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ABSTRACT: 

The incorporation of plating additives into Cu films was studied by means of complementary 

Laser Ablation/Ionization Mass Spectrometry (LIMS) and Secondary Ion Mass Spectrometry 

(SIMS) depth profiling techniques combined with Focused Ion Beam (FIB) analysis. 

Cu test samples were electrodeposited in the presence of a new prototypical two-component 

additive package for advanced Damascene applications consisting of a hybrid-type suppressor 

additive (Imep: polymerizate of epichlorohydrin and imidazole) and its essential co-additive 

(SPS: bis-(sodium-sulfopropyl)-disulfide). The tunable non-linear interplay between the Imep 
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and the SPS during oscillatory Cu electrodeposition is used to fabricate samples bearing 

spatially confined layers with sequential high and marginal additive embedment. These test 

samples constitute an excellent platform to conduct true quantitative chemical depth profiling 

analysis of electrodeposited Cu films. In particular LIMS depth profiling measurements with an 

unmatched nano-meter depth- resolution demonstrate a preferential inclusion and accumulation 

of contaminants at grain boundaries inside the Cu deposit whereas the Cu grains remain largely 

contamination-free. A novel LIMS desorption approach is presented which allows for a molecular 

structure analysis of the polymeric additive ensembles preferentially embedded at grain boundaries 

of the Cu deposit. Our LIMS analysis confirms a recently discussed mechanism on the action of 

these hybrid additives which relies on their interaction with thiolate-stabilized Cu(I) intermediates.      

 

Keywords: Electroplating, Damascene process, additives, chemical depth profiling, laser 

ablation/ionization mass spectrometry (LIMS). 

 

1. Introduction 

Additive-assisted copper electroplating is a key step in the manufacturing of cutting-edge 

microprocessors [1-4]. To achieve super-conformal bottom-up fill of vias and trenches, the 

classical Damascene approach employs a three-component package, usually consisting of a so-

called type-I suppressor polymer (e.g. polyalkylene glycols, PAGs) [1, 5-11], its specific anti-

suppressor (bis-(sodium-sulfopropyl)-disulfide, SPS) and a leveler additive (type-II suppressor 

[5]) dissolved in the Cu(II)-rich plating bath. Particular additive mass transport effects and 

adsorption kinetics [12-14] in conjunction with geometric shape-evolution effects need to be 

operative during the feature fill [15-19] thus generating a non-uniform surface coverage of PAG 
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suppressors and SPS anti-suppressors. In this way, the suppressing effect of the PAG chemistry 

is effective predominantly at the upper feature side walls and the topmost wafer surface whereas 

the SPS accelerated copper deposition occurs preferentially at the feature bottom, thus leading 

to the desired differential electrodeposition. The third constituent of the electroplating bath, the so-

called leveler (type-II suppressor) is meant to hinder undesired sustained copper growth 

(overplating, momentum plating) at the final stage of the deposition process over filled 

features [20, 21]. The leveler action prevents the formation of Cu bumps and their coalescence 

over dense fields of filled trenches or vias (mounding) which is highly disadvantageous in the 

subsequent CMP (chemical mechanical polishing) process step [21]. Its selective and time-delayed 

suppressing action at the wafer surface and its immunity towards SPS deactivation are crucial 

requirements for the leveler action. Classical leveler approaches rely, however, on mass transport 

limitations in combination with a consumptive additive inclusion into the deposit during growth 

[22-25]. A serious drawback of such common levelers (e.g., Janus B. Green (JBG) and 

derivatives thereof) [26-28] is their high and non-uniform embedment into the copper deposit 

which significantly lowers the post-deposition self-annealing rate, i.e., recrystallization [26, 27]. 

The particular contamination embedment crucially depends on the local concentration of the 

type-II suppressor/leveler additives upon feature fill evolution.  

