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Abstract In the literature, various discrete-time and continuous-time mixed-integer

linear programming (MIP) formulations for project scheduling problems have been

proposed. The performance of these formulations has been analyzed based on

generic test instances. The objective of this study is to analyze the performance of

discrete-time and continuous-time MIP formulations for a real-life application of

project scheduling in human resource management. We consider the problem of

scheduling assessment centers. In an assessment center, candidates for job positions

perform different tasks while being observed and evaluated by assessors. Because

these assessors are highly qualified and expensive personnel, the duration of the

assessment center should be minimized. Complex rules for assigning assessors to

candidates distinguish this problem from other scheduling problems discussed in the

literature. We develop two discrete-time and three continuous-time MIP formula-

tions, and we present problem-specific lower bounds. In a comparative study, we

analyze the performance of the five MIP formulations on four real-life instances and

a set of 240 instances derived from real-life data. The results indicate that good or

optimal solutions are obtained for all instances within short computational time. In

particular, one of the real-life instances is solved to optimality. Surprisingly, the

continuous-time formulations outperform the discrete-time formulations in terms of

solution quality.
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1 Introduction

Over the past decades, mixed-integer linear programming (MIP) methods have been

significantly improved (cf., e.g., Koch et al. 2011; Bixby 2012) and successfully

applied to a large variety of real-life scheduling problems in manufacturing and

services. Two major advantages of MIP methods are the flexibility to account for

changes in the problem setting and the possibility to obtain upper or lower bounds

on the solutions. In general, different formulations can be used to model the same

planning problem. Because the performance of MIP approaches is determined by

the underlying formulation (cf., e.g., Vielma 2015), alternative formulations should

be considered for each planning problem.

In this paper, we investigate an assessment center planning problem (ACP). This

problem was reported to us by a human resource management service provider that

organizes assessment centers (AC) for firms. The goal of an AC is to evaluate some

candidates’ job-related skills and abilities for one or several open positions (cf., e.g.,

Collins et al. 2003). In an AC, each candidate performs multiple tasks, and for each

task, a prescribed number of assessors (i.e., psychologists or managers) is required.

Some tasks involve role play and additionally require a prescribed number of actors.

For example, the actors might represent unhappy customers with whom the

candidate must interact. Tasks sometimes require a preparation time during which

only the candidate is present. During the execution of the task, the candidate is

joined by the assessors and the actor. Some tasks include a subsequent evaluation

during which the assessors and the actors discuss their observations. This evaluation

time can differ between assessors and actors. Each candidate takes a lunch break

within a prescribed time window. When assigning assessors to tasks, the following

rules must be considered: each candidate should be observed by approximately half

the number of assessors; if a candidate and an assessor know each other personally,

no observation is allowed, which is called a no-go relationship. Assessors are

expensive, and hence, their total waiting time should be minimized. Because the

assessors meet before the start and after the completion of all tasks and lunch

breaks, this objective corresponds to minimizing the total duration of the AC (in

what follows the AC duration for short). The planning problem consists of (1)

scheduling all tasks and a lunch break for each candidate and (2) determining which

assessors are assigned to which candidate during which task such that the AC

duration is minimized.

The ACP can be interpreted as an extension of the resource-constrained project

scheduling problem (RCPSP). The RCPSP consists of scheduling a set of activities

subject to completion-start precedence and renewable-resource constraints such that

the project duration is minimized. For the ACP, each candidate’s tasks and lunch

break correspond to project activities, and the candidates, assessors, and actors

represent renewable resources. However, the ACP does not involve precedence

relationships among the activities, but the above-described additional constraints. In
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the literature, different MIP formulations have been proposed for the RCPSP. In

discrete-time (DT) formulations, the planning horizon is divided into a set of time

intervals of equal length, and the activities can only start or end at the endpoints of

these intervals. Conversely, in continuous-time (CT) formulations, the activities can

start at any point in time. The DT formulations usually involve binary time-indexed

variables. However, the meaning of these variables differ between the formulations,

e.g., so-called pulse variables indicate whether an activity starts or ends at a specific

point in time (cf. Pritsker et al. 1969; Christofides et al. 1987; Kopanos et al. 2014),

and on/off variables specify whether an activity is in progress at a given time (cf.

