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Abstract: Supersymmetry provides a well-established theoretical framework for exten-

sions of the standard model of particle physics and the general understanding of quantum

field theories. We summarise here our investigations of N = 1 supersymmetric Yang-Mills

theory with SU(2) gauge symmetry using the non-perturbative first-principles method

of numerical lattice simulations. The strong interactions of gluons and their superpart-

ners, the gluinos, lead to confinement, and a spectrum of bound states including glueballs,

mesons, and gluino-glueballs emerges at low energies. For unbroken supersymmetry these

particles have to be arranged in supermultiplets of equal masses. In lattice simulations

supersymmetry can only be recovered in the continuum limit since it is explicitly broken

by the discretisation. We present the first continuum extrapolation of the mass spectrum of

supersymmetric Yang-Mills theory. The results are consistent with the formation of super-

multiplets and the absence of non-perturbative sources of supersymmetry breaking. Our

investigations also indicate that numerical lattice simulations can be applied to non-trivial

supersymmetric theories.
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1 Introduction

N = 1 supersymmetric Yang-Mills theory (SYM) is the supersymmetric extension of the

gluonic sector of the Standard Model. It contains non-Abelian gauge fields of an SU(N)

gauge group interacting with their fermionic superpartners, the gluino fields. Different

from the quarks of QCD, the gluinos are Majorana fermions and they transform according

to the adjoint representation of the gauge group. The complexity of SYM is comparable

to QCD. Several basic properties, like asymptotic freedom, are shared among these two

theories [1]. At low temperatures SYM is assumed to confine the gluons and gluinos into

colourless bound states, similarly to the mesons and glueballs in QCD. Like in QCD, the

investigation of the bound states is a non-perturbative problem that can be addressed by

numerical lattice simulations.

Supersymmetry (SUSY) is the essential feature distinguishing SYM from QCD. If

SUSY is unbroken, the bound states are arranged in supermultiplets, containing bosonic

and fermionic particles with equal masses. The key aspect of the investigations of SYM is

to verify the formation of these multiplets. The obtained mass spectrum provides insights
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into the low energy effective action of SYM. Effective actions have been constructed in [2]

and extended in [3, 4]. Later the question about the existence of SUSY breaking vacua

has been raised in [5], which would imply a completely different mass spectrum. Another

interesting aspect is the existence of a stable light scalar in the theory, since in addition to

the fermion, the multiplet always contains a scalar and a pseudoscalar particle. In SYM the

scalar is therefore a natural component of the effective theory, whereas the interpretation

of its QCD counterpart is more controversial [6]. A light scalar state is also essential

for technicolour and composite Higgs theories. The predicted degeneracy of the multiplet

masses provides a test of our methods for the challenging measurements of this state.

An important characteristic of SUSY is the non-trivial interplay with the space-time

symmetries. For example, the anticommutator of the SUSY generators Qα is connected

with the generators of translations Pµ:

{Qα, Qβ} = (Cγµ)αβPµ . (1.1)

The absence of the infinitesimal translations generated by Pµ is an illustration of the

unavoidable SUSY breaking on the lattice. In a more detailed analysis one can prove

that supersymmetry is generically broken on the lattice [7]. In most cases there is no

restoration of SUSY in the continuum limit without a fine tuning of certain SUSY breaking

counterterms. In SYM it is the fine tuning of the bare gluino mass. Our simulations are an

important test for the general applicability of non-perturbative lattice methods for SUSY

theories. It is one of the few non-trivial four-dimensional examples where the complete

restoration of SUSY in the continuum limit can be shown in terms of the Ward identities

and the degenerate mass spectrum.

The main focus of our investigations is the spectrum of bosonic and fermionic bound

states. In addition we have investigated the supersymmetric Ward identities, static poten-

tial, thermal behaviour and other quantities. Compared to QCD, the determination of the

masses of meson-like bound states in SYM is significantly more demanding, because all

mesons are flavour singlets and the calculation of their correlators requires the notoriously

difficult disconnected contributions. Like their QCD counterparts, the glueball operators

require a large statistics for a reasonable signal.