To overcome this undesired side effect of the action of levelers, current approaches employ 

additives that become active more selectively over Damascene features right after the successful 

bottom-up fill. In this context, such more advanced approaches of leveling are not predominantly 

based on the classical transportation and inclusion concept but rely on sophisticated synergistic 

and antagonistic interactions with SPS as recently discussed [29-31]. Prototypical additives 

exhibiting this bifunctionality are polymerizates of epichlorohydrin and imidazole (denoted 

Imep hereinafter, see Fig. 1).  
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The suppressing mode of action relies on their interaction with Cu(I)-MPS complexes (see Fig. 1) 

which appear as side products of the SPS reaction cycle in the course of the dissociative 

adsorption of the SPS at the Cu surface during Cu electrodeposition.       

Insert Fig. 1 (single column) 

Recent investigations demonstrated that both successful superfill and leveling can be achieved 

in Damascene electroplating processes even in the absence of PEG suppressors when such hybrid 

suppressor additives are combined with SPS [32]. Moreover, post-deposition recrystallization 

studies at room temperature showed large extended recrystallized domains with grain sizes 

beyond the µm range suggesting poor incorporation of additives when this two-additive package is 

employed [31]. In this contribution we demonstrate further advantages of this chemically 

simplified plating bath for Damascene applications by quantifying the significantly reduced 

inclusion of contaminants in the final copper deposits. For that purpose we conducted 

complementary Laser Ionization/Ablation Mass Spectrometry (LIMS) [33-38], Secondary Ion 

Mass Spectrometry (SIMS) and Focused Ion Beam (FIB) investigations on Imep-assisted copper 

electrodeposits and proved its marginal embedment into the copper matrix. Preliminary laser 

desorption studies performed inside layers of high additive concentration support the validity of 

our proposed reaction mechanism (Fig. 1). 

2. Experimental methods 

2.1 Cu electrodeposition. Chronopotentiometric measurements were carried out in a three-

electrode electrochemical cell connected to an Autolab potentiostat/galvanostat (PGSTAT 128). 

A Ag/AgCl3M electrode (double junction design, Metrohm) and a Pt wire served as reference and 

counter electrode, respectively. The counter electrode was placed inside a glass compartment 

separated from the main electrochemical cell by a glass frit.  
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A 15.4 µm-thick Cu film was electrodeposited under galvanostatic conditions on a Cu-seeded 

Si wafer coupon at a nominal current density J = –6 mA cm–2. The blanket wafer coupons 

(Hionix, provided by BASF SE) were composed of a Si(100)-type substrate covered by 500 nm-

thick TOx/SiO2 dielectric layer, a 25 nm-thick Ta/TaN barrier and an outermost 100 nm-thick Cu 

seed layer. The plating bath was prepared by dissolution of 40 g/L Cu2+ (CuSO4 * 5 H2O, Sigma-

Aldrich, Steinheim, Germany), 10 g/L H2SO4 (VLSI selectipur 96%, BASF, Ludwigshafen, 

Germany) and 50 ppm Cl (HCl 25% for analysis, Merck, Darmstadt, Germany) in Milli-Q water 

(nominal resistivity of 18.2 MΩ cm, TOC ≤ 3 ppb). The concentrations of SPS (Raschig, 

Ludwigshafen, Germany) and Imep (BASF, Ludwigshafen, Germany) in the electrolyte were 25 

and 100 ppm, respectively. All chemicals were used as received without any further purification. 

2.2 SIMS depth profiling. Secondary Ion Mass Spectrometry (SIMS) depth profiling 

studies were carried out by a Cameca ims-4f apparatus (IFOS, Kaiserslautern, Germany). Cs+ 

cations with a kinetic energy of Ekin = 14.5 keV and 5.5 keV served as primary ions for negative 

and positive MCs+ SIMS modes, respectively. Negative and MCs+ modes differ in the polarity of 

detected secondary ions (M being the element to be analyzed). The sputter current density and the 

analyzed area on the sample surface were 0.32 mA cm–2 and 60 µm in diameter, respectively. A 

typical crater formed after erosion by the SIMS technique is shown in Fig. 2a.  

