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Abstract 1 

The precautionary principle is an essential guideline in decision making, particularly for 2 

regulating novel developments with unknown or insufficiently proven environmental impact. 3 

However, due to the inherent component of uncertainty it has been widely critized for being 4 

“unscientific”, i.e. hindering progress without sufficient evidence. The consequential 5 

postulation, that precautionary measures are only justified if the addressed threats are 6 

plausible and the measures reasonable, calls for methods to guide action in the face of 7 

uncertainty. Using the example of species conservation versus wind-farm construction, an 8 

expanding development with hypothesized - but unexplored - effects on our model species the 9 

capercaillie (Tetrao urogallus), we present an approach that aims at compensating the lack of 10 

knowledge about the threat itself by making best use of the available knowledge about the 11 

object at risk. By systematically combining information drawn from population monitoring 12 

and spatial modelling with population ecological thresholds, we identified areas of different 13 

functionality and importance to metapopulation persistence and connectivity. We integrated 14 

this information into a spatial concept defining four area-categories with different 15 

implications for wind power development. Highest priority was assigned to areas covering the 16 

spatial and functional requirements of a minimum viable population, i.e. sites where the 17 

plausibility for threat is highest, the uncertainty as regards importance for the population is 18 

lowest, and thus the justification for precautionary measures is strongest. This gradated 19 

approach may also enhance public acceptance, as it attempts to avoid either error-20 

minimization bias (i.e. being too restrictive or permissive) the precautionary principle is 21 

frequently criticized for. 22 

250 words 23 

Keywords: capercaillie, dispersal model, habitat model, impact assessment, Tetrao urogallus, 24 

wind energy 25 

26 
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Introduction 27 

The precautionary principle is an established guideline applied to environmental policy and 28 

considered a fundamental tool for sustainable development (Cooney, 2004; Kriebel et al., 29 

2001; Myers, 1993). It is based on the idea of “better safe, than sorry”, in more detail 30 

described as “when an activity raises threats of harm to human health or the environment, 31 

precautionary measures should be taken even if some cause and effect relationships are not 32 

fully established scientifically” (Raffensperger & Tickner, 1999). The precautionary principle 33 

is usually applied when decision makers have an obligation to respond while there are 34 

indications of a negative impact, which are expected to be serious or irreversible and when 35 

there exists scientific uncertainty to the nature and severity of the threat (LILC, 2000; Prato, 36 

2005). As this often applies to new developments, which are in potential conflict with species 37 

conservation, the precautionary principle has become a common element in environmental 38 

impact assessments in relation to endangered species. Nevertheless, the precautionary 39 

principle is often criticised for being not entirely “science based” (i.e. even though an activity 40 

or development has not been shown to be harmful it might still be prohibited) and is therefore 41 

accused to hinder progress or innovation (Kriebel et al., 2001; Sandin et al., 2002). 42 

The recent increase of wind energy use in Central Europe and the consequential necessity to 43 

evaluate wind farm projects with regard to conservation targets provides a good example how 44 

the precautionary principle is applied in the field of endangered species protection. There are 45 

three main effects wind turbines may have on wildlife: firstly, increased mortality due to 46 

collisions, secondly, habitat fragmentation or reduced population connectivity when animals 47 

avoid passing through wind turbine areas, and thirdly, habitat loss due to construction works 48 

and avoidance of the disturbed area. Both birds and bats are known to collide with wind 49 

turbines causing increased adult mortality (Drewitt & Langston, 2008; Johnson et al., 2002; 50 

Kuvlesky et al., 2007; Langston & Pullan, 2003 ; Rydell et al., 2010). Although in most cases 51 
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the effects at population-level are unclear (Stewart et al., 2007), increased adult mortality in 52 

long lived, slow reproducing species can rapidly affect population numbers (Sæther & Bakke, 53 

2000). Moreover, a wide range of animal species have been shown to avoid areas around 54 

wind turbines, effectively causing habitat loss or acting as barriers to movement (Bach & 55 

Rahmel, 2004; Drewitt & Langston, 2006; Pearce-Higgins et al., 2009). Yet, the effects of 56 

wind turbines on wildlife seem to be highly species and site specific and the mechanisms 57 

behind remain poorly understood (Anderson et al., 2008; Kuvlesky et al., 2007). Besides, 58 

most studies on this subject are case studies, making it difficult to draw general conclusions. 59 

This lack of knowledge induces policy makers to apply the precautionary principle, which 60 

usually results in defining buffer zones around sites with ascertained species presence, for 61 

example nesting sites, where wind turbines are prohibited (Bright et al. 2008). The extent of 62 

this buffer zone is often based on expert opinion (Bright et al. 2008) and is therefore highly 63 

debated. Moreover, this approach is static and often based on data collected in a short time-64 

window (e.g. a single breeding season), thus neglecting spatial and temporal fluctuations as 65 

well as minimum required areas or functional connectivity at the population level. One may 66 

argue that the lack of knowledge precludes a more complex approach. However, even if the 67 

effect of wind turbines on a species is unknown, evidence-based information on species’ 68 

habitat selection and spatial requirements is often largely available or can be generated with 69 

relatively low effort from existing data sources. We state that this knowledge should be 70 

applied to determine prohibition zones for wind turbine development and advocate that the 71 

precautionary principle is used to protect viable populations of species and not only 72 

individuals. Here we provide an approach illustrating how a systematic combination of 73 

available data and knowledge can be applied to minimize - within the framework of the 74 

precautionary principle - the potential impact of wind power development on an endangered 75 

species population, even though knowledge about the actual effects of wind turbines on the 76 
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species is lacking. Using the example of capercaillie (Tetrao urogallus) in the Black Forest, 77 

Germany, we identified areas of different functionality and importance with regard to 78 

reproduction, metapopulation persistence and connectivity, which were combined with 79 

population-related thresholds to define area categories with different levels of vulnerability 80 

and consequential implications for wind power development. 81 

Methods 82 

Model species 83 

Due to its specific habitat and extensive area requirements, and its high sensitivity to human 84 

disturbance, the capercaillie is considered an indicator of undisturbed mountain forest 85 

ecosystems rich in structural diversity (Cas & Adamic, 1998; Klaus et al., 1989; Simberloff, 86 

1998; Storch, 1995) and an umbrella species for the underlying species community (Pakkala 87 

et al., 2003; Suter et al., 2002). The same attributes, along with a limited dispersal capacity, 88 

renders the species highly vulnerable to habitat degradation and fragmentation. In Central 89 

Europe capercaillie is listed in most national red data books and in Annex I of the EU Birds 90 

Directive (EU Directive 79/409/EEC on the Conservation of Wild Birds, 1979), and its 91 

presence was one of the main criteria for the designation of special protected areas (SPA) for 92 

birds in the Natura 2000 network. However, the proportion of the capercaillie range that is 93 

covered by protected areas is far from sufficient to support self-sustaining, viable populations 94 

in most countries (Storch, 2007).  95 

As the Central European populations are mostly confined to mountain regions, with 96 

distributions largely overlapping the areas suitable for wind energy development, capercaillie 97 

became a focal species for impact regulations. However, although a wide array of knowledge 98 

is available on behaviour and habitat requirements, it is still unclear how the species is 99 

influenced by wind turbines. The main impact is expected from turbine construction and 100 
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operation triggering avoidance behaviour and thus effective habitat loss (González & Ena, 101 