This article concludes our studies of the bound states spectrum of SU(2) SYM, see [8–

12] and references therein for previous work of our collaboration. In [8] a rather large

gap between bosonic and fermionic masses in the mass spectrum was obtained. In later

investigations [12] we have found that this effect significantly decreases at a smaller lattice

spacing. In this article we present the results at a third, even smaller, lattice spacing,

which allow an extrapolation to the continuum limit.

In section 2 we will give a short overview of the SYM in the continuum. We describe the

numerical setup for the lattice action and the analysis in section 3. Section 4 summarises our

new data at our smallest reliable lattice spacing. In combination with our previous results

the new data allow the continuum extrapolation of the spectrum as presented in section 5.

Based on this extrapolation, in section 6 we estimate the effects of improvements of the

lattice action that are an interesting starting point for future investigations of the theory.
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2 N = 1 supersymmetric Yang-Mills theory

SYM has one conserved supercharge that transforms bosonic and fermionic states into each

other. In particular the gluino, a spin-1/2 Majorana fermion in the adjoint representation

of the gauge group SU(N), is the superpartner of the gluon.

SYM shows confinement at low energies and the gluons and gluinos form bound states.

In that respect it is similar to QCD, where the hadrons are formed of the elementary quarks

and gluons. On the other hand, SYM represents the pure gluonic part of supersymmetric

QCD and leads to the confinement of external fundamental charges, corresponding to

heavy fundamental quarks. The linear rise of the static quark potential with a non-zero

string tension σ is a measurable signal of this effect. Since the fermions are in the adjoint

representation, string breaking does not occur at any distance, like in pure Yang-Mills

theory. A deconfinement phase transition is expected at a critical temperature Tc that

separates this low energy regime from the gluino-gluon plasma at high temperature. First

results have been presented in [13], where a second order phase transition has been observed

at a temperature Tc ' 200 MeV in QCD units.

In the continuum the off-shell Lagrangian of SYM reads

L = −1

4
Tr(FµνF

µν) +
i

2
λ̄(x)γµDµλ(x) +Da(x)Da(x), (2.1)

where Dµ denotes the covariant derivative in the adjoint representation. The auxiliary

field Da(x), needed to ensure supersymmetry off-shell, has no kinetic term and can be

integrated out from the partition function. After adding a gluino mass term, that breaks

SUSY softly, the resulting on-shell Lagrangian is thus given by

L = −1

4
Tr(FµνF

µν) +
i

2
λ̄(x)γµDµλ(x)− mg

2
λ̄λ . (2.2)

In one-flavour QCD the action would look quite similar and the chiral symmetry would

correspond to U(1)A × U(1)V with a U(1)A broken by the anomaly and the unbroken

U(1)V , which corresponds to the conserved baryon number. In SYM the action is invariant

under a U(1)R chiral symmetry that is broken down to ZN by the anomaly. The forma-

tion of the gluino condensate leads to an additional spontaneous breaking down to Z2.

The remaining symmetry corresponds to the fermion number conservation modulo 2 for

Majorana fermions.

Based on low-energy effective actions, predictions have been made for two low-lying

chiral supermultiplets [2–4]. One of them contains a scalar meson a–f0, represented by the

interpolating field λ̄λ, a pseudo-scalar meson a–η′, represented by λ̄γ5λ, and a gluino-glue

state. The gluino-glue is an exotic particle, which does not have a counterpart in QCD. It

is a spin 1/2 Majorana fermion, which can be created by the operator

Õgg̃ =
∑
µν

σµνTr [Fµνλ] , (2.3)

with σµν = 1
2 [γµ, γν ]. The other supermultiplet consists of a scalar 0++ glueball, a pseu-

doscalar 0−+ glueball, and a gluino-glue particle.
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3 Numerical lattice simulations

3.1 Lattice formulations and simulation methods

A lattice action for the Euclidean version of SYM has been proposed by Curci and

Veneziano [14]. The action for the gauge fields is the usual Wilson action, which in our

calculations has been extended to the tree-level Symanzik improved gauge action. The

gluinos are described by Wilson fermions in the adjoint representation. In our case stout

smearing [15] is applied on the gauge links in the Wilson-Dirac operator.

The Curci-Veneziano action explicitly breaks supersymmetry and the U(1)R symmetry.