Kaplan 1988; Mingozzi et al. 1998; Kopanos et al. 2014). The CT formulations

differ with regard to the modeling of the resource constraints, e.g., Artigues et al.

(2003) use resource-flow variables, and Kopanos et al. (2014) use overlapping

variables. For a comprehensive overview of different MIP formulations for the

RCPSP, we refer to Artigues et al. (2015).

In this paper, we provide two DT formulations and three CT formulations for the

ACP. The two DT formulations are based on pulse variables (DT-P) and on/off

variables (DT-O), respectively. The three CT formulations use assessor-assignment

variables (CT-A), resource-flow variables (CT-F), and overlapping variables (CT-

O), respectively, to model the resource constraints. Moreover, we provide problem-

specific lower bounds. The different MIP formulations are tested on four real-life

instances and 240 test instances based on real-life data. For all instances, good or

optimal solutions are obtained within short computational time. In detail,

formulation CT-A consistently outperforms the other four formulations in terms

of solution quality. However, using DT-P, the best MIP-based lower bounds are

obtained. Furthermore, only with DT-P, optimality is proven for one of the real-life

instances within the prescribed time limit. Nevertheless, in contrast to the RCPSP,

the CT formulations provide better solutions than the DT formulations.

The remainder of this paper is structured as follows. In Sect. 2, we describe the

ACP using an illustrative example and relate the ACP to the RCPSP. In Sect. 3, we

provide an overview of the related literature. In Sect. 4, we present the MIP

formulations for the ACP. In Sect. 5, we derive the problem-specific lower bounds.

In Sect. 6, we discuss the design and the results of our comparative analysis. In Sect.

7, we provide some concluding remarks and an outlook on future research.

2 Planning problem

In Sect. 2.1, we describe the problem features of the ACP in detail and illustrate

them through an example. In Sect. 2.2, we discuss the relation between the ACP and

the RCPSP.

2.1 Illustration of the planning problem

In our illustrative example, the participants of the AC are as follows: there are three

candidates, C1;C2; and C3; four assessors, A1;A2;A3; and A4; and an actor, P1. A
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no-go relationship exists between candidate C3 and assessor A2. Each of the three

candidates must perform the three tasks E1;E2, and E3, and take a lunch break.

The tasks of the illustrative example are listed in Table 1. The durations of the

tasks are stated in 5-min time units. Tasks E1 and E3 require two assessors, and task

E2 requires one assessor. Task E1 involves role play and requires one actor. Tasks

E1 and E2 include a preparation time, and tasks E1 and E3 include an evaluation

time. Figure 1 shows at which time during the execution of task E1 the candidate,

the assessors, and the actor are required. The evaluation time differs between the

assessors and the actor. Due to fairness and objectivity considerations, no waiting

times are allowed between the preparation, the execution, and the evaluation. A

waiting time for a candidate would increase the preparation time, whereas a waiting

time for the assessors and actors could bias their evaluations of the candidate.

The earliest and latest possible start times for the lunch break are 20 and 30,

respectively. The duration of the lunch break is 6 time units. Because each candidate

has a lunch break and performs each of the three tasks exactly once, a total of 12

activities are considered. Table 2 shows the indices of these activities.

The rules for assigning assessors to candidates are as follows: each candidate

should be observed by at least half of the total number of assessors rounded down

and by at most half of the total number of assessors rounded up plus one. The lower

limit ensures an objective overall evaluation for each candidate, and the upper limit

is motivated by fairness considerations. The difference between the upper and lower

limits facilitates the assessor assignment without affecting fairness. The number of

times that an assessor can observe the same candidate is not limited. In the

illustrative example, each candidate must be observed by 2–3 different assessors.

Additionally, because a no-go relationship exists, candidate C3 can never be

observed by assessor A2.

An optimal schedule for the illustrative example is presented in Fig. 2. The dotted

lines indicate the earliest and latest start times for the lunch breaks, and the solid

line indicates the AC duration. Whether an assessor has been assigned to a candidate

at least once is indicated by a checkmark (U).