2011; Horch et al., 2003; Horch et al., 2006; Langston & Pullan, 2003 ), but none of these 102 

effects have been scientifically proven yet. The only published study on the cantabrian 103 

subspecies T. urogallus cantabricus shows a significant decrease of capercaillie signs in 104 

winter, one year after turbine construction (González & Ena, 2011). As capercaillie is highly 105 

sensitive to human presence (Thiel, 2007), road construction in the forefront of wind-turbine 106 

erection, followed by an increased human use of the area, is highly likely to reduce habitat 107 

suitability (Thiel et al., 2008). Moreover, being a prey species to raptors, the flickering 108 

shadows elicited by the turbines blades may affect vigilance behaviour, a hypothesis that 109 

requires further research (Lovich & Ennen, 2013). Capercaillie are known to collide with 110 

many different man-made structures (Baines & Andrew, 2003; Baines & Summers, 1997; 111 

Bevanger & Brøseth, 2004; Catt et al., 1994) and occasional collisions with wind turbines 112 

have been reported from Sweden (Göran Rönning, pers. comm.). Despite case studies 113 

suggesting negative effects of wind turbines on capercaillie, it is impossible to draw general 114 

conclusions at the population level. In case of the small and fragmented Central European 115 

capercaillie populations however, any additional impact may affect long-term population 116 

viability, which is why the precautionary principle is applied to handle conflicts between wind 117 

turbine construction and capercaillie protection.  118 

 119 

Study area 120 

The study area encompassed the Black Forest (i.e. the  ecoregions “Black Forest” and “Baar-121 

Wutach", Aldinger et al. 1998), a forested mountain range of about 7 000 km² in south-122 

western Germany. It was selected as it hosts the largest Central European capercaillie 123 

population outside the Alps (Storch 2007) and, at the same time, is one of the Federal State’s 124 

primary regions for wind energy development due to favourable wind conditions along the 125 
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mountain ridges. The capercaillie population is distributed over 520 km² in the forested 126 

regions of the highest altitudes (Braunisch & Suchant, 2006), isolated from neighbouring 127 

populations (Storch and Segelbacher 2000) and forms a metapopulation system consisting of 128 

four main subpopulation clusters (Segelbacher et al. 2008) (Figure 1a). Since the beginning of 129 

the 20th century the population has declined greatly, from an estimated 3’000-4’000 males 130 

(Suchant in Lieser   and Roth 2001)    to a low of 250 males counted in 2003. Since then the 131 

population has slightly recovered to approximately 300 males, which translates to a 132 

conservatively estimated minimum size of 600 individuals (Braunisch & Suchant, 2006), 133 

which exceeds only marginally the estimated size of a minimum viable population (MVP) of 134 

500 birds (Grimm & Storch, 2000). Consequently, the loss or isolation of any sub-population 135 

is expected to increase considerably the overall extinction risk (Braunisch et al., 2010; 136 

Braunisch & Suchant, 2006).  137 

 138 

Spatially explicit sources of information  139 

To define the zones where wind turbine construction potentially interfere with the target of 140 

capercaillie conservation, we developed a spatially explicit planning concept (in the following 141 

referred to as “spatial concept”) that aims at the preservation of a long-term viable capercaillie 142 

metapopulation. It is, therefore, not targeted exclusively on areas of current species 143 

occurrence and reproduction, but also includes – based on the spatial requirements of a viable 144 

population – a network of habitat patches that, due to their size, quality and spatial 145 

configuration, meet the species’ demands as regards both habitat suitability and inter-patch 146 

connectivity. For this, we combined three main sources of spatial information on (1) species 147 

distribution, (2) habitat potential and (3) habitat connectivity obtained from species 148 

monitoring and spatial modelling. As they have been already published elsewhere and a 149 
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detailed description of the methods would be beyond scope we provide only a brief outline 150 

here and refer to the appendices and the original publications for more detailed information.  151 

 152 

Species distribution and core areas with reproduction 153 

Data on current capercaillie distribution were obtained from a long-term capercaillie 154 

monitoring programme which consists of two components: First, a systematic, annual survey 155 

of lekking places, and second, a year-round collation of data from all available sources, such 156 

as incidental direct observations and indirect evidence (feathers, faeces) provided by hunters, 157 

foresters, bird-watchers as well as data collected in research projects (Braunisch & Suchant, 158 

2006). Every five years, the minimum capercaillie distribution was at a scale of 1:25 000 159 

based on all available data from the preceding 5-years period (Figure 1a). Capercaillie patches 160 

were defined as ‘occupied’ when at least three proofs (direct or indirect) with a maximum 161 

distance of 1 km to each other had been recorded within the preceding five years’ period. For 162 

the delineation of a capercaillie patch the minimum polygon encompassing these observation 163 

points was drawn, aligning the patch boundaries to lines evident on the ground (i.e., forest-164 

field boundaries, trails, streams, etc.) with a deviation of 100 m from the minimum polygon 165 

tolerated (for details see: (Braunisch & Suchant, 2006). In addition, locations relevant for 166 

reproduction were extracted from the database, i.e. all lekking sites and locations of nests or 167 

chicks. For this study, data from a ten-year period (2000-2010) were considered.  168 

 169 

Habitat potential 170 

Areas relevant for long-term occupancy were identified based on the concept of the 171 

“Landscape Habitat Potential” (Suchant et al., 2003), which quantifies the capacity of the 172 

prevailing landscape conditions to support the natural development of suitable habitat and 173 

vegetation structures for a species and, at the same time, to provide sufficient framework 174 
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conditions for species’ inhabitation . We used species presence data (N=1600) from forest 175 

patches with continuous occupancy (at least 20 years as identified by the monitoring 176 

programme) and an Ecological Niche Factor Analysis (Hirzel et al., 2002; Hirzel et al., 2006) 177 

to model the probability of long-term capercaillie presence as a function of the prevailing 178 

environmental conditions, notably climate and soil conditions, topographic and land use 179 

characteristics forest distribution and fragmentation as well as human infrastructure. The 180 

resulting map shows the sites (occupied or non-occupied) which offer suitable landscape 181 

framework conditions for long-term capercaillie presence and thus represent the area 182 

generally available for a metapopulation (Figure 1b, for details see: Appendix A, Braunisch & 183 

Suchant, 2007, 2008). 184 

 185 

Habitat connectivity  186 

To localise the “corridors” between the habitat patches that were most important for 187 

maintaining metapopulation connectivity, we developed a model that detected species-188 

specific dispersal patterns from population genetic structure (Braunisch et al., 2010). Pairwise 189 

relatedness (Lynch & Ritland, 1999) between 213 individuals of the capercaillie population 190 

was correlated with the intervening landscape structures, while controlling for isolation by 191 

distance, in order to identify the landscape variables that either promoted or impeded gene 192 

flow. The results were used to generate a spatially explicit landscape permeability map that 193 

allowed identifying dispersal corridors that offered the relatively best conditions for 194 

individual movements between subpopulations. Corridors were calculated between the 195 

centroids of all inhabited patches located more than 1km from the next neighbour. First, 196 

between each pair of neighbouring patches, 1000 random paths were calculated and path with 197 

the highest permeability was retained. Repeating this procedure 100 times resulted in 100 198 

partly overlapping paths forming a corridor (Figure 1c, for details see: Appendix B, Braunisch 199 
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et al., 2010). The model was evaluated using both data partitioning and independent 200 

observation data of dispersing birds. 201 

  202 

Spatial concept: combining spatial information with ecological thresholds 203 

To delineate areas with different importance and functionality for the capercaillie population 204 

which then translate into different implications for wind energy development, the three data 205 

sources were evaluated with regard to population related target values and combined in a 206 

stepwise manner. Thereby we distinguished between areas relevant for capercaillie 207 

inhabitation and population connectivity.  208 

 209 

Areas relevant for species inhabitation 210 

Areas relevant for capercaillie inhabitation were classified according to the following criteria, 211 

with the letters corresponding to the steps illustrated in Figure 2: 212 

(a) Patch accessibility: Habitat patches within a metapopulation network must be within the 213 

birds’ reach. The seasonal movements of adult birds are an average of 1-2 km and median 214 

dispersal distances of juveniles are generally less than 10 km (Patthey et al., 2012; Storch 215 