Insert Fig. 2 (single column) 

2.3 LIMS depth profiling. Mass spectrometric studies were conducted by using a home-

built miniature (160 mm x Ø 60 mm) reflectron-type time-of-flight (TOF) laser mass 

spectrometer (LMS) [33-37]. An ultrashort pulsed laser system (pulse width τ ∼ 190 fs, 

wavelength λ = 775 nm, laser pulse repetition rate ≤ 1 kHz) is used as an ablation ionization source 

[35]. The laser system is located outside the vacuum chamber, and an optical system is used for 
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beam shaping and delivery to the mass spectrometer located within the vacuum chamber. Laser 

pulse energy, laser pulse repetition rate, and number of laser pulses are fully controlled by the 

interface of the laser system. A doublet lens on top of the mass analyzer is used to focus the laser 

beam through the system on the sample surface (laser ablation crater with a diameter of about 18.7 

µm). The laser focus, and thus the sample surface, is positioned close to the entrance of the ion-

optical system, about 1 mm away. A high-resolution x−y−z micro translation stage with a position 

accuracy of about 2 µm is used for the positioning of samples relative to the mass spectrometer. 

Only positively charged ions, generated by the interaction of the laser pulse with the sample 

surface, can enter the mass analyzer. Entering the mass analyzer the ions are accelerated, focused, 

and confined in the instrument by means of an ion optical system. Positive ions pass first  the 

field free region before they are reflected by the ion mirror towards the detector system. The ions 

arrive at the detector system sequentially in time according to their mass to charge (m/z) ratio 

(TOF principle), where they produce electrical signals. Two high speed ADC systems (each 

with two channels, 8 bit vertical resolution, up to 4 GS/s) are used for the acquisition of the 

electric signal, the TOF spectrum (length of 20 µs). Once the measurement campaign is 

accomplished, the TOF spectra are converted to mass spectra (m/z) by using the relation 

(m/z)(t) = a(t − t0)2, where a and t0 are calibration constants [33]. Typically, an entire 

measurement campaign consists of up to several thousands of single laser shots mass spectra. 

The current measurement setup allows acquiring and saving single laser shot mass spectra on 

the host computer and its real time visualization on a screen. Custom-made analysis software, 

written in MATLAB, is used for subsequent data analysis. 

To obtain statistically significant data, the LIMS depth-profile analysis was carried out on a 

1.96 mm2 area comprising 49 scrutinized locations each separated by 200 µm from the closest 

neighbors. A laser irradiance of 3.29 TW cm–2 (3.40 µJ per pulse) was applied to ablate the 



7 	

copper film stepwise until the Si signal from the underlying SiO2 substrate was detected. The 

mean ablation rate under these conditions was 9.7 ± 1.5 nm shot–1 . Craters formed upon sample 

erosion have an average diameter of 18.7 ± 1.1 µm. A typical SEM image of LIMS craters is 

displayed in Fig. 2b. Each measurement was conducted on a fresh and untreated sample 

location. The depth profile for each element was acquired by analyzing the temporal 

evolution of the signal intensity of a selected element/isotope in the TOF spectra [34]. With the 

knowledge of the Cu layer thickness and number of applied laser shots the mean ablation rate per 

single laser shot was derived. 

2.4 LIMS desorption studies. To directly prove that the impurity layers periodically 

embedded into the Cu film are in fact composed by the Imep-Cu(I)-MPS suppressor complexes 

(see Fig. 1) we additionally performed so-called laser desorption studies at these layers which 

allowed us to identify the respective monomeric building block of the polymeric suppressor 

complex (m/z = 342) as a fragment resulting from the laser desorption process. These experiments 

consisted of two subsequent campaigns differing in their laser irradiances. In a first stage, harsh 

ablation conditions (~2.5 TWcm-2) were applied to the sample until an impurity layer was reached 

upon erosion. This was manifested by an abrupt drop of the Cu signal and a correlated increase of 

the C, O, N and S intensities. The laser ablation of material was then stopped and the laser 

irradiance was decreased to lower values just above the so-called desorption threshold (0.4–0.6 

TW cm-2). In this way, sample material was desorbed in a soft manner avoiding complete 

atomization of the polymeric suppressor ensembles thus allowing for its structural and molecular 

analysis. 

