nResample in the function lmrob.

– For each of these subsamples, k steps of iterated Weighted Least Squares are performed to
determine an improved candidate βI and a corresponding scale estimate σ̂I (instead of fully
iterating in step 5 of Algorithm 1). k is called k.fast.s.

– The h candidates βI with lowest σ̂I are selected and fully iterated. The candidate with the

lowest final σ̂I is chosen as the resulting S estimate. It determines β̂ and σ̂. h is called best.r.s..

Since the subsamples are randomly selected, the result is random, too, for any given dataset.

As discussed in Section 4, the S estimate is used as starting point for an M or MD estimation
algorithm. These algorithms, fully iterated, converge to “fixed points”, corresponding to solutions
of the defining implicit equations. In the case of multiple fixed points, a criterion is needed for
defining the “best” fixed point, see below. The parameter values which, when used as a starting
point for the algorithm, lead to a given fixed point, form the “domain of attraction” of this fixed
point. Since for the simple M version, the algorithm leaves the scale parameter obtained in the
S step untouched, the final fixed points as well as their domains of attraction will still depend on
the scale, and therefore on the random subsample. Usually, this randomness will be negligible. The
MD estimate, on the other hand, gives rise to a well-defined set of fixed points with corresponding
domains of attraction.

The goal of selecting algorithmic parameters is thus to obtain a high probability of landing in
the domain of attraction of the best fixed point. It is not obvious how to find a suitable definition
of “best” in this context. Since we do not want to use any information external to the given sample,
we determine the fixed point that is most often selected as the best one.

Published in final edited form as: Comput Stat. 2017 June;32(2):631-646. doi:10.1007/s00180-016-0679-x
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For many datasets, there is only one fixed point, or a clear winner among two or three of them.
For other datasets, there may be two or more fixed points with comparable frequencies. While the
choice of the best may then depend on the exact definition of the quality, it may also be of interest
to learn about all of them. As mentioned in the last section, the example leads to two distinct
estimates, which differ in their fitted values for day 693, and both of them look plausible.

In order to obtain a few datasets for which the different settings of control parameters lead to
different performances, we chose the following pathway: We took the dataset described in Section 5
and applied the SMDM estimator with default settings (setting = "KS2014", set.seed(1)). We
used the fitted values and the scale estimate (σ = 0.4437) to generate 100 new datasets as follows.

1. Select three days and 20% of the observations of each of them at random.

2. For the selected days and observations, set both continuous predictors x
(j)
i to mean(x(j). ) +

3 sd(x(j). ).
3. Generate new responses by adding random t3 distributed errors for the contaminated days and

normally distributed errors for the other days. Both distributions were scaled using σ.

We evaluated all the generated datasets for multiple fixed points. We discarded all the datasets
that only had one fixed point. This left us with 14 datasets. For only 3 of these, there was a
clear winner, whereas for the others, there were two or more solutions with similar quality, and the
convergence of the algorithm to one of them did not depend much on the computational effort.

Therefore, the 3 datasets with a clear winner among the possible fixed points were used to
examine the dependence of the performance, as measured by the probability to lead to the best
fixed point, on the one hand, and the computational effort on the other hand on the control
parameters of the S estimating algorithm. We also varied the ψ-function between bisquare and
lqq. The tuning constants were chosen to allow for a formal asymptotic breakdown point of 0.5 as
usual.

For the combinations of levels of the factors r, k, h, ψ, the SMD estimator was determined for
100 random seeds each. On the one hand, the computing times for the initial S estimator were
averaged over these 100 trials. On the other hand, the fixed points were determined as clusters for
which the mean squared differences of the fitted values were all below a given small threshold. (The
results were stable for a large range of choices of the threshold in our context.) Then, the number
of trials pertaining to the largest cluster was counted to estimate the probability of converging to
the desired fixed point.