To recover the continuum symmetries the necessary fine-tuning of supersymmetry and

U(1)R symmetry can be achieved through the same parameter, namely the bare gluino

mass represented by the fermionic hopping parameter κ [14, 16]. To approach the limit

of a vanishing gluino mass, the bare parameter κ has to be tuned to the critical value κc
that corresponds to the point where all explicit chiral symmetry breaking terms vanish in

the continuum limit. The value of κc is most easily obtained from the dependence of the

adjoint pion (a–π) mass on κ. The correlator of this particle is the connected contribution

of the a–η′ correlator. Even though a–π is not a physical state of SYM, it can be defined

in a partially quenched setup where the chiral limit is identified with the point where the

adjoint pion mass vanishes [17].

The updates of gauge configurations are performed with the two-step polynomial hy-

brid Monte Carlo (PHMC) algorithm [8, 18]. The polynomial approximation is less precise

for small eigenvalues of the Hermitian Wilson-Dirac operator that can appear in the sim-

ulations for κ close to κc. When necessary, this error is corrected by a reweighting with

correction factors in the analysis. These are obtained from the exact contribution of the

lowest eigenvalues.

Our lattice formulation leads to a mild sign problem, arising as O(a) lattice artefact.

The Pfaffian obtained from the integration of the Majorana fermions can sometimes have a

negative sign [19], especially close to the chiral limit. This sign is included in the reweight-

ing, if necessary. To reduce the statistical errors we have chosen the parameters of our

present simulations such that the reweighting with correction factors and Pfaffian signs is

not significant for the final results. In general the relevance of the reweighting is reduced

at the smaller lattice spacings and for higher levels of stout smearing.

In principle it is also possible to formulate the model using Ginsparg-Wilson type

fermions. In such a formulation the parameter values, at which the chiral and supersym-

metric continuum limit is to be found, are known and thus do not need fine tuning. Also,

this formulation does not have a sign problem of the Pfaffian. Supersymmetry breaking

at non-zero lattice spacings is, of course, still unavoidable. Interesting results have been

obtained in some studies of the chiral condensate using this type of lattice formulation [20–

22]. The determination of the mass spectrum requires, however, rather large lattices, which

leads to a high computational cost with these formulations. We have found in our studies

that the fine-tuning is feasible without problems, and hence there is no particular need for

the use of Ginsparg-Wilson type formulations in our investigations.
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Figure 1. Masses of particles are first extrapolated to the chiral limit, i. e. to the critical value

of κ where the gluino mass vanishes, and then to the continuum limit, β → ∞. The critical line

κc(β) separates the bare parameter space into two regions characterised by either a positive or a

negative expectation value of the gluino condensate. Chiral extrapolations at β = 1.6 and β = 1.75

have been presented in ref. [8] and refs. [10, 12], respectively.

3.2 Simulation parameters

We have chosen the lattice sizes such that finite volume effects can be neglected in compar-

ison with statistical errors, based on our investigation in [10]. Since lattice artifacts are the

most relevant systematic errors, the most reliable results would be obtained at the smallest

lattice spacings. The lattice spacing can, however, not be easily reduced to arbitrary small

values since topology freezing introduces very large autocorrelation times and uncertainties

in the observables at a small lattice spacing [23]. This problem can be reduced by choosing

longer HMC trajectories in the gauge field update, for instance trajectories of length 2,

which we had in most of our simulations at larger β values. In spite of that we have found

a significant influence of topology freezing at β = 2.1, where the lattice spacing in QCD

units (where the Sommer parameter r0 is set to 0.5 fm) would be around 0.02 fm. For in-

stance, at β = 2.1, κ = 0.1397 on a 483 · 96 lattice we observe for the topological charge Q

an integrated autocorrelation time τQ ' 145, whereas at β = 1.9, κ = 0.14415 on a 323 ·64

lattice we have τQ ' 24. In addition to the longer autocorrelation, at β = 2.1 it is very

difficult to achieve a distribution of Q symmetric about 0. Topology freezing represents an

upper limit for the parameter β in the simulations unless open boundary conditions are

introduced or the statistic is increased by about an order of magnitude.