2.5 SEM analysis. The surface morphology of the Cu samples after SIMS and LIMS depth 

profiling analysis was characterized by a Hitachi S-3000 N Scanning Electron Microscope (SEM). 
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3. Results and discussion 

Recent mechanistic studies proposed an adduct of the Imep polymer with H2O-Cu(I)-MPS 

complexes as the active suppressor ensemble being operative at the interface during Cu plating in 

the presence of the two-component Imep/SPS additive package [29, 30]. The H2O-Cu(I)-MPS 

complex is a byproduct of the SPS which undergoes adsorptive dissociation on the Cu surface 

[29, 30]. A combination of Cu(I) coordination coupled to inner-salt formation and inter-chain 

anion/cation pairing has been proven to be the chemical origin of the surface-confined precipitation 

of these suppressor/leveler adducts (Fig. 1). To determine to which extent and under which 

experimental conditions these species get incorporated into the copper film upon electrodeposition, 

we make use of a particular nonlinear instability of the Imep/SPS additive system that occurs 

under specific galvanostatic plating conditions [29, 30]. The physical origin of these temporal 

instabilities is a so-called N-shaped negative differential resistance (N-NDR) [39, 40] that, within a 

relatively narrow current range, is manifested by potential oscillations during chronopotentiometric 

measurements.  

Insert Fig. 3 (single column) 

Fig. 3a displays the potential versus charge transient of a 15.4 µm-thick copper film 

electrodeposited on a blanket wafer coupon at a nominal current density of J = –6 mA cm–2. The 

plot shows seven regular potential oscillations that are attributed to sequential formation of the 

stable Imep-Cu(I)-MPS suppressor film and its partial dissolution (deactivation) at the interface 

[29, 30]. The intervals at higher overpotentials comprised between sharp potential steps correspond 

to an active Imep-Cu(I)-MPS diffusional barrier being operative at the interface. The abrupt 

decrease and following abrupt increase of the deposition overpotential are indicative for the 

partial or complete breakdown and subsequent restoration of the suppressor ensemble, 
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respectively. It has already been demonstrated that the suppressing ensemble incorporates into the 

copper matrix to a substantial extent during the sharp potential transitions whereas the Cu 

deposited under quasi-steady state deposition  remains almost impurity-free [31]. As a 

consequence, post-deposition recrystallization of such samples extends over large domains and is 

typically confined by the localized contamination layers. The resulting sample structure 

bearing multiple layers of embedded impurities perpendicular to the growth direction makes it 

an ideal platform for chemical depth profiling studies. To correlate the oscillatory behavior 

observed in the chronopotentiometry with the final film morphology, we performed FIB analyses. 

Fig. 3b shows a typical cross-sectional FIB micrograph that reveals an almost periodic array of 

extended grain boundaries normal to the growth direction separating well recrystallized 

domains of Cu inside the deposited film. We assign the observed sharp deltas to spatially 

confined copper layers bearing high contamination levels that hinder further coalescence of 

neighboring copper grains. We note, however, that only six such deltas are discernible in the FIB 

image. The two closely spaced transitions at the initial stage of the galvanostatic experiment are 

merged together. To further support the assignment of these localized boundaries to the 

incorporation of the suppressor ensemble we conducted SIMS depth profiling studies which 

determined the contamination level of C, O, N and S along the surface normal of the sample 

(Fig. 3c). Based on white light interferometry analysis of the SIMS craters we determined a 

sample depth of 14.0 µm, which agrees well with the nominal Cu film thickness calculated on 

the basis of the coulometric data (Fig. 3a). This slight thickness underestimation has already been 

observed in previous studies and might be ascribed to a certain non-uniformity in the Cu film 

across the surface of the wafer coupon [31]. Nevertheless, the SIMS depth profiles show an in-

phase modulation of the peak-centered C, O, N and S signals with progressive erosion depth 

that correlates with the oscillatory characteristics in the potential/charge transient curve and the 
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layer boundaries in the FIB image. Deconvolution of the two features at the closest vicinity 

with the wafer coupon was, however, not possible which correlates with the absence of two 

distinguishable impurity layers at that sample depth in the FIB micrograph (Fig. 3a). 