Table 1 shows, in the first line, the comparison of performance between the lqq and the bisquare
ψ-function for a particular setting of control parameters, averaged over the 3 datasets mentioned
above. In addition, the performance of the M-S initial estimator is included. The latter was cal-
culated by the respective function in R, which does not allow for manipulating the two algorithm
parameters k and h. With the default setting of the number of subsamples, r, the computation time
would be much lower than for the S estimator. Since the probability of finding the best solution is
also much lower, we increased the number of random subsamples to 40.000 to make the comparison
more informative.

In order to gain some more experience, the numbers of observations, n, and of parameters, p,
were varied in the following manner:

A. The original datasets had n = 182 observations and p = 33 coefficients, as described above.
B. For each one of the 14 datasets, we selected half of the observations for each day, resulting in

n = 91 and the same p = 33.
C. We dropped 6 of the 11 days, which resulted in n = 94 and p = 18.
D. Starting from the last dataset, we doubled the number of observations on each of the remaining

5 days by simulating the additional one as described in Section 7.

The table shows a consistent advantage for the lqq over the bisquare ψ-function. The M-S reaches
the best solution with lower probability, even though it was tuned to use a higher computational
effort.

Now, we study the tradeoff between achieving a high probability of converging to the desired
solution and the computational effort. Figure 2 exhibits the relationship between these two charac-
teristics, indicating the settings of the control parameters by labels, for the three datasets of setup
A. Analogous figures for other setups lead to the same conclusions.
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S M-S
setup lqq bisquare lqq bisquare
n p prob cTime prob cTime prob cTime prob cTime

A 182 33 0.953 4.49 0.877 5.36 0.818 6.62 0.621 6.24
B 91 33 0.847 2.52 0.387 2.31 0.812 4.02 0.494 3.84
C 94 18 1 0.90 1 0.70 0.792 1.91 0.700 1.73
D 188 18 1 1.55 1 1.37 0.369 3.39 0.370 3.00

Table 1 Probabilities of obtaining the best solution and computing times for the lqq and bisquare ψ-function,
averaged over the three datasets studied, for four setups described in the text. The computation parameters were
n = 182, p = 33, r = 1000, k = 5, h = 40 for S and r = 40.000 for M-S.

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.
3

0.
5

0.
7

0.
9

,1a
,3a

,5a

,Xa

,1b

,3b

,5b

,Xb

,1c

,3c

,5c

,Xc

,1d

,3d

,5d

,Xd

:1a

:3a

:5a

:Xa

:1b

:3b

:5b

:Xb

:1c

:3c

:5c

:Xc

:1d

:3d

:5d

:Xd

|1a

|3a

|5a

|Xa

|1b

|3b

|5b

|Xb

|1c

|3c

|5c |Xc

|1d

|3d

|5d |Xd

A
B C

D
E

F
G

P
(b

es
t f

.p
.)

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.
65

0.
75

0.
85

0.
95

,1a

,3a

,5a

,Xa

,1b

,3b

,5b
,Xb

,1c

,3c

,5c ,Xc

,1d

,3d
,5d ,Xd

:1a

:3a

:5a

:Xa

:1b

:3b

:5b
:Xb

:1c

:3c :5c :Xc

:1d

:3d :5d :Xd

|1a

|3a

|5a |Xa

|1b

|3b |5b |Xb

|1c

|3c |5c |Xc
|1d

|3d |5d |Xd

A B

C

D

E
F G

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.
80

0.
85

0.
90

0.
95

1.
00

,1a ,3a

,5a

,Xa

,1b

,3b

,5b

,Xb

,1c

,3c

,5c
,Xc

,1d

,3d

,5d ,Xd

:1a

:3a

:5a

:Xa

:1b

:3b

:5b

:Xb

:1c

:3c
:5c

:Xc

:1d

:3d
:5d :Xd

|1a

|3a
|5a

|Xa

|1b

|3b

|5b |Xb

|1c

|3c |5c |Xc

|1d

|3d |5d |Xd

A
B

C

E F

G

comp. time

P
(b

es
t f

.p
.)