In this work we present our new results of simulations at β = 1.9 which are summarised

in table 1 and discussed in more detail in section 4. Including our previous simulations,

three different values of the inverse gauge coupling β, corresponding to three lattice spacings

a have been considered. For each β, several values of the fermionic hopping parameter

κ have been chosen in order to extrapolate to κc, see figure 1. The parameters of the

simulations at the two larger lattice spacings at β = 1.6 and 1.75 have been presented in

previous publications [8, 10, 12].
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3.3 Particle operators on the lattice

The mesonic operators are similar to the flavour singlet meson operators in QCD. The

scalar meson corresponds to the adjoint version of f0 (a–f0), and the pseudoscalar to the

adjoint η′ meson (a–η′). The correlators for these particles are a sum of disconnected and

connected fermion contributions. In QCD the connected part corresponds to the pion,

while in SYM an adjoint pion (a–π) is not a physical state of the theory, but can be

defined in a partially quenched setup [17]. It provides the best signal to noise ratio of all

the considered states and the most reliable basis for determining the critical value κc of

the hopping parameter where the gluino mass vanishes.

The determination of the disconnected contributions is rather challenging. They are

determined by a stochastic estimation combined with the exact contribution of the lowest

eigenvalues of the Hermitian Dirac-Wilson operator and truncated solver techniques to

reduce the fluctuations of the signal. Similar to QCD, the disconnected contributions yield

the most relevant uncertainty in the mesonic operators.

The gluino-glue is measured with a lattice version of the operator of eq. (2.3), where

the Fµν part is replaced by the clover plaquette. APE and Jacobi smearing is applied to

get a better signal for the ground state [10].

The glueball masses are determined on the lattice by operators based on the product

of link variables. In our study the interpolating operator for the scalar glueball 0++ is

given by the fundamental plaquette built from four links, while for the glueball 0−+ it is

given by the product of eight links with suitable shape [24].

In order to reduce the contamination from excited states and therefore determine the

effective mass already at small time-slice separation we used the variational method based

on APE smeared operators [25]. In total between L = 16 and L = 18 different operators

were used in the variational method, each separated by NAPE steps. The smearing param-

eter was usually fixed to εAPE = 0.5, while NAPE = 4 for the volume 243 and NAPE = 5

for the volume 323. As in QCD, the glueballs are characterised by a small signal-to-noise

ratio compared to the other observables.

3.4 Supersymmetric Ward identities

An important issue in our approach is the determination of the point in parameter space

where the theory is characterised by a massless gluino. In this point not only the explicit

chiral symmetry breaking by the gluino mass disappears, but also, in the continuum limit,

SUSY is restored.

A renormalised gluino mass can be defined on the lattice by means of the super-

symmetric Ward identities (SWI) [26]. They give the (subtracted) gluino mass up to a

renormalisation factor (amSZ
−1
S ).

On the other hand, the point of vanishing gluino mass can be estimated in an indirect

way from the vanishing of the adjoint pion mass. The adjoint-pion mass squared a–π

is expected to vanish linearly with the (renormalised) gluino mass m2
a–π ∝ mg. This

relation was obtained in the OZI approximation in [2], and derived in [17] in a partially

quenched setup.

– 6 –



J
H
E
P
0
3
(
2
0
1
6
)
0
8
0

3.340 3.350 3.360
1/(2 κ)

0.00

0.02

0.04

0.06

0.08
a 

m
a-pion
gluino

β=1.75

(a) β = 1.75, volume 323 × 64.
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(b) β = 1.90, volume 323 × 64.

Figure 2. Comparison between the values of κc defined as the value of κ where the square of the

a–π mass (a-pion) or the renormalised gluino mass amSZ
−1
S (gluino) vanishes. The horizontal thick

lines (red and blue) show the uncertainty in the determination of the intercept with zero.

The parameter which we tune to get a zero gluino mass is κ. In general, the a–π

mass yields a more precise determination of κc. In principle, different definition of the

renormalised gluino mass will agree up to O(a) lattice artefacts. In previous studies we have

checked that both signals lead within our statistical errors to a consistent value of κc [8].

We have measured the SWI in our new set of configurations, closest to the continuum

limit, at β = 1.75 and at β = 1.9, to check again the agreement in the determination of κc.

In figure 2 we plot the value of amSZ
−1
S (labelled as gluino) and the square of the adjoint

pion mass (labelled as a-pion).