& Segelbacher, 2000). Areas with habitat potential were thus only considered if they 216 

were within 10 km of the nearest occupied capercaillie patch (Braunisch & Suchant, 217 

2006). 218 

(b) Patch size: Moss et al. (1991) and Moss (1994) quote a minimum patch size of 100 ha as 219 

a precondition for capercaillie inhabitation. Only patches achieving this minimum size 220 

were deemed relevant for inhabitation, while smaller patches were evaluated for their 221 

function as stepping stones (see Figure 2f).  222 
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(c) Patch quality: The capercaillie meta-population in the study area amounts to 600 birds. 223 

The area required by a capercaillie population of this size depends on habitat quality. 224 

With an average proportion of 30 % suitable habitat, as determined for the capercaillie 225 

habitats in the Black Forest, a minimum area of 60’000 ha is required (Suchant & 226 

Braunisch, 2004). The area with habitat potential was thus classified into three quality 227 

levels: The 60’000 ha with the highest potential formed level 1, the remaining area with 228 

moderate and low potential was subdivided using equal habitat potential intervals and 229 

attributed to the levels 2 and 3.  230 

(d) Current inhabitation status: For the final classification of areas with regard to the 231 

potential conflict with wind energy development, the areas with habitat potential were 232 

intersected with the current capercaillie distribution (Braunisch & Suchant, 2006), and 233 

four categories were formed reflecting different levels of importance (Figure 2): A 234 

particular emphasis was put on the core areas with reproduction. These were defined by 235 

drawing a 1km radius around each lek site and each ascertained location of reproduction 236 

as obtained from the monitoring data. The distance of 1 km was chosen because most 237 

females breed within 1 km of a lekking site (Wegge & Rolstad, 1986). Furthermore an 238 

exclusion zone of 1km is generally advised for capercaillie habitats (LAG-VSW, 2007). 239 

To avoid exclusion of wind power in areas irrelevant for capercaillie inhabitation, only 240 

areas with habitat potential (level 1-3), within the 1 km radius was classed as first priority 241 

(category 1). Second highest priority was given to areas occupied by capercaillie with 242 

high or moderate habitat potential (category 2). These were followed by unoccupied areas 243 

with moderate potential or occupied areas with low potential (category 3). The remaining 244 

areas, which were neither occupied nor served as potential habitats with long-term 245 

relevance (i.e. low or no habitat potential) were classed in category 4. 246 

 247 
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Areas relevant for metapopulation connectivity 248 

The areas relevant for metapopulation connectivity were obtained from the corridor model 249 

(Braunisch et al., 2010). A distinction was made between ‘stepping stone habitats’ and 250 

‘corridors’ (see Figure 2): 251 

(e) Relative significance for metapopulation connectivity: The corridor model (Braunisch et 252 

al. 2010) provided a raster map, showing the relative suitability of the landscape for inter-253 

patch movement between subpopulations. In homogeneous landscapes, this resulted in 254 

broad corridors, whereas narrow corridors where obtained where the landscape conditions 255 

provided only one suitable connection (Figure 1c). Moreover, most habitat patches were 256 

connected by several possible pathways. To preserve a functional network connecting all 257 

inhabited capercaille patches, the primary connection that offered the relatively best 258 

conditions for dispersal between the core areas with reproduction of neighboring habitat 259 

patches was selected. A central band of 1km minimum width was delineated and assigned 260 

to category 1. The remaining corridor area was classed as category 2. Secondary corridors 261 

of minor quality and importance were assigned to category 3. 262 

(f) Function – stepping stone or corridor: Patches with moderate to high habitat potential 263 

smaller than 100 ha (see 2.4.1.b) located on a corridor were classed as ‘stepping stones’, 264 

and assigned to the corresponding category of the corridor. 265 

 266 

Potential conflict areas with wind energy development and management implications 267 

Each location of the study area was thus assigned to one of the four categories. Whereas in 268 

category 1-sites there is a high probability that negative effects of wind turbine construction 269 

may interfere with both reproduction and population connectivity, a stepwise decreasing 270 

conflict potential can be expected for sites of category 2 and 3. In category 2 current 271 
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distribution areas without ascertained reproduction as well as corridors of secondary 272 

importance are concerned, while category 3 sites mainly encompass unoccupied, potential 273 

habitats which, however, serve as a buffer zone around core habitats and allow population 274 

fluctuations and recolonization processes in the metapopulation system (see Braunisch et al., 275 

2007). In category 4 areas negative effects can largely be ruled out. Applying the 276 

precautionary principle, we translated these categories into management recommendations: 277 

Representing the core areas of the distribution, wind energy development should be banned 278 

from category 1 sites. For sites of the categories 2 and 3 we recommended a mandatory, 279 

detailed on-site assessment of the population situation at and around the foreseen turbine 280 

locations before deciding whether the project should be declined or whether impacts could be 281 

minimized by an optimized planning and adequate compensation measures. No further 282 

restrictions are required in category 4 sites. Finally, to provide an applicable planning tool 283 

which allows a direct appraisal of prospective turbine sites in the study area, without 284 

revealing the precise locations of vulnerable key habitats (i.e. lek sites), the resulting map was 285 

intersected with the areas profitable for energy development, i.e. where the average annual 286 

windspeed at 100m above ground exceeded 5,25 m/s, as extracted from the wind atlas of 287 

Baden-Württemberg (Land Baden-Württemberg 2010).  288 

 289 

Comparison with prevailing guidelines 290 

Existing guidelines for wind energy planning in Germany recommend a radius of 1km around 291 

capercaillie reproduction sites from which wind energy development should be banned (LAG-292 

VSW, 2007). We compared the areas under protection resulting from this approach with the 293 

areas relevant for capercaillie (i.e. categories 1-3) as obtained by our spatial concept with 294 

regards to both, areas irrelevant to capercaillie that would be protected as well as areas with 295 

metapopoulation functionality that would not fail to receive a protection status. 296 
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 297 

Results 298 

Basic information: Species distribution, habitat potential and connectivity 299 

According to the prevailing climate, topography, land-use and site conditions, 181’770 ha of 300 

the study area offered a potential for long-term capercaillie inhabitation, were located within 301 

10km distance to inhabited areas and of sufficient size to support capercaillie occupancy. 35% 302 

(63’280ha) thereof offered a high, 29% (53’730ha) a moderate and 36% (64’760 ha) a low 303 

habitat potential. Capercaillie was distributed over 51’650 ha. Based on the locations of 107 304 

lekking sites and 1070 locations of reproduction (nests or chicks) 37’055 ha (72%) thereof 305 

were classed as core areas relevant for reproduction. 108 dispersal corridors were calculated 306 

between the capercaillie patches. Depending on the landscape structure, corridors often 307 

deviated considerably from the straight connection between the patches’ centroids and 308 

frequently crossed spatially isolated, unoccupied habitat patches, 49 of which were classified 309 

as “stepping stones”. Detailed results on current distribution status, habitat potential and inter-310 

patch connectivity as well as on model performance and evaluation results can be obtained 311 

from (Braunisch et al., 2010; Braunisch & Suchant, 2006; Braunisch & Suchant, 2007). 312 

 313 

Prioritization of areas in relation to regulations for wind energy development 314 

Within the study area 114’880 ha were identified as currently or potentially relevant for 315 

capercaillie inhabitation (Figure 2), 48% (54’750ha) thereof were attributed to category 1, the 316 

remaining 18% and 34% were classed as category 2 and 3 respectively (Table 1). Of the area 317 

currently inhabited by capercaillie 72% fell in category 1, 27% in category 2 and the 318 

remaining 1% in category 3. In addition, areas relevant for connectivity (i.e. corridors and 319 

embedded stepping-stone habitats) comprised 59’930 ha, with 34%, 39% and 27% thereof 320 

falling in the categories 1, 2 and 3 respectively. On the corridors 62 “stepping stone” habitat-321 
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patches with an average size of 45 ha (SD: 27 ha) were identified. The remaining 542’750 ha 322 