A
B
C
D
E
F
G

M−S
number of
subsamples
350
1000
5000
10000
20000
40000
1e+05

,

:
|

S

number of
subsamples
350
1000
5000

1
3
5
*

number of
ref.steps
1
3
5
10

a
b
c
d

number of
candidates
1
5
20
40

Fig. 2 Probability of converging to the desired solution and computing time for the 3 selected datasets in setup A.
The symbols reflect the settings of control parameters as indicated by the lists shown above.

The figure shows that the biggest difference in computational effort comes from the three
different numbers of random subsamples, r. The effect of increasing k from 1 to 10 comes next,
and the effort of a larger number h of candidates that are fully refined is rather minimal. Of course,
the biggest effort, with all 3 control parameters at the highest level, yields the maximum probability
of reaching the desired solution. Lowering the tolerated value of this probability, settings with the
middle number of resamples, 1000, with high settings of the other parameters beat the strategy of
keeping the highest number r and lowering either of the other parameters.

The M-S initial estimator clearly fails in the sense of showing lower probabilities of achieving the
desired solution. Increasing the computational effort does not improve the result in these examples.
Note that the interactions between factors and continuous regressors overweigh the factor main
effects coefficients in our application, and these are attributed to the S part of the M-S scheme.

Based on these results, we recommend to set r = 1000, k = 5 and h = 40 for our setups, and
we will use these settings for the simulations in Section 7. For the M-S estimator, the number of
random subsamples leading to a similar computational effort is between r = 20, 000 and 40, 000.
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This study is of course not a sufficient basis to make general recommendations. It would be
valuable to collect such results for other setups, but this is beyond the scope of this paper.

For the 11 other datasets, which did not show a clear winner, increasing the control parameters
does not improve the stability. As the difference between solutions is very small, the estimators
select one of the multiple solutions at random irrespective of computational effort.

7 Efficiency and robustness

So far we have only evaluated the stability of the estimated coefficients but not how well the true
values are estimated. We use simulated data to study the quality of the estimates under multiple
contamination scenarios.

As the criterion to evaluate the quality of the fits, we use a centered logarithmized Mean
Squared Error of the fitted values,

U = log10

(
n−1

∑
i
(ŷi −

◦
yi)

2
)
− γ = log10

(
n−1(β̂ − β)ᵀXᵀX(β̂ − β)

)
− γ , (4)

where
◦
y = Xβ are the model values, β is the true parameter vector, and γ = log10

(
pσ2/n

)
is the

logarithmized expected value of the Mean Squared Error for the Least Squares fit to the model
with normal errors. (To see this, let ẑ = X(β̂ − β) = Hε, where H = X(XᵀX)−1Xᵀ. Then,
E(ẑᵀẑ) = E(εᵀHε) = E(trace(Hεεᵀ)) = trace(H)σ2 = pσ2.) Thus, the expected value of the
criterion under ideal conditions is zero, and its values are logarithms of inflation factors of mean
squared errors for other conditions. Note that this criterion is independent of the parametrization
for regression equivariant estimators.

We study three different scenarios with 1000 replicates of each of them:

1. Efficiency. Observations are simulated from the estimated model for the example, using nor-
mally distributed errors. We used the fitted values from the example and added random errors.
For σ, we use the estimated value σ = 0.4437 of the example, as in the previous section.

2. Longtailed Errors. As 1., but errors for days 693, 522, 509 were generated using a t3 distribution,
scaled with σ.

3. Contaminated covariates. On each day, 20% of the LNOxEm values were shifted by 5, and
independently, 20% of the sqrtWS were increased by 3. The responses were generated using the
uncontaminated predictors with errors as in 2.
The original predictors were also used for evaluating U in form of the second expression in eq. 4.
(Note that using the first form naively, one would compare fitted and true values for different
regressors, contaminated and uncontaminated, respectively.)