Table 1 Tasks of illustrative

example
Task E1 E2 E3

Required number of assessors 2 1 2

Required number of actors 1 – –

Duration 20 10 12

Duration of preparation time (candidates) 8 3 –

Duration of execution time 8 7 8

Duration of evaluation time (assessors) 4 – 4

Duration of evaluation time (actors) 2 – –
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2.2 Relation to the RCPSP

The ACP includes many problem features of the well-known RCPSP. Both planning

problems consider activities that require prescribed amounts of some renewable

resources during their execution. In the case of the ACP, the execution of each task

and the lunch break for each candidate correspond to a project activity, and the

candidates, assessors, and actors can be interpreted as renewable resources. The

ACP does not involve precedence relationships among the activities.

In the RCPSP, only the capacities and not the individual units of the renewable

resources are considered. However, in the ACP, the assessor-assignment rules

require that all activities that use a particular resource unit can be identified.

Therefore, the assessor-assignment rules cannot be formulated in the RCPSP.

If each assessor is interpreted as a renewable resource with unit capacity, then

alternative execution modes must be defined in order to represent the alternative

assessor assignments. This corresponds to the multi-mode extension of the RCPSP

(MRCPSP). Because each candidate must be observed by approximately half the

number of the assessors, the assessor assignments interdepend. Such interdepen-

dencies between modes are not considered in the MRCPSP. Before assigning any

preparation execution
............

evaluation
.............................................................

duration of the task

time

Candidate
Assessors
Actor

Fig. 1 Varying requirements
for candidate, assessors, and
actor during task E1

Table 2 Activity indices of the

illustrative example
Candidate Task Lunch break

E1 E2 E3

C1 1 4 7 10

C2 2 5 8 11

C3 3 6 9 12

time
0 10 20 30 40 46

C1
C2
C3

A1
A2
A3
A4

P1

1
2

3

4
5
6

7
8

9

10
11

12
1

1
2

2

3

34
5

6

7
7 8

8
9
9

12 3

Assignments

Candidate
Assessor C1 C2 C3

A1 ✓ ✓

A2 ✓ ✓

A3 ✓ ✓

A4 ✓ ✓

Fig. 2 Optimal schedule of the illustrative example (left) and corresponding assessor assignment (right)
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assessors to a candidate, all modes are feasible. However, selecting the modes for

some activities causes several of the modes of the other activities to be infeasible.

3 Literature review

In Sect. 3.1, we provide an overview of different MIP formulations for the RCPSP

which can be used as the basis for MIP formulations of the ACP. In Sect. 3.2, we

discuss recent works that focus on comparing MIP formulations for extensions of

the RCPSP and for specific real-life problems.

3.1 MIP formulations for the RCPSP

In DT formulations, binary time-indexed variables are used that indicate the start,

end, or the state (e.g., in progress) of an activity at a specific time. For DT

formulations, three types of binary variables can be distinguished (cf. Artigues et al.

2015). Beside the pulse and on/off variables described in the Introduction, there are

step variables that indicate whether an activity starts at or before a specific point in

time (cf. Klein 2000; Bianco and Caramia 2013). Furthermore, Bianco and Caramia

(2013) introduce continuous variables that specify the percentage of completion of

the activities at each point in time.

In CT formulations, the activities can start or finish at any time rather than at

predefined time points such as in DT. Artigues et al. (2003) present a CT

formulation based on resource flows. Besides the continuous start-time variables,

this formulation requires two additional sets of variables. The first set consists of

binary sequencing variables that determine for each pair of activities whether one

precedes the other or whether both are executed in parallel. The second set consists

of continuous resource-flow variables for modeling the resource constraints.

Kopanos et al. (2014) present another CT formulation with continuous start-time

variables, binary sequencing variables, and binary overlapping variables. In

combination with the sequencing variables, the overlapping variables are used to

model the resource constraints. Other CT formulations are based on events (e.g.