The observed strong attenuation of the SIMS amplitudes with increasing erosion depth is a well-

known phenomenon which can usually be ascribed to a sputtered-induced surface roughening and 

layer intermixing upon erosion that accompanies an increase in the full width at half maximum 

(FWHM) of SIMS peaks. This peak broadening in the SIMS experiment contrasts with the 

sharpness of the potential/charge steps and the localized layer boundaries in Fig. 3a and b, 

respectively. Fig. 2a shows an SEM micrograph of the eroded area after ion bombardment with 

the SIMS technique which clearly proves the significant roughening of the Cu surface upon ion 

erosion.   

One further drawback of the SIMS technique is the strong dependence of the signal intensities 

on the measuring mode, namely negative ion and MCs+ modes. The impact of this undesired 

effect is misleading with regard to the quantification of N impurities, which leads to intensities 

that differ by up to three orders of magnitude (Fig. 3c). This is particularly disadvantageous for 

assessment of leveler embedment into Cu interconnects since N atoms are usually an essential 

component of such leveler additives (type-II suppressors [5]). In our particular case this issue 

becomes evident if we consider all species of the SIMS profile measured using both negative ion 

and MCs+ modes. In Fig. 3c we see that the N signal in negative ion mode (detection of N via CN– 

anions) overwhelms the intensities of all other elements. This picture is not consistent with the 

suggested incorporation of the suppressing ensemble shown in Fig. 1. Instead, a significantly 

lower concentration of N in comparison to C and O is expected. However, when only MCs+ 

mode SIMS data were considered, we obtained an improved qualitative trend with N being the 

least abundant species inside the Cu sample. Therefore, we suggest that the MCs+ mode of 
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the SIMS approach enables a more accurate assignment of impurity concentrations. 

To overcome these inherent limitations of the SIMS technique and to determine the actual 

incorporation of the suppressing complex into the final copper deposit, we made use of a truly 

quantitative, sensitive (10 ppb element/isotope concentration in sample material, atomic 

fraction) LIMS depth profiling instrument that can achieve even sub-nanometer vertical 

resolution [33-38]. The capabilities of this technique on the analysis of copper electrodeposits 

prepared with the Imep-SPS additive package were recently proven for multilayered samples that 

were also prepared by an oscillatory Cu electrodeposition [41]. In that former study we, however, 

restricted ourselves to the determination of impurities inside the highly contaminated sections of 

the periodic structure. We resolved a detailed and quantitative contamination depth profile with 

unprecedented high vertical resolution that was not severely affected by the ablation process as in 

the case of the SIMS experiments (see comparison of SIMS and LIMS craters in Fig. 2). Herein we 

extend such quantitative analysis to the zones in the Cu film deposited under quasi-steady state 

conditions.  

Insert Fig. 4 (single column) 

Fig. 4 shows, as a representative example, the Cu and O signals of a typical LIMS depth profile. 

The high O intensity at the beginning of the LIMS depth profile can be assigned to the native oxide 

layer on the surface formed in air after the Cu deposition. Therefore we do not consider this O 

contribution in our quantitative analysis of the LIMS data. We assign the observed six abrupt periodic 

anti-correlated peaks in the Cu and O depth profiles (highlighted in Fig. 4 by grey bars) to the highly 

localized contamination layers that correspond to the sharp deltas in the FIB micrograph of Fig. 3b. 

At this point it should be noted that the measured intensities of the other elements under 

consideration (C, N, S and Cl) are indeed in phase with the O signal in full agreement with the 
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SIMS depth profiling results (Fig. 3c). These depth profiles are considered for the quantitative 

LIMS analysis but are, for the sake of clarity, not included into Fig. 4.  

Our general approach towards a more detailed quantitative analysis of the LIMS depth profiles is 

presented in Fig. 5 showing an enlarged section of one complete O LIMS depth profile.  