We evaluate the performances of the S and M-S estimators as well as the L1-estimator, along
with their refinements by an M step and an MDM step, and compare them to the OLS estimator.
We omit the further refinements by iterating the MD step until convergence, since the changes with
respect to the one-step versions shown are minor. For the S initial estimator, the recommended
control parameters given in the last section are used. For M-S, we used r = 40, 000 to make the
comparison fair in terms of a similar computational effort.

Figure 3 shows the simulated distributions of the quality criterion U , applied to the whole
dataset and to one of the “critical” days, for the three settings. As expected, the refined estimators
produce more accurate estimates than the high breakdown initial estimators. The improvement is
very remarkable in the cases studied here: The mean squared error criterion 10U decreases by an
order of magnitude. While the S estimator produces better quality than the M-S estimator, the
differences disappear for uncontaminated predictors once the first M-step refinement is computed.
For contaminated predictors, the estimates based on the S estimator are clearly superior. Further
refinement by a DM (or MD) step is needed after L1 initialization, but does not produce an
improvement any more for S- or M-S-initialization. The DM step after the initial SM or (M-S)M
step is nevertheless useful for getting a more appropriate scale estimate, which in turn allows for
more precise inference. We have also simulated the M-S estimator and its refinements with the
default number of resamples, 1000. It performed equally well for the first two setups, but clearly
worse for contaminated covariates.
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Fig. 3 Multibox-plots of simulated distributions (1000 replicates) of the quality coefficients U for different estimators
and the three different scenarios (rows). In the right hand column, U is evaluated only for day 693.

Remark 4. The distributions are displayed by “multibox plots.” They combine the idea of the
boxplot with a version of a histogram based on variable class widths. The classes are given by
quantiles (in this version those related to p = 0.025, 0.05, 0.125, 0.25, 0.375, 0.5 and the correspond-
ing 1 − p values). The shaded boxes contain the middle half of the data, as does the box in an
ordinary box plot.

The Least Squares and L! estimators show some loss of efficiency for contaminated errors, as
expected. They both fail for contaminated regressors in our case, but are in line with the M-S
initialized estimators. In fact, high breakdown starting points for refinements are only needed in
this last one of our setups.

8 Conclusions

Simple random subsampling fails for models with categorical variables if some of their levels show
low frequencies. The established alternative, the M-S estimator, cannot cope well with interactions
of continuous and categorical predictors. Nonsingular subsampling is suitable in these situations,
and reduces to established simple subsampling in non-problematic cases.
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We have compared the stabilities and the statistical qualities of the resulting predicted values
for S and M-S estimators and their refinements to SMDM and (M-S)MD estimates. We found a
clear advantage for the SMDM over (M-S)MD estimate for our case of contaminated covariates,
but no difference between these two methods for contamination of the error term.
Remark 5. Our nonsingular subsampling algorithm may also be applied to ordinary bootstrapping
(and, even more so, “subsampling” as discussed in Politis et al, 1999). Simple bootstrap sampling
may lead to singular bootstrap samples of the design matrix. The problem is much less severe
than for computing S estimates, though, since the samples have size n, and, therefore, singular
cases are much less frequent. Bootstrap samples can be obtained in two steps. First, generate a
bootstrap sample of the indices 1 to n, and summarize it into the frequencies hi by which each
index has been selected. Let S be the indices with non-zero frequency, and N be its length (N ≥ p).
Second, apply nonsingular subsampling of size N to a random permutation of the data and use the
resulting observations multiple times, according to hS . – Note, however, that it remains doubtful to
these authors whether ordinary bootstrapping makes sense for regression problems with categorical
variables.

The nonsingular subsampling algorithm is implemented in C in the R package robustbase

(R Core Team, 2015; Rousseeuw et al, 2015), both as an ordinary function (Rsubsample in
system.file("xtraR/subsample-fns.R", package="robustbase")) and as the default method
to get the initial S estimate within the function lmrob for robust regression.
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