(76%) of the study area were attributed to category 4.  323 

Assuming a predicted average annual windspeed of at least 5.25m/s at 100m above ground 324 

level as threshold for profitability, 79’250 ha (11%) of the study area were potentially suitable 325 

for wind energy development. Capercaillie conservation aspects had to be considered on 50% 326 

of these areas, with 26% being allotted to category 1, 11% to category 2 and 13% to 327 

category 3.  328 

 329 

Comparison with prevailing guidelines 330 

Applying the prevailing recommendations of applying a 1km-buffer zone around the 331 

reproduction sites would have resulted in 60’330 ha where turbine construction would be 332 

prohibited. According to our spatial concept, 51’289 ha (i.e. 85% thereof) were also classified 333 

as relevant for capercaillie (Table 2, Appendix C, Figure C1), the remaining 9’040 ha (15%) 334 

however, would be protected although they are neither currently inhabited nor characterized 335 

by a function as potential habitat or connectivity element. By contrast, 123’520 ha would not 336 

receive any protection status, although relevant for the population, mainly with regard to 337 

population connectivity.  338 

 339 

Discussion 340 

Despite being criticized for various reasons (Sandin et al., 2002), the precautionary principle 341 

is an essential element in environmental decision-making and species protection (Kriebel et 342 

al., 2001). As illustrated by our case example, it  is characterized by four dimensions (Sandin, 343 

1999):  (1) there are indications of negative effects which might be irreversible (e.g. 344 

extinction of the local capercaillie population) (threat dimension); (2) the mechanism and the 345 

severity of the impact is unknown (uncertainty dimension) and (3) the decision makers, i.e. 346 
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the local government, have the obligation to take measures (action dimension), as (4) the 347 

target species is endangered and under international protection law (command dimension). 348 

While the latter two dimensions are usually well-supported by legal framework, the inherent 349 

lack of scientific evidence in the former two (Sandin, 1999) provokes the criticism the 350 

precautionary principle would “stifle progress without good reason”, thus being “excessively 351 

risk-aversive” (Resnik, 2003) if not “unscientific” (Brombacher, 1999; Resnik, 2003). The 352 

consequential postulation, that precautionary measures can only be justified if the threats they 353 

address are plausible and the measures reasonable (Resnik, 2003; Sandin, 2004) calls for 354 

coherent methods to guide action in the face of uncertainty (Raffensperger and Barrett (2001). 355 

We addressed this challenge by illustrating how a lack of knowledge about the threat itself 356 

may be partially compensated by making best use of the available knowledge on the object at 357 

risk: based on a systematic combination of evidence-based spatial information, we qualified 358 

the relative importance of sites for metapopulation functionality and translated this 359 

information into gradated management implications that strictly protect minimum 360 

requirements at the population level, while not being overly restrictive in less relevant sites. 361 

 362 

Plausibility of threat: Potential effects of wind energy on the target species 363 

Wind turbines can threaten wildlife populations by causing un-compensable extra mortality 364 

through collisions, by generating habitat loss or disturbance, potentially affecting 365 

reproduction or triggering behavioral responses such as changes in habitat use or movement 366 

patterns. In capercaille, as in other grouse species, collisions have been mainly reported with 367 

turbine towers, since the species’ flight altitude is usually below the rotor-swept zone. 368 

Although collision risks are often underestimated as victims are predated before they are 369 

found (Korner-Nievergelt et al., 2011), we consider this impact minor compared to other 370 

potential effects.  371 
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The surface of the construction area of the wind turbines is usually not large (0.2 - 1 ha, 372 

MKULNV, 2012) and therefore not considered a major factor of habitat loss (Drewitt & 373 

Langston, 2006; Langston & Pullan, 2003 ), except in the case of spread out wind parks 374 

(Langston & Pullan, 2003 ). Yet, avoidance of otherwise suitable areas close to the turbines 375 

can cause indirect habitat loss (Drewitt & Langston, 2008). The presence of the turbines (e.g. 376 

rotor movement, noise, shadow flickering), the increase of human use in the area due to 377 

construction of paths and roads and maintenance personnel may inflict a “disturbance effect”, 378 

defined here as any action or object causing a change in animal behaviour or physiology, 379 

without necessarily incurring fitness costs. However, such effects have been shown to be 380 

highly species and site specific, which obstructs their transferability (Drewitt & Langston, 381 

2008; Gill et al., 1996; Kuvlesky et al., 2007). Studies on different grouse species also showed 382 

diverging results: for capercaillie reduced numbers of males at lekking sites near a newly 383 

established wind park have been observed in Austria and reported from Sweden (Göran 384 

Rönning, pers. comm.), and also the closely related black grouse (Tetrao tetrix) showed 385 

dramatic decreases in number of lekking males in a wind park area in Austria (Zeiler & 386 

Grünschachner-Berger, 2009). LeBeau et al. (2014) found indications of reduced brood 387 

survival of greater sage grouse (Centrocerus urophasianus) near wind turbines, and female 388 

greater prairie chickens (Tympanuchus cupido) seemed to adjust their space use near a wind 389 

park in the United States (Winder et al., 2014). On the contrary, no significant effects on 390 

habitat use, behaviour or reproduction have been found for willow ptarmigan (Lagopus 391 

lagopus) in Norway (Bevanger et al., 2010) and the closely related red grouse (Lagopus 392 

lagopus scotica) in Scotland (Pearce-Higgins et al., 2009). 393 

Finally, there are indications that birds adjust their flight path to fly around wind turbines 394 

which can elicit extra energy costs (de Lucas et al., 2004; Dirksen et al., 1998; Farfán et al., 395 

2009; Plonczkier & Simms, 2012). Turbines might even function as a barrier between 396 
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roosting, feeding or breeding grounds (Drewitt & Langston, 2006; Farfán et al., 2009; 397 

Langston & Pullan, 2004) and – at the landscape scale - reduce population connectivity 398 

(Andrén, 1994; Fahrig, 1997, 2003; Hanski & Gilpin, 1997; Lande, 1993). Due to their 399 

relatively heavy body weight and proportionally small wing size capercaillie, as all members 400 

of the grouse family, are considered “poor flyers” (Rayner, 1988), and inter-patch movements 401 

mostly occur in a stepwise manner from hilltop to hilltop. Dispersal has been shown to be 402 

affected by landscape features, with open areas, roads and settlements reducing the 403 

probability of inter-patch dispersal (Braunisch et al., 2010), which makes it likely that turbine 404 

constructions may have a similar effect. Since the genetic differentiation between the four 405 

main subpopulations in the study area (Figure 1a) already suggests isolation effects 406 

(Segelbacher et al., 2008), accumulations of turbines placed on the primary connecting 407 

corridors may further contribute to reducing metapopulation connectivity.  408 

 409 

Reasonability of measures: Spatial prioritization and management implications  410 

Most studies addressing the effects of wind-turbines on wildlife are temporally and spatially 411 

restricted, i.e. quantify collision rates (Conway & Danby, 2014; Everaert & Stienen, 2007; 412 

Musters et al., 1996) or effects on local habitat use (Leddy et al., 1999; Meek et al., 1993; 413 

Reichenbach & Steinborn, 2006; Steinborn & Reichenbach, 2011; Winder et al., 2014). 414 