Insert Fig. 5 (single column) 

For the quantification of contaminants we divided the depth profiles in three sub-sections denoted 

in Fig. 5 as L, B and S. L refers to the regimes of highest contamination inside the Cu film 

(highlighted blue in Fig. 5) and corresponds to the sharp delta layers (L) seen in the FIB cut of Fig. 

3b. B refers to the background impurity level (highlighted grey in Fig. 5) representing the regime 

between those deltas in the LIMS depth profile and corresponds to the well recrystallized Cu (Fig. 

3b). In addition there are smaller satellite peaks superimposed on the background impurity level 

(highlighted red in Fig. 5) that are denoted as S. Our criterion to discriminate impurity 

contributions from S and B was a threshold of a minimum two-fold relative increase of the LIMS 

signal for all major contaminant species (O, C, N, S and Cl) going along with an according sharp 

decrease of the Cu signal. 

For the impurity quantification we integrated the individual element intensities (O, C, N, S and Cl) 

separately for L, B and S regimes in the range from the sample surface (excluding the native oxide 

layers) down to the dielectric. The result of this analysis is presented in Tab. 1 and Fig. 6. 

Insert Table. 1 (single column) 

Insert Fig. 6 (single column) 

The general characteristics of the depth profiles can be rationalized under the assumption that 

embedded impurities inside the Cu film are preferentially accumulated at grain boundaries. As one 
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can expect, the total impurity concentration (in ppm) is highest for L (Ctot = 36800 ppm) where the 

ablated material originates from a single grain boundary, which matches with the plane of laser 

irradiation and the resulting layer of ablated material in the LIMS depth profiling process. The 

chemical composition of L is therefore dominated by contributions from the delta-type grain 

boundary itself with an insignificant portion of ablated material originating from the Cu bulk 

phase. For this reason a determination of the chemical composition of the grain boundary including 

true quantification becomes feasible. A crucial prerequisite for that is a mean ablation rate of the 

LIMS experiment that is smaller than the spatial extension of the grain boundary in direction of the 

depth profiling process.   

This situation is just inversed for the regimes B and S in Fig. 5 where the majority of ablated 

material originates from clean Cu grains with only minor contributions coming from grain 

boundaries. The plane of laser irradiation is not parallel to a single grain boundary as in case L but 

intersects locally with grain boundaries that are randomly distributed in the recrystallized domains 

of the Cu film. Much smaller than one order of magnitude are therefore the impurities associated to 

the satellite peak regimes S (Ctot = 1130 ppm) in the LIMS depth profile (Fig. 5) followed by the 

low but still well detectable background level B (Ctot = 158 ppm). Important to note is that our 

analysis does not necessarily imply that the local impurity concentration is lower at those grain 

boundaries within the domains of recrystallized Cu compared to the sharp delta-type layers (L). For 

the domains of recrystallized Cu, the LIMS technique provides true quantitative information on 

impurities located in the layer of ablation. With this information we can derive the relative 

chemical composition of the grain boundaries (assuming that the impurities indeed originate from 

grain boundaries). The total impurity concentration located at those grain boundaries is, however, 

not accessible. The latter would require a normalization of the experimentally determined impurity 

concentration to the number density of domain boundaries within the layer of ablation analyzed. 
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This is schematically demonstrated in the representative FIB micrograph of the recrystallized Cu in 

Fig. 7.      

Insert Fig. 7 (single column) 

A closer inspection of Tab. 1 and Fig. 6 lets us conclude that the chemical compositions of regimes 

B and S (relative abundances of elements) in the depth profile are qualitatively the same. In both 

cases it is the oxygen which is the predominant impurity species (S: CO,Rel = 51.89 at%; B: CO,Rel = 