We can see that the two values are compatible within two standard deviations both

at β = 1.75 and β = 1.9. Taking into account that the determination of amSZ
−1
S is a

complex procedure, it is difficult to estimate it’s systematic errors, and we consider both

determinations to be acceptable and the two methods to be compatible.

Because the value of κc determined via a–π is by far more precise, the tuning of κ is

done using this quantity.

4 New results at β = 1.9

To estimate the masses of the bound states in the continuum at zero gluino mass a two-fold

extrapolation has to be made. In the first step, at each fixed value of β the masses are

extrapolated in κ to the limit of a vanishing gluino mass at κc. As explained above, the

masses as a function of the squared mass of the adjoint pion (ma–π) are extrapolated to the

“chiral limit” ma–π = 0. We consider a mass independent scale setting scheme, in which

the lattice spacing is constant at fixed β. Therefore the extrapolations to the chiral limit

can be done directly for the masses in lattice units (am).

The masses in lattice units, obtained from our simulations at β = 1.9, are presented

in table 1. Figure 3 shows the extrapolation of the masses to the chiral limit. As for the

β = 1.75 case, the spectrum is almost degenerate in the chiral limit, which is quite different

from our previous results at β = 1.6. This qualitative observation can now be made more

rigorous by a complete extrapolation to the continuum limit.
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(a) Gluino-glue (g̃g) and a–η′ mass.
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(b) 0++ glueball (gb(0++)) and a–f0 mass.

Figure 3. Extrapolation to the chiral limit (ma–π = 0) at β = 1.90.

5 Extrapolations to the continuum limit

5.1 Low-lying masses

The first extensive studies of our collaboration at the lattice spacing a corresponding to

β = 1.6 have found a mass of the gluino-glue particle (mg̃g) that was significantly heavier

than the masses of the other particles of the expected multiplet [8]. In a second step a

has been reduced, corresponding to a larger value of β = 1.75, and a significant reduction

of the gap between mg̃g and ma–η′ has been observed [10, 12]. The new results at the

third smaller lattice spacing at β = 1.9 now allow to present the first extrapolation to the

continuum limit of the lowest bound state masses. The large mass splitting between the

bosonic bound states and their fermionic counterpart that was visible at β = 1.6 has been

significantly reduced at the smaller lattice spacings.

Results at different lattice spacings a can be combined in an extrapolation to the

continuum limit (a → 0) once an observable is chosen to set the scale, i. e. to define

the physical length associated with a. The scale setting is a large source of systematic

errors, therefore several different observables have been computed for the extrapolation to

the continuum limit. The determination of the scale for our model has been presented in

ref. [27]. To extrapolate to the continuum limit, we have chosen the Wilson flow quantity

w0 defined at the reference time τ = 0.3. The lattice spacing is implicitly defined by the

obtained numerical value of the dimensionless quantity a/w0. The Sommer parameter r0
could be a valid alternative, it has, however, more systematic uncertainties than w0, since

it requires complex fitting procedures of the noisy expectation values of Wilson loops. The

corresponding results are listed in table 3 for the three values of β. Our current method

for setting the scale is different from our previous studies, where r0 has been chosen to set

the scale.

All chiral extrapolations have now been redone based on bare quantities in lattice

units as in section 4. The error of the scale setting does hence not propagate into the chiral

extrapolations, which leads to smaller errors. At β = 1.75 we have now split the chiral

fit into the ensembles with one and three levels of stout smearing, even though the results

– 8 –
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(a) Gluino-glue (g̃g) and a–η′ mass.

0.0 0.5
a/w

0
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1.0

1.5

2.0

m
 w

0

a–f0

gb(0++)

(b) 0++ glueball (gb(0++)) and a–f0 mass.

Figure 4. (a) Extrapolations of the a–η′ and gluino-glue masses to the continuum limit. The

large gap visible at the largest lattice spacing is drastically reduced at larger β. (b) Extrapolations

of the a–f0 and 0++ glueball masses to the continuum limit. The extrapolation of the glueball

mass is unstable and dominated by the result at small lattice spacing, therefore the final result

is compatible with the gluino-glue mass only within two standard deviations. The thick vertical

magenta line represents the weighted mean value of the four masses.

are compatible within errors. In this way the complete extrapolation is now based only on

data obtained with one level of stout smearing.