Although a proven impact on single individuals or subpopulations must not necessarily imply 415 

a threat at population level, studies addressing effects on the population scale are as scarce as 416 

challenging (Bellebaum et al., 2013; Carrete et al., 2009; Schaub, 2012). This may explain 417 

why most spatial planning concepts also focus on the protection of local occurrences or even 418 

single breeding pairs, e.g. by defining buffer zones around observation locations from which 419 

wind energy is banned (Bright et al., 2008; LAG-VSW, 2007). Our concept, by contrast, aims 420 

at preserving the spatial requirements of a viable metapopulation, thereby distinguishing 421 
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between sites of different functionality, i.e. reproduction, inhabitation and connectivity. 422 

Moreover, we provide a gradated evaluation of the relative importance of each site in the 423 

study area which translates into different levels of restrictions for wind energy development. 424 

This evaluation was based on three main criteria: current situation, long-term potential and 425 

functionality:  Whereas the current species distribution, and particularly the core areas of 426 

reproduction are taken into account with high priority, high priority is also given to sites 427 

where the prevailing climate, topography and land-use conditions support the natural 428 

development of suitable habitat, i.e. sites which have a higher probability of being of long-429 

term relevance to the population (Braunisch & Suchant, 2007). With this approach we do not 430 

only indirectly account for fluctuations in distribution area or reproduction sites, thereby 431 

preventing a stepwise erosion of temporarily unoccupied but long-term species-relevant sites, 432 

we also perform an “ecological cost-benefit assessment”, as secondary habitats which are 433 

prone to deteriorate without active habitat management are ranked lower – unless they are 434 

crucial for reproduction or metapopulation connectivity.  435 

 436 

The approach has some methodological challenges, though. While information on habitat 437 

potential or corridor locations is based on spatial models evaluating landscape conditions, and 438 

thus can be expected to remain valid unless substantial transformations of land-use patterns 439 

occur, the information on current capercaillie distribution, mating and reproduction sites is 440 

expected to fluctuate over time which calls for a periodical re-assessment. Moreover, since 441 

this information is mainly based on voluntary data of ornithologists, hunters and forestry 442 

personnel, a consistent data quality has to be secured in the monitoring framework. For 443 

prioritization the spatial information was evaluated using target values based on population-444 

related thresholds. These, however, were partly adopted from studies conducted in other 445 

regions, which may challenge their transferability. Particularly, population viability analyses 446 
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strongly depend on local reproduction and survival rates with a high variability in outcome. 447 

Although the conditions in the Bavarian Prealps (South-Eastern Germany) largely resemble 448 

those in the Black Forest the MVP-results can only represent a rough estimate. While 449 

performing a sensitivity analysis (i.e. varying each threshold within the range its potential 450 

values) would have been out of scope, as the regional variance is largely unknown, one has to 451 

be aware that – if not the relative ranking - so the classification and absolute amount of area 452 

attributed to the four categories may have changed with changing the quantitative targets. 453 

Approximately 500 birds are considered as an MVP of capercaillie (Grimm & Storch, 2000), 454 

which – under the prevailing habitat conditions - require a minimum area of 50’000 ha 455 

(Suchant & Braunisch, 2004). According to our concept 54’750 ha is classed as category 1, 456 

i.e. a sufficient amount of habitat for an MVP is under strict protection from wind energy 457 

development, supplemented by an additional protection of the primary corridors connecting 458 

these habitats. The other sites, i.e. category 2 and 3 are mainly situated like buffer areas of 459 

stepwise decreasing importance around the highly protected core areas, thus representing a 460 

“safety zone” where wind energy is not generally banned, but has to undergo a thorough 461 

evaluation process which includes the appraisal of the site-specific conditions in the field. 462 

With this approach we assign highest priority (and restrictions) to sites where the plausibility 463 

for threat is highest, the uncertainty as regards functional importance for the population is 464 

lowest, and thus the justification for precautionary measures is strongest. This gradated 465 

approach may also enhance the acceptance among planners, authorities and conservationists, 466 

as it represents an attempt to avoid either error-minimization bias the precautionary principle 467 

is often criticized for (Dorman, 2005): i.e. either being too restrictive (thus minimizing the 468 

type-2 error of wrongly rejecting the hypothesis that wind energy poses a threat) or being too 469 

permissive in favor of turbine construction (by overemphasizing the minimization of the 470 

corresponding type-1 error). 471 
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 472 

Application in wind farm planning  473 

The resulting map allows authorities and planners a rapid and standardized first appraisal at a 474 

high resolution. Thereby it does not only indicate where wind turbine construction plans will 475 

face restrictions (i.e. category 1) and where no further constraints apply (category 4), but 476 

provides a gradated estimation of the planning risk: Whereas in category 1 sites wind energy 477 

construction is generally banned, development plans in category 2 and 3 have to be submitted 478 

to a systematic, in situ impact assessment following a standardized procedure. It includes (1) a 479 

repeated control for lekking activity before and during the mating season, (2) a thorough 480 

search for indicators of reproduction (i.e. feathers, faeces and chicks) along transect lines in 481 

late summer, as well as the mapping of (3) habitat quality and (4) evidence of species 482 

presence at systematically distributed sampling plots using the method described in Storch 483 

(2002). Data shall be collected within the capercaillie-relevant areas of the respective category 484 

up to 1km distance from the construction site. Based on the resulting local situation in terms 485 

of habitat suitability and habitat use in relation to the construction site, potential impacts shall 486 

be estimated and the mitigation potential through a modification of the turbine positioning 487 

appraised. In addition, the compensability shall be determined and compensation measures 488 

quantified. Whereas new evidence of mating or reproduction will lead to the decline of the 489 

project, habitat loss may be compensated through habitat improvement measures. These 490 

measures should primarily be implemented in areas with habitat potential but low current 491 

suitability with regard to forest structure or within corridors. Inside the compensation area – 492 

the extent of which is determined by the importance and size of the habitat concerned -  target 493 

values for structural key parameters (see Suchant & Braunisch, 2004) must be reached and 494 

maintained during the operational life of the wind turbine. Given the differences in relative 495 

importance between the two categories, projects planned in category 2-sites inherently face a 496 
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higher risk of being rejected than those in category 3 sites, mainly encompassing un-occupied, 497 

potential habitats or marginal parts of the distribution area where impacts are more likely to 498 

be compensable.  499 

Although our spatial concept is not legally binding, planners and authorities are currently 500 

using it as official planning document.  Thereby, the perceived plausibility played a major 501 

role for accepting the precautionary concept:  While we observed a consistent public 502 

agreement for banning turbine construction from the core areas of reproduction, the advice 503 

not to construct wind turbines on primary dispersal corridors elicited resistance. Although the 504 

majority of corridor areas is per se not suitable for wind energy development (i.e. crossing 505 

valleys or settlements where turbine construction is either not profitable or subjected to other 506 

restrictions), and population connectivity has been proven to be crucial for metapopulation 507 

persistence in the Black Forest (Segelbacher et al., 2008), it is difficult to convince public, 508 

planners and authorities that wind turbines should not be constructed in “stepping stone” 509 

habitats where the species has not been sighted for many years and the habitat is of low 510 

quality. To raise acceptance and promote adequate implementation, the concept was publicly 511 

presented and an implementation guideline, as well as the digital map showing the different 512 

categories, was made accessible on a website (www.windenergie.fva-bw.de).  513 

Our concept refers only to one species though. Although capercaillie counts among the main 514 

focal species in relation to wind energy development in Central European mountain forests, 515 

and its key habitats largely overlap with those of other conservation relevant species 516 