Koné et al. 2011) or on minimal forbidden sets (e.g. Alvarez-Valdes and Tamarit

1993).

For the RCPSP, the performances of these different MIP formulations are

compared in Bianco and Caramia (2013), Koné et al. (2011), and Kopanos et al.

(2014). They all use generic test instances, which are provided in, e.g., Kolisch and

Sprecher (1997) and Vanhoucke et al. (2008). For these test instances, Koné et al.

(2011) and Kopanos et al. (2014) show that the performance is primarily affected by

the number of activities and the length of the planning horizon. The performances of

the DT formulations are negatively affected by the length of the planning horizon

because the numbers of variables and constraints depend on the number of time

points considered. In contrast, the performances of the CT formulations are

negatively affected by the number of activities because the number of sequencing

variables increases exponentially with the number of activities. Typically, DT-based

formulations are the most competitive and yield the best LP relaxations. However,
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no formulation consistently dominates the others, as different formulations perform

better for different problem settings.

In this study, we adapt different RCPSP formulations such that they can be

applied to the ACP. From the DT formulations, we select the RCPSP formulations

of Pritsker et al. (1969) and Kopanos et al. (2014). The basic DT formulation of

Pritsker et al. (1969) still performs very well compared to newer formulations (cf.,

e.g., Koné et al. 2011). Kopanos et al. (2014) show that their two DT formulations

outperform other DT formulations presented in the literature. Their DT formulations

differ with regard to the modeling of the precedence constraints. For the ACP, these

two formulations are identical because there are no precedence constraints. From

the CT formulations, we adapt the formulations of Artigues et al. (2003) and

Kopanos et al. (2014). The CT formulation of Artigues et al. (2003) performs well

compared to other CT formulations if there are specific problem characteristics such

as long activity durations (cf., e.g., Koné et al. 2011). Kopanos et al. (2014) show

that their two CT formulations outperform other CT formulations presented in the

literature; we adapted their best-performing CT formulation.

3.2 Comparative studies of MIP formulations

In addition to the aforementioned comparative studies of the RCPSP, the

performances of alternative MIP formulations have also been compared for various

other planning problems. In the following, we provide an overview of such

comparative studies for extensions of the RCPSP and for some real-life problems.

Some extensions of the RCPSP for which alternative MIP formulations have

been compared are as follows. In Koné et al. (2013), the performances of alternative

DT and CT formulations are compared for an extension of the RCPSP with so-

called storage resources. Storage resources are consumed and produced at the

project activities’ start times and completion times, respectively. As in Koné et al.

(2011), the authors conclude that no MIP formulation consistently yields the best

results. A comparative performance analysis of alternative DT formulations for the

RCPSP with flexible resource profiles is provided in Naber and Kolisch (2014).

With flexible resource profiles, the resource utilization of an activity is not constant

but rather can be adjusted from period to period. The results of the comparative

study in Naber and Kolisch (2014) indicate that an MIP formulation based on

Bianco and Caramia (2013) dominates all other DT formulations. In the study of

Zapata et al. (2008), alternative DT and CT formulations for the MRCPSP with

multiple projects are compared. The authors conclude that the best MIP formulation

depends on the specific characteristics of each problem instance.

Comparative analyses have also been conducted for MIP formulations in real-life

applications. Stefansson et al. (2011) develop DT and CT formulations for a large-

scale production scheduling problem originating from a pharmaceutical producer. In

this problem, customers order specific products, which need to be produced in a

four-stage production process such that the requested quantity and delivery date of

the order are met. The results obtained for eight test instances indicate that the CT

formulation obtains better solutions within shorter computational time than the DT

formulation. Furthermore, in Chen et al. (2012), a comparative analysis of different
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mixed-integer nonlinear programming formulations for the scheduling of crude-oil

refinement operations is presented. The planning problem includes several

processing steps, from unloading marine vessels to producing various crude-oil

based products. In a recent study, Ambrosino et al. (2015) evaluated the

performance of two alternative MIP formulations for the multi-port master bay

plan problem. This problem involves the placement of containers on a containership

such that the overall berthing costs of the ship’s multi-port journey are minimized.