46.4 at%). Origin of this high oxygen level could be the embedment of partially solvated/hydrated 

sulfate anions from the supporting electrolyte and the inclusion of partially solvated sulfonic 

functionalities of the SPS upon growth. Also the Imep polymers contain a certain amount of 

oxygen in form of hydroxy functionalities (see Fig. 1). The embedment of the Imep polymer 

becomes manifested by the relatively high carbon content (S: CC,Rel = 27.83 at%; B: CC,Rel = 28.2 

at%) and the presence of nitrogen (S: CN,Rel = 12.56 at%; B: CN,Rel = 8.5 at%). The nitrogen can be 

considered as a fingerprint for the embedment of the Imep polymer since the leveler (type-II 

suppressor) is the only N-containing species present in the plating bath. The comparison of the 

chemical composition of regimes B and S let us conclude that the impurities can be in both cases 

associated to the same type of grain boundaries. Their number density is assumed to be locally 

higher in regime S compared to regime B. The appearance of satellite peaks in the regime between 

two sharp delta peaks in the LIMS depth profile can therefore be rationalized in terms of marginal 

(local) variations of the number density of grain boundaries of the same type upon laser ablation. In 

addition, local variations of the grain boundary orientations with respect to the direction of the laser 

ablation process might also lead to variations in the element abundances as seen in the LIMS depth 

profile (Fig. 5). These phenomena are depicted in Fig. 7. 

Compared to the grain boundaries inside the recrystallized Cu domains we observed a different 
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chemical composition for the delta-type grain boundaries (L). The carbon content (L: CC,Rel = 47.0 

at%) is substantially higher and the oxygen content correspondingly lower (L: CC,Rel = 33.0 at%) 

compared to the grain boundaries inside the recrystallized Cu domains (B and S regimes) whereas 

the N, S and Cl contents are comparable to the ones in the S and B regimes. 

We assume that the chemical composition of the of delta-type grain boundary is governed by the 

breakdown and subsequent embedment of the Imep-Cu(I)-MPS suppressor ensemble (Fig. 1). 

Special attention should therefore be paid to the particular CN,Rel/CS,Rel ratio. Based on the 

scenario depicted in Fig. 1 one would expect a 1:1 inclusion of N and S. We determine, 

however, a CN,Rel/CS,Rel ratio o f  ~1.5, suggesting that a certain amount of Imep hydroxy sites 

are not coordinated with Cu(I)-MPS units [29, 30]. This points to a non-stoichiometric 

precipitation of the Imep-Cu(I)-MPS complex under reactive conditions. An elemental analysis of 

the Imep-Cu(I)-MPS complex formed on a beaker scale came to the same conclusion [30]. 

Insert Fig. 8 (double column) 

To directly prove that the impurity layers (L) embedded inside the Cu deposit are in fact 

composed by Imep-Cu(I)-MPS ensembles, we carried out preliminary laser desorption studies 

with the LMS instrument which allows for a more detailed molecular and structural 

characterization of an embedded impurity layer beyond the analysis of its elemental composition. 

Fig. 8a shows the employed experimental approach. In a first stage we ablated the Cu deposit 

(laser irradiance ~2.5 TW cm-2) until an impurity layer (L) was detected as indicated by an abrupt 

decrease of the Cu signal going along with the simultaneous rise of the C, O, N and S intensities 

(Fig. 8a). The laser irradiation was then temporarily stopped and subsequently resumed after 

setting the laser conditions just above the desorption threshold (0.4–0.6 TW cm-2). While laser 

ablation causes the atomization of the ablated material, laser desorption allows for the registration 
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of complete molecules and their fragments. With this approach, we were for the first time able to 

detect higher molecular masses in the LIMS that we ascribe to characteristic fragments of the 

Imep-Cu(I)-MPS complex (Fig. 8b) desorbed from one of the embedded impurity layers (L) 

inside the Cu sample. The mass spectra in Fig. 8b represent single laser shot LIMS spectra 

showing characteristic masses of the monomeric Imep-Cu(I)-MPS unit (m/z = 342) and a further 

fragment (m/z = 328) after loss of a CH2 unit.   

We notice that only a low percentage of the data acquired in desorption mode (~5%) rendered 

such large masses and that more intense signals were observed for C, O, N, S elements and 

smaller molecular fragments. The reason for this might be the damage induced to the delta-

impurity layer (L) in the initial ablation step leaving behind only a small fraction of intact Imep-

Cu(I)-MPS network. Nevertheless, these results constitute the first direct structural evidence 

supporting our proposed reaction mechanism shown in Fig. 1. 