(Braunisch et al., 2013), planners usually need to consider a wide range of potentially 517 

vulnerable species. Developing similar concepts for species with complementary spatial and 518 

functional requirements and integrating them into a single planning tool would facilitate an 519 

adequate and timely consideration of conservation targets in the rapidly spreading 520 

development. 521 
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 522 

Conclusions 523 

The precautionary principle is a vital element to decision making in the field of conservation 524 

management, but public acceptance will strongly depend on the coherence of argumentation 525 

underlining the plausibility of threat and the reasonability of the measures (Resnik, 2003). We 526 

thus strongly advocate including scientific knowledge when defining precautionary measures, 527 

if not available on the threat itself, so on the object at risk. We illustrate this on the example 528 

of capercaillie conservation versus wind farm construction. By systematically combining 529 

information drawn from population monitoring and spatial modelling with ecological 530 

thresholds we delineated zones representing the spatial and functional minimum requirements 531 

of a viable population (category 1) plus a necessary safety interval (categories 2 and 3) with 532 

different importance for preserving population persistence and connectivity and consequential 533 

implications for wind energy development. From this exercise we draw the following general 534 

recommendations for applying the precautionary principle in this field: 535 

(1) Precautionary measures should focus on the relevant ecological unit, i.e. target viable 536 

populations and not local occurrences or individual animals, 537 

(2) they should consider population dynamics processes, e.g. fluctuations in occupancy as 538 

well as population connectivity, instead of merely relying on a temporal snapshot of 539 

occurrence data, 540 

(3) they should be based on a differentiated risk appraisal, with the estimated probability 541 

and severity of threat on the population resulting in gradated management implications 542 

or restrictions, 543 

(4) which, however, must ensure at least the minimum requirements of a viable 544 

population until further knowledge is available. 545 
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Since precautionary measures always represent as an interim solution, regular revisions 546 

measures based on up-to-date knowledge will be crucial for promoting the precautionary 547 

principle as a valuable and justified basis for weighing ecological risks in conservation and 548 

landscape planning.  549 
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Tables: 789 

Table 1: Size and proportion of the areas (a) relevant for capercaillie inhabitation, (b) relevant 790 

for metapopulation connectivity, (c) with current capercaillie distribution and (d) suitable for 791 

wind energy development that are allotted to the area-categories (1-4) with different 792 

implications for wind turbine construction. Highest priority is given to areas of category 1, 793 

where wind turbine construction is generally banned. In categories 2 and 3 detailed impact 794 

assessments are required, while in category 4 no further restrictions apply. WE: wind energy 795 

development. 796 

 797 

Area relevant for inhabitation relevant for connectivity current distribution suitable for WE 

Category ha % ha % ha % ha % 

1 54‘747 47,66 20‘250 33,79 37‘055 71,74 20‘783 26,22 

2 20‘816 18,12 23‘262 38,81 14‘067 27,24 8‘639 10,90 

3 39‘313 34,22 16‘421 27,40 528 1,02 9‘997 12,61 

4 - - - - - - 39‘835 50,26 

Total 114‘876 100,00 59‘933 100,00 51‘650 100,00 79‘254 100,00 

 798 

 799 
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Table 2: Metapopulation-based versus observation-based approach: Comparison of the spatial 801 

concept with the currently prevailing recommendations of banning turbine construction within 802 

a 1km-buffer zone around capercaillie reproduction sites. A: Attribution of the area within the 803 

buffer zone (“protected”) to the categories of the spatial concept, B: area outside the buffer 804 

zone (“not protected”)  but relevant for capercaillie according to the spatial concept, either for 805 

inhabitation or metapopulation connectivity. An illustration of divergence between both 806 

approaches is provided in Appendix C, Figure C1.   807 

 808 

(A) Protected (B) Not protected, but relevant 
  total total for inhabitation for connectivity 

  area (ha) (%)   area (ha) (%) area (ha) (%) area (ha) (%) 
Relevant 51‘289 85.01   123‘520 100.00 54‘321 43.98 69‘198 56.02 
thereof: 
category 1 42‘726 70.82 32‘272 26.13 0 0.00 32‘272 26.13 
category 2 4‘426 7.34 39‘653 32.10 17‘738 14.36 21‘915 17.74 
category 3 4‘138 6.86   51‘595 41.77 36‘583 29.62 15‘012 12.15 
Not relevant 
(cat. 4) 9040 14.99               
 809 

  810 
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Figure captions 811 

Figure 1: Spatially explicit fundamentals integrated in the concept: (A) capercaillie 812 

distribution (grey) with core areas of reproduction (black), (B) long-term habitat potential in 813 

three classes: high (black), moderate (dark grey), low (light grey) , and (C) corridors 814 

consisting of 100 paths (grey) offering the best conditions for inter-patch dispersal between 815 

capercaillie patches (black), redrawn from: Braunisch et al. 2010, modified.  816 

 817 

Figure 2: Stepwise evaluation of areas relevant to capercaillie metapopulation persistence and 818 

connectivity. Information on current distribution, long-term habitat potential and dispersal 819 

corridors were combined with population-related thresholds as regards patch accessibility (a), 820 

patch size (b), patch quality (c), current inhabitation status (d), significance (e) and function 821 

(f) for metapopulation connectivity, resulting in four area-categories (1-4) with different 822 

implications for wind turbine construction. Thresholds were derived from (a) Storch and 823 

Segelbacher (2000), (b) Moss (1991, 1994), (c,f) Braunisch and Suchant (2007), (d) 824 

Braunisch and Suchant (2006), (e) Braunisch et al. (2010). 825 

 826 

Figure 3:  Spatial planning concept illustrating four area-categories with different levels of 827 

importance for the capercaillie metapopulation and consequential restrictions for wind energy 828 

construction (right panel). The categorization resulted from combining different sources of 829 

spatial population information with ecological thresholds as described in Figure 2, the 830 

successive steps are schematically illustrated (left panel): The current capercaillie distribution 831 

(green) and core areas with reproduction (red, A) were intersected with the  long-term habitat 832 

potential (three levels: high=dark blue, moderate = medium blue, and low=light blue) (B), 833 

resulting in a map showing areas relevant for capercaillie inhabitation (C). This was then 834 
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combined with the results of a corridor-model (hatched, D) to form the final categories 1-4 (E, 835 

F).  836 

 837 
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Appendix A:  

Habitat potential: A model for evaluating the ‘habitat potential’ of a landscape for 
capercaillie Tetrao urogallus 
 

This model identified areas relevant for long-term capercaillie occupancy, i.e. the area 
generally available for a capercaillie metapopulation. The methodology was  based on the 
concept of the “Landscape Habitat Potential” (Suchant et al. 2003), which quantifies the 
capacity of the prevailing landscape conditions to support the natural development of suitable 
habitat and vegetation structures for a species and, at the same time, to provide sufficient 
framework conditions for species’ inhabitation. 

 

Methods, cited from: Braunisch, V., Suchant, R., 2007. A model for evaluating the ‘habitat 
potential’ of a landscape for capercaillie Tetrao urogallus: a tool for conservation planning. 
Wildlife Biology 13, 21-33. 

 

Capercaillie data 
For our analyses, we randomly sampled 1,600 presence points [from the monitoring database  
(Braunisch & Suchant 2006)], with at least 300 m between points to reduce bias from spatial 
autocorrelation. The proportion of records selected from each Black-forest subregion (south, 
north, east) corresponded to the mean proportion of cocks counted in each area. In addition, to 
restrict the landscape analyses to areas with ‘stable’ subpopulations of birds, we included only 
records from patches that had been consecutively mapped as ‘inhabited’ since 1988.  