We have also redetermined the glueball masses β = 1.6 with a more accurate varia-

tional analysis. This leads to a reduced difference between the gluino-glue and the glueball

compared to our previous publication [8].

The extrapolations of the masses to the continuum, using w0 for the scale setting, are

displayed in figures 4(a) and 4(b).

Using w0 to set scale, the final extrapolation to the continuum limit can be read in

table 4, labelled as s = w0:

w0ma–η′ = 1.22(11) (5.1)

w0ma–f0 = 1.43(28) (5.2)

w0mg̃g = 1.111(74) (5.3)

w0mglueball 0++ = 1.67(25) . (5.4)

The masses of a–η′, a–f0 and g̃g are compatible with the weighted mean value w0 m̄ =

1.19(12) of the four masses within one standard deviation, while the mass of the 0++

glueball is compatible with it by only two standard deviations. However, the glueball has

the worst signal-to-noise ratio and the extrapolation of its mass to the continuum limit is

less reliable due to the large errors at fine lattice spacing.

5.2 Glueballs

The picture of a lower supermultiplet consisting of bound states of gluons and a higher

one of mesons was proposed in [4]. On the other hand, in [28] the authors, using different
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Figure 5. Glueball spectrum at β = 1.9. The mass of the first excited state of the 0++∗ glueball,

which is twice the mass of the 0++ glueball ground state, appears to be compatible with the

fundamental mass of the 0−+ glueball.

arguments and experience from QCD, deduce the opposite ordering of multiplets. The

0++ glueball and the gluinoball a–f0 on the one hand, and the 0−+ glueball and the

gluinoball a–η′ on the other hand have the same quantum numbers, and they might be

characterised by a strong mixing. In that case it would be difficult to say which of the two

supermultiplets is more glueball-like or gluino-like, since we will get the same mass from

both of them, namely the one of the lightest state. This is the case shown in figure 4(b),

where 0++ and a–f0 have compatible masses.

On the other hand, if the mixing of the states is weak, it is possible that the two

operators project onto two different states, and two different masses are obtained in this

case. Our results seem to suggest that the 0−+ glueball and the a–η′ have a weak mixing,

and the operators we are using for the 0−+ glueball have a strong overlap with the first

excited state, but a very weak one with lowest state.

From figure 5 we can see moreover that the first excited state of the 0++ glueball is

compatible with the lightest state of the 0−+ glueball. In combination with an additional

excited gluino-glue, this would be a multiplet of excited states. This line of reasoning seems

to indicate that the glueball states have an energy higher than the gluinoball as argued

in [28].

5.3 Comparison between r0 and w0

The lattice spacing has been defined in terms of w0 in the extrapolation to the continuum

limit. For the interpretation of the results it is interesting to express them in units of

the Sommer scale r0, which is around 0.5 fm in QCD. There are two possible ways to get

these results: on the one hand the dimensionless ratio r0/w0 can be extrapolated to the

continuum limit and used to convert the above continuum results to the scale r0; on the

other hand the extrapolations to the continuum limit can alternatively be done using the

value of a/r0 as implicit definition of the lattice spacing. The two different procedures can

be used to test the systematic error of the extrapolation to the continuum limit. In fact,

assuming that the asymptotic scaling region has already been reached, the two procedures
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must give compatible results. If not, this would be a signal of the fact that the extrapolation

to the continuum limit is not yet stable.

Using r0 as scale parameter to extrapolate to the continuum limit we get the results

labelled as s = r0 in table 4. The dimensionless ratio r0/w0 extrapolated to the continuum

limit is

r0/w0 = 2.21(12) . (5.5)

Using this value to convert the masses, which have been extrapolated to the continuum

limit using r0, in terms of w0 we get the values labelled with w∗0 in table 4. We note that

for β = 1.6 we have recalculated the Sommer parameter r0 in order to apply a uniform

methodology for all values of β. The results for r0 are slightly different from the old ones

in [8], since by a refined choice of fit ranges we could obtain more reliable results.

For all particles, the masses determined with these two procedures are compatible

within 1.4 standard deviations. However, the use of r0 results in a slightly larger mass gap

between the gluino-glue and the a–η′ masses. Other possible choices to set the scale, like

t0 or w0 at a different reference value, give an almost perfect compatibility, related to the

fact that they do not refer to completely independent observable.