4. Conclusions 

We studied the embedment of advanced plating additives into Cu test samples that have been 

electrodeposited under oscillatory galvanostatic conditions. By means of SIMS depth profiling we 

could prove a preferential additive incorporation under transient conditions during the break-down 

and subsequent restoration of the active suppressor ensemble whereas clean and well recrystallized 

Cu domains were obtained under quasi-steady-state conditions where the active suppressor 

(leveler) film is operative. The negative SIMS mode was demonstrated to be unsuitable for 

estimating the actual N content in the Cu sample. More accurate determination of the N content can 

be achieved by the positive MCs+ SIMS mode.  

We showed that a true quantification of impurity embedment becomes feasible by using advanced 

LIMS depth profiling techniques. Our LIMS study demonstrated a preferential embedment of 
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contaminants at the grain boundaries of the Cu film. For the first time, a true determination of the 

chemical composition of a single grain boundary inside a Cu sample was achieved. A novel laser 

desorption mode of the LIMS technique allows for a structural analysis of the embedded 

suppressor ensembles beyond pure compositional (elemental) analysis of the bulk and gain 

boundaries of the Cu samples. 
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Tables 

Table 1 Summary of impurity content (in ppm and at%) inside the Imep/SPS-assisted 

electrodeposited Cu sample. 

 

 

 

 

 

	  

 CTot 
(ppm) 

CC,Rel 
(%at) 

CO,Rel 
(%at) 

CN,Rel 
(%at) 

CS,Rel 
(%at) 

CCl,Rel 
(%at) 

C(L) 36800 47.00 33.00 10.90 7.70 1.40 

C(S) 1130 27.83 51.89 12.56 5.57 2.16 

C(B) 158 28.20 46.40 8.50 14.30 2.50 
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Figure Captions 

Figure 1 Reaction scheme demonstrating the SPS surface electrochemistry coupled with the 

Imep precipitation reaction. 

Figure 2 Typical SEM images of the Cu samples after depth profiling analysis by means of a) 

SIMS and b) LIMS. 

Figure 3  a) Potential versus charge (depth) curve of the galvanostatic copper deposition on a 

SiO2 supported Cu-wafer coupon at J = –6 mA cm–2. The initial and final stages of the 

electrodeposition are indicated by arrows. b) Corresponding cross-sectional FIB 

micrograph of the Cu film deposited under oscillatory conditions. Extended delta-type 

grain boundaries are highlighted by white dotted lines and correspond to the sharp 

potential oscillations in a). c) Negative ion and MCs+ mode SIMS depth profiling 

experiments indicating an oscillatory behavior in the contamination level of C, N, O 

and S (in wt%). 

Figure 4  LIMS depth profiles displaying anti-correlated signals of O and Cu species. 

Figure 5  Representative section of an oxygen LIMS depth profile. Characteristic regimes of the 

depth profile are denoted as L (sharp delta layers), B (background) and S (satellite 

peaks).   

Figure 6 Graphical representation of the local impurity contents (in ppm) inside the Cu film as 

determined by integration of the LIMS intensities. CL refers to the sharp delta layers, 

CS to the satellite peaks and CB to the background in the LIMS depth profiles.   

  Figure 7 FIB micrograph showing a representative section of the recrystallized Cu (between two 

sharp delta layers). The dotted grey line indicates the layer of ablation where the plane 
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of laser irradiation intersects with a relatively low number of grain boundaries (denoted 

B) corresponding to the background contamination level (CB). The dotted red line 

indicates the layer of ablation with a higher number of grain boundaries (denoted S). 

The latter corresponds to the appearance of satellite features (S) in the LIMS depth 

profile in Fig. 5.    

Figure 8  (a) Schematics of the two step laser irradiation to address molecular characterization 

of the CL impurity layers. (b) Sample mass spectra obtained upon soft laser desorption 

conditions inside the CL films in the Imep-Cu(I)-MPS mass window. 
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