 

Landscape and land use variables  
The variables tested in the model […] were subdivided into two categories. ‘Landscape’ 
variables are environmental factors that are expected to affect the composition and structure 
of forests and other vegetation. They therefore define the natural potential of the landscape for 
the development of suitable habitat. ‘Land use’ variables in contrast, describe the current 
distribution of forest and human land use features and therefore may define the area that is 
available for use by capercaillie. The landscape variables included characteristics of climate, 
soil conditions, as well as topography. […] We compared three climate variables: the (1) 
‘average annual temperature’, the (2) ‘duration of the vegetation period’ and the (3) ‘number 
of days with snow >10 cm’, the latter calculated according to Schneider & Schönbein (2003). 
In addition, the ‘potential sunshine duration’ and the ‘potential solar radiation’ during the 
vegetation period (April to September) were modelled after Böhner et al. (1997). 

[…] Soil texture, soil type, humus type, nutrient status and hydrological regime were 
evaluated with respect to their potential to support selected capercaillie habitat structures, 
including ground vegetation dominated by bilberry Vaccinium myrtillus, nutrient-poor forest 
types dominated by conifers or pines, bogs and wet forests. The variables were then 
aggregated into a soil condition index using an expert model (Braunisch & Suchant 2008).  

   Topographic exposure was determined using the topex-index (Wilson 1984), which 
qualifies a point’s position relative to the surrounding terrain. The topex-to-distance index 
employed here was calculated as the sum of angles to the ground within a fixed distance, 
measured for each of the eight cardinal directions (Mitchell et al. 2001). A distance of 

Appendix A



2’000 m was chosen because Hannah et al. (1995) found this topex to be strongly correlated 
with the probability of windfall events, which favour open forest structures. 

   Land use variables describe the availability and spatial distribution of existing land use 
features (forest, forest fragmentation, agricultural areas), including the distribution of possible 
sources of disturbance (settlements and linear infrastructures). A distinction was made 
between ‘forest’ in general, which grouped all available forest categories, and ‘coniferous and 
mixed forest’, which excluded purely deciduous forest.  

   As a measure of forest fragmentation, we calculated a 200-m wide forest-agricultural border 
zone, which included a 100-m buffer on either side of the forest edge. As intensive agriculture 
(arable fields, orchards and grassland) is very rare in the Black Forest and the map of 
‘intensive agriculture’ would have neglected the minimum criteria for statistical normality, it 
was pooled with non-intensively used grassland and pastures. 

[…] Two different maps were constructed for linear infrastructures. On the first map, 
depicting the fragmentation effect of roads, we pooled all road categories (e.g. main roads, 
county roads, rural roads) and railways. On the second map, highlighting the disturbance 
effect of roads, the different road categories were weighted according to average traffic 
density.  

   We prepared raster maps with a 30 x 30 m grid for all variables. […] To determine the 
spatial scale at which a variable performed best, we calculated the mean value for each 
variable within circular moving windows of 10, 100, 500 and 1,000 ha. These scales 
correspond to the size of an average forest stand (10 ha), the size of a small (100 ha) and large 
(500 ha) individual capercaillie home range, and to the average size of an occupied habitat 
patch in the study area (1,000 ha). As multinormality was required, all variables were 
normalised using the Box-Cox standardising algorithm (Box & Cox 1964, Sokal and Rohlf 
1981). Maps were prepared in ArcView (ESRI 1996) and converted to IDRISI.  

 

Statistical methods 
Modelling approach 

Multivariate approaches to modelling habitat suitability or to predicting species presence 
(e.g., logistic regression) usually require presence-absence data. The ecological niche factor 
analysis (ENFA, Hirzel et al. 2002), based on Hutchinson’s (1957) concept of the ecological 
niche, compares the conditions of sites with proved species presence against the conditions of 
the whole study area, requiring only presence data. All predictor variables included in the 
model are transformed to an equal number of uncorrelated and standardised factors. The first 
factor explains the species’ marginality (M = the difference between the average conditions 
within areas with species presence and those in the entire study area), which defines the 
location of the species’ niche in relation to the range of available conditions. It also explains 
part of the specialisation (S = the difference between the standard deviation SD of the 
conditions where the species is present and the SD of conditions in the entire study area), 
which defines the niche breadth. The subsequent factors explain the rest of the specialisation.  

 

Variable and scale selection 

Initially an ENFA was performed including all variables at all spatial scales. Then we 
calculated a multi-scale model including all variables, each at the scale it performed best and 
compared this with four single-scale models, including all variables at the same scale (10, 
100, 500, 1,000 ha).  



   To obtain a simple final model without losing too much information, we selected the best of 
the aforementioned models and reduced the initial set of variables using the following criteria: 
a variable was only included in the final model if it made a sufficient contribution to 
marginality or specialisation (> 0.2), if it showed the same algebraic sign in the coefficient 
value of the marginality factor (indicating avoidance or preference) at all spatial scales and if 
it was ecologically plausible. In addition, if bivariate correlation between any two remaining 
variables exceeded a threshold of 0.7, the variable with the lower contribution to 
specialisation and marginality was discarded.  

 

Landscape model of ‘habitat potential’  

[…] We calculated an index to ‘habitat potential’ using the ‘area-adjusted median algorithm 
with an extreme optimum’ for the marginality part of the first factor […] (Braunisch et al. 
2008). The number of significant factors retained for the calculation of ‘habitat potential’ was 
chosen according to the broken-stick model (MacArthur 1960, Hirzel et al. 2002). Indices of 
‘habitat potential’ ranged from 0 (unsuitable for capercaillie) to 100, with low values 
representing suboptimal areas. […] For model evaluation we applied a 10-fold area-adjusted 
frequency cross validation (Fielding & Bell 1997). The model quality was quantified using 
the continuous Boyce index (Hirzel et al. 2006).   
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Appendix B:  

Inter-patch connectivity: Model identifying the most important connections between 
capercaillie patches  
 

This model used spatial and genetic data of a highly fragmented population of capercaillie 
(Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure 
on gene-flow and to parameterise a spatially explicit corridor model. 

 
Methods, cited from: Braunisch, V., Segelbacher, G., Hirzel, A., H., 2010. Modelling 
functional landscape connectivity from genetic population structure - a new spatially explicit 
approach. Molecular Ecology 19, 3664-3678, shortened. 

 

Capercaillie samples and population genetic structure 
Analyses were based on feather samples from 213 individuals (males=117, females=96) 
collected across the study area between 1999 and 2004. […]  DNA was extracted from 
individual feather samples using a DNeasy DNA extraction kit (Quiagen) and genotyped at 10 
microsatellite loci (TUT1-TUT4, TUT10, BG4-BG6, BG15 and BG18; Segelbacher et al. 
2000; Piertney & Höglund 2001) as described in detail by Segelbacher et al. (2008). Allele 
sizes were determined by reference to two standard samples run simultaneously, the ROX 350 
Ladder (Applied Biosystems), and a capercaillie individual previously genotyped at the same 
loci (Segelbacher et al. 2003a). All samples were genotyped at least twice and the reliability 
of identifying individuals, the error rates due to allelic drop out and potential genotyping 
errors were estimated using the softwares GIMLET (Valiere 2002) and DROPOUT 
(McKelvey & Schwartz 2005). We used the inter-individual relatedness coefficient, 
developed by Lynch and Ritland (1999) and calculated using the software  IDENTIX (Belkhir 
et al. 2002), as a measure for gene-flow within the population.  

 

Landscape variables 
We tested landscape variables either related to land cover or topography. Land cover variables 
were obtained from Landsat 5 images and the ATKIS road map, distinguishing six categories, 
namely coniferous and mixed forest, purely deciduous forest, forest edges, roads, settlements 
and agricultural land. […] Land cover categories that were too scarce for a separate evaluation 
(< 5% of the total area) were pooled together in an ‘others’ variable. The continuous 
topographic variables (i.e., altitude, topographic exposure and slope) were converted into 
dichotomous maps, with the thresholds for classification chosen according to the variable’s 
known impact on capercaillie habitat selection (Sachot 2002; Graf et al. 2005; Braunisch & 
Suchant 2007). For each variable, raster maps with a 120 x 120 m cell size were prepared, 
with cell values of 1 or 0 indicating the presence or absence of the respective feature. 
Consequently, each cell in the study area was characterised by one unique land cover category 
and three topographic attributes […].  