4 MIP formulations for the ACP

In this section, we present our five MIP formulations for the ACP. The notation of

the MIP formulations is provided in Tables 3 and 4. In Sect. 4.1, we present the CT

formulation that uses the assessor-assignment decisions to model the resource

constraints (CT-A). In Sect. 4.2, we derive the CT formulation with resource-flow

variables (CT-F). In Sect. 4.3, we present the CT formulation with overlapping

variables (CT-O). In Sects. 4.4 and 4.5, we present the DT formulation with pulse

variables (DT-P) and the DT formulation with on/off variables (DT-O),

respectively.

4.1 Formulation CT-A

In this section, we present the continuous-time formulation that uses the assessor-

assignment decisions to model the resource constraints (CT-A). In a preliminary

version of this MIP formulation (cf. Grüter et al. 2014), each activity is split into

Table 3 Sets and parameters of the MIP formulations

C Set of candidates

A Set of assessors

P Set of actors

N Set of candidate-assessor pairs (c, a) with a no-go relationship

I Set of activities i ¼ 1; . . .; n (including lunch breaks)

Ic Set of activities that require candidate c 2 C

IA; IP Set of activities that require assessors (IA) and actors (IP)

IL Set of lunch breaks

ESL;LSL Earliest (ESL) and latest (LSL) start time for the lunch breaks

pi Duration of activity i

pCi Preparation time of activity i for candidates

pAi ; p
P
i Evaluation time of activity i for assessors (pAi ) and actors (pPi )

rAi ; r
P
i Number of assessors (rAi ) and actors (rPi ) required by activity i

M Sufficiently large number

T Upper bound on the duration of the assessment center
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several sub-activities to model the preparation, the execution, and the evaluation

times. However, this results in an unnecessary large number of variables and

constraints. In the following, we model the ACP without splitting the activities.

We distinguish between three types of resources: candidates, assessors, and

actors. Each candidate is modeled as a renewable resource with capacity 1. The set

of all assessors (actors) is modeled as one renewable resource with a capacity that

equals the number of assessors (actors). Due to the capacity of 1, the resource

constraints for the candidates are modeled using binary sequencing variables, i.e.,

YC
ij ¼ 1 (YC

ij ¼ 0) if activity i (j) is completed some time before the start of activity j

(i) by the corresponding candidate. For the assessors and actors, the resource

constraints are modeled using binary sequencing variables (YA
ij and YP

ij ), and binary

assignment variables (ZA
ia and ZP

ip). For the assessors, the sequencing variable YA
ij is

equal to 1 if activity i is completed some time before the start of activity j.

Otherwise, YA
ij is 0, i.e., activities i and j are processed simultaneously or j finishes

Table 4 Variables of the MIP formulations

D AC duration

Si Start time of activity i for the candidate

Xit ¼ 1; if activity i starts at time point t;
¼ 0; otherwise

�

YC
ij ¼ 1; if activity i is performed before j[ i by a candidate;

¼ 0; otherwise

�

YA
ij ¼ 1; if activity i is performed before j 6¼ i by the assessors;

¼ 0; otherwise

�

YP
ij ¼ 1; if activity i is performed before j 6¼ i by the actors;

¼ 0; otherwise

�

ZA
ia ¼ 1; if assessor a is assigned to activity i;

¼ 0; otherwise

�

ZP
ip ¼ 1; if actor p is assigned to activity i;

¼ 0; otherwise

�

Vca ¼ 1; if assessor a is assigned to candidate c at least once;

¼ 0; otherwise

�

FC
ij ¼ 1; if a candidate is sent from activity i to j;

¼ 0; otherwise

�

FA
ij

Number of assessors sent from activity i to j

FP
ij

Number of actors sent from activity i to j

bYij ¼ 1; if activity i starts before or at the same time as j for assessors;
¼ 0; otherwise

�

OA
ji ¼ 1; if activity j finishes after the start of activity i for assessors;

¼ 0 or 1; otherwise

�

OP
ji ¼ 1; if activity j finishes after the start of activity i for actors;

¼ 0 or