6 Improved lattice formulations

In the continuum extrapolation we have found a particle spectrum compatible with the

formation of a supermultiplet and unbroken supersymmetry. This is also compatible with

theoretical considerations that have found a non-zero Witten index of the theory. We

can now invert the argument and take the separation of the multiplets as a signal for

the lattice artefacts of the chosen discretisation. Consequently, the best choice for further

investigations of the theory on the lattice is the discretisation with the smallest separation

of the particles in the multiplet.

At β = 1.75 we have done a reasonable amount of simulations with three, instead of

one, level of stout smearing. We have found that the fluctuations of the lowest eigenvalues

of the Hermitian Wilson-Dirac operator are considerably reduced with the additional levels

of stout smearing, but the results for the mass spectrum are consistent with the data from

one level of smearing. Hence this modification represents rather a technical improvement

than a reduction of the lattice artefacts.

Symanzik’s improvement program [29, 30] provides a systematic way to cancel the

leading O(a) lattice artefacts of the Curci-Veneziano action. The fermion action is modified

by the addition of an irrelevant operator, the so-called clover term,

− csw
a

4
λ̄(x)σµνF

µνλ(x). (6.1)

The coefficient csw is tuned such that O(a) lattice artefacts are removed from on-

shell quantities, like for instance masses of physical particles [31–33]. The perturbative

calculation of csw has been presented up to O(g2) for N = 1 SYM in ref. [34]. It is,

however, well known that higher order corrections to csw are non-negligible in the range of

gauge couplings used in practical Monte Carlo simulations [34, 35].
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(a) Chiral extrapolation.

0.0 0.5
a/w

0

0.0

0.5

1.0

1.5

2.0

m
 w

0

a–η′

g̃g

(b) Comparison between smeared (see figure 4(a))

and clover improved fermions (green box).

Figure 6. (a) Extrapolation of the a–η′ and gluino-glue (g̃g) masses to the chiral limit computed

with tadpole improved clover fermions. (b) Comparison of the extrapolations to the continuum limit

of the a–η′ and gluino-glue masses with the tadpole clover improved action results (green box).

An alternative to the perturbative result is given by a mean-field rescaling of the link

variables with the fourth root of the plaquette, u0 = 〈P 〉1/4, due to a suppression of tadpole

diagrams [36]. The resulting clover coefficient reads

csw =
1

u30
. (6.2)

We have done some preliminary simulations of tadpole improved clover fermions with-

out stout smearing. The results are summarised in table 2. The chiral extrapolated value

of w0 is determined to be w0 = 2.51(4). We measured the plaquette expectation value at

β = 1.7 extrapolated to the chiral limit and, using the formula above, we set csw = 1.467.

The limited statistics allows only for a determination of the a–η′ and gluino-glue mass. The

chiral extrapolation is presented in figure 6(a). It is interesting to observe that despite the

large lattice spacing, the values of the masses extrapolated to the chiral limit are already

compatible with their values extrapolated to the continuum limit using the one-level stout

smeared action, see figure 6(b).

7 Conclusions

In this paper we have presented our latest results on the spectrum of bound states in SYM.

Reliable lattice simulations are now possible thanks to the evolution of supercomputers

and algorithms in recent years. Another important step has been the localisation of the

reliable parameters range for the simulations which is limited by finite size effects and

topological freezing.

Based on these recent developments we have generated a large set of configurations

at different lattice spacings and gluino masses over several years. At each lattice spacing

we have performed an extrapolation of the lowest bound state masses in the scalar, pseu-

doscalar, and spin-1/2 channel to the chiral limit at zero gluino mass. As we have shown,
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this limit is compatible with the restoration of the supersymmetric Ward identities. Our

last set of data at β = 1.9 allows to complete the extrapolation to the continuum limit.

The extrapolations to the continuum limit show agreement for the masses within less

than two standard deviations. This is consistent with the formation of a SUSY multiplet,

which is expected to contain a scalar and a pseudoscalar boson in addition to the fermion.

There are two important conclusions that can be drawn from these observations: a

proper non-perturbative definition of the strongly interacting supersymmetric theory is

possible and there is no breaking of SUSY in the low energy effective theory. This is

equivalent to the absence of an anomalous or spontaneous SUSY breaking in this theory.

Taking the unbroken SUSY in the continuum theory for granted, the second conclusion

is that the lattice method can be applied in a non-trivial four-dimensional supersymmetric

theory. SUSY, which is unavoidably broken by the discretisation, is like Lorentz symmetry

and chiral symmetry restored in the continuum limit in SYM. In our case, this is achieved

by a fine-tuning of the hopping parameter.

In a first, short study we have shown that the breaking of SUSY indicated by the

mass splitting of the multiplet on a coarse lattice is significantly reduced when a tadpole

improved clover fermion action is used. In addition, technical aspects of the methods are

improved by stout smearing in the Dirac operator. This indicates that clover improved

fermions with stout smearing seem to be the best choice for future lattice investigations of

the theory.

In our present investigation we considered only the mass of the lightest supermultiplet.

A second chiral supermultiplet with higher mass has been predicted [3, 4, 28]. The deter-

mination of the mass of the second supermultiplet on the lattice requires the computation

of the mixing between gluonic and fermionic operators. We plan to investigate this aspect

in the near future. The analysis of the mass of the pseudoscalar glueball and of the excited

state of the scalar glueball indicates that mixing might be rather weak in the 0−+ channel.

In this case, the second excited supermultiplet appears to be roughly twice as massive as

the ground state.
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A Tables

κ # confs ama–π ama–η′ ama–f0 amg̃g mgb(0
++) mgb(0

−+)

0.1433 10374 0.28737(84) 0.314(18) 0.313(84) 0.324(11) 0.35(2) 0.60(3)

0.14387 10237 0.21410(33) 0.260(11) 0.265(53) 0.295(10) 0.27(3) 0.52(6)

0.14415 21090 0.17520(22) 0.232(11) 0.262(25) 0.236(15) 0.29(2) 0.52(4)

0.14435 10680 0.14129(59) 0.203(12) 0.227(19) 0.2360(74) 0.29(3) 0.52(3)

Table 1. Summary of the masses in lattice units for the one-level stout smeared action at β = 1.9,

lattice size 323 × 64.

κ # configs w0/a ama–π ama–η′ amg̃g

0.1600 4043 1.7456(87) 0.8606(71) 0.941(18) 1.030(46)

0.1620 3474 1.915(11) 0.6851(28) 0.862(23) 0.924(20)

0.1640 1466 2.165(15) 0.4716(54) 0.540(39) 0.633(26)

Table 2. Summary of the masses in lattice units for the tadpole clover improved action at β = 1.7,

csw = 1.467, lattice size 163 × 32.

β ama–η′ ama–f0 amg̃g amgb(0
++) amgb(0

−+) w0/a r0/a

1.90 0.174(14) 0.201(35) 0.208(10) 0.253(26) 0.486(35) 5.858(84) 13.95(12)

1.75l=1 0.246(26) 0.228(71) 0.283(18) 0.294(62) 0.63(22) 3.411(18) 9.47(14)

1.75l=3 0.268(22) 0.331(30) 0.3295(83) 0.393(33) 1.014(20) 3.189(11) 9.28(7)

1.60 0.301(27) 0.256(81) 0.619(86) 0.51(13) — 1.8595(39) 5.78(15)

Table 3. Summary of the masses and scale parameters in lattice units extrapolated to the chiral

limit (κ = κc). For β = 1.75 we report the values for one (l = 1) and three (l = 3) levels of stout

smearing.

sma–η′ sma–f0 smg̃g smgb(0
++)

s = r0 2.97(33) 3.67(85) 2.23(23) 3.96(83)

s = w0 1.22(11) 1.43(28) 1.111(74) 1.67(25)

s = w∗0 = r0/(r0/w0) 1.34(17) 1.66(40) 1.01(12) 1.79(39)

(w∗0 − w0)/∆w0 1.09 0.82 1.36 0.48

Table 4. Summary of the masses extrapolated to the continuum limit using different scales. w∗0 is

a parameter determined from r0 using the ratio r0/w0 = 2.21(12). In the last row the comparison

between w0 and w∗0 is shown. In this table the mass of the glueball 0−+ is not present because we

have not enough data for the extrapolatation to the continuum limit.
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