 

Model generation 
The model calibration occurred in three steps: (i) the analysis of landscape-structure effects on 
relatedness; (ii) the generation of landscape permeability maps and (iii) the corridor 
calculation.  
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(i) Effect of landscape structure on relatedness 

The first aim was to test whether, in addition to geographic distance, landscape structures 
affected inter-individual relatedness, and to identify the variables that promote or hinder 
dispersal. […] 

First, the pairwise geographic distance (Dp) between the sampling locations of all p possible 
pairs of individuals was calculated […]. Then we assessed the proportion of each landscape 
feature within rectangular landscape strips connecting all pairs, as proposed by Emaresi et al. 
(2009). […] We compared different strip-shapes, two with a fixed width of 1, 5 and 11 cells 
(F1, F5 and F11, corresponding to 120, 600 and 1320-meters) and two strips with a 
length:width ratio of 5:1 (R5) and 11:1 (R11). Strip statistics were calculated using the 
‘Frictionnator’ programme (Hirzel et al. 2008).  

Isolation by distance was quantified by calculating Mantel regressions (Mantel 1967; 
Legendre & Fortin 1989) between relatedness REL and Dp. We then investigated whether 
extra information could be extracted from the residuals (R) of these models (equation 1) by 
using them in mantel regressions with each of the landscape variables. Mantel regressions 
were performed in R (R Development Core Team 2006) with the package ‘ecodist’ 1.1.2 
(Goslee & Urban 2007), significance was assigned on the basis of 1000 randomisations. 

 
 

ppp RDREL 01  (equation 1) 

where:  

RELp  is the relatedness coefficient between individuals of the pth pair,  
Dp is the geographic distance between them,  

i are the regression coefficients and  
Rp is the residual value. 
 
 
(ii) Landscape permeability map 

In order to create a map quantifying the relative landscape permeability of each cell in the 
study area, we calculated multiple mantel regressions (Mantel 1967; Smouse et al. 1986) for 
each combination of land cover and topography variables (significant in the univariate 
models) that could occur in any grid cell within the study area (equation 2). For this purpose, 
the datasets of both sexes were randomly and equally partitioned into a calibration and a 
validation subset using only the former for model generation. […] Multiple mantel 
regressions were performed using Fstat (Goudet 2001), with significance assigned after 1000 
randomisations. 
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,  (equation 2) 

where: 

Rp: residuals of the regression of relatedness and geographic distance, for the pth pair of individuals  
n: number of features considered 

i: regression coefficient of the variable Vi 
0: constant term of the regression 

Cp,i: the number of cells in the strip between the pth pair of individuals with occurrence of the feature Vi  
Ap:  the total number of cells in the strip between individuals of the pth pair. 

p: error term 



 

Assuming the effect of each variable or variable combination on relatedness to be a correlate 
of species specific landscape permeability, we then computed the permeability value (P) of 
each cell (x) by summing the effects of the variables occuring in the respective cell (equation 
3). 
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1
)(  (equation 3) 

where:  
P(x) is the permeability value of cell x,  

i are the coefficients computed in equation 2 and  
Ox,i is equal to 1 if the feature i occurs in cell x and is equal to 0 otherwise.  
 
O may thus be seen as Cp,i/Ap computed for a single cell. Consequently, the permeability 
value of each cell equals the sum of the significant correlation coefficients of the multiple 
Mantel regression model based on the variable combination given in this cell. The non-
significant correlation coefficients were set to zero. 

 

 (iii) Maximum permeability path (MPP) and MPP-corridors 

We developed an alternative approach to the least-cost-path method to localise the best 
connection between any pair of points: First, 1000 random paths are calculated between the 
pair of points in question and the best path (maximum permeability path, MPP) retained. […] 
Repeating this procedure n-times (with n being user-defined) results in n partly overlapping 
MPP replicates forming a corridor. The path selection routine was included in the 
‘Frictionnator’ software (Hirzel et al. 2008). 

 

Corridors for conservation planning 
Finally, to locate the areas with the relatively best conditions for inter-patch dispersal, we 
calculated corridors between all capercaillie patches located more than 1 km from the next 
neighbour. Corridors consisted of 100 MPP-replicates between the patches’ centroids in the 
Delaunay triangulation network. As the replicates are calculated independently, the number of 
paths passing through a grid-cell of the study area can be regarded as an indicator of the cell’s 
relative importance for inter-patch connectivity. 

 

  



References 
 
Belkhir K, Castric V, Bonhomme F (2002) IDENTIX, a software to test for relatedness in a 

population using permutation methods. Université Montpellier II, Montpellier, France. 
Braunisch V, Suchant R (2007) A model for evaluating the ‘habitat potential’ of a landscape 

for capercaillie Tetrao urogallus: a tool for conservation planning. Wildlife Biology 
13, 21-33. 

Emaresi G, Pellet J, Dubey S, Hirzel AH, Fumagalli L (2009) Landscape genetics of the 
Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conservation 
Genetics published online. 

Goslee S, Urban D (2007) Dissimilarity-based functions for ecological analysis: The ecodist 
Package, Version 1.1.2. 

Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices 
(version 2.9.3), pp. Updated from Goudet (1995): Fstat version 1991.1992: a computer 
program to calculate F-statistics. Journal of Heredity, 1986, 1485-1486. 

Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat 
models: capercaillie in the Swiss Alps. Landscape Ecology 20, 703-717. 

Hirzel AH, Fontanillas P, Braunisch V (2008) Frictionnator. Lab of Conservation Biology, 
Department of Ecology and Evolution, University of Lausanne, Lausanne, 
Switzerland. 

Legendre P, Fortin M-J (1989) Spatial pattern and ecological analysis. Vegetatio 80, 107-138. 
Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. 

Genetics 152, 1753-1766. 
Mantel N (1967) The detection of disease clustering and a generalized regression approach. 

Cancer Research 27, 209-220. 
McKelvey KS, Schwartz MK (2005) DROPOUT: a program to identify problem loci and 

samples for noninvasive genetic samples in a capture-mark-recapture framework. 
Molecular Ecology Notes 5, 716-718. 

Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse 
(Tetrao tetrix). Molecular Ecology Notes 1, 303-304. 

Sachot S (2002) Viability and management of an endangered capercaillie (Tetrao urogallus) 
metapopulation Thèse de doctorat, Université de Lausanne. 

Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic 
consequences of population fragmentation in capercaillie across Europe. Molecular 
Ecology 12, 1773-1780. 

Segelbacher G, Manel S, Tomiuk J (2008) Temporal and spatial analyses disclose 
consequences of habitat fragmentation on the genetic diversity in capercaillie (Tetrao 
urogallus). Molecular Ecology 17, 2356-2367. 

Segelbacher G, Paxton RJ, Steinbruck G, Trontelj P, Storch I (2000) Characterization of 
microsatellites in capercaillie Tetrao urogallus (AVES). Molecular Ecology 9, 1934-
1935. 

Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the 
Mantel test of matrix correspondence. Systematic Zoology 35, 627-632. 

Valiere N (2002) GIMLET: a computer program for analysing genetic individual 
identification data. Molecular Ecology Notes 2, 377-379. 

 



Appendix C  

 
Figure C1: Metapopulation-based versus observation-based approach: Comparison of the 

spatial concept (four area categories: red: 1, orange: 2, yellow: 3, grey: 4, defined as 

illustrated in Figure 2) with the area that would fall under protection when following the 

recommendation of banning wind turbine construction within a 1km-buffer zone around 

capercaillie reproduction sites (black) (LAG-VSW 2007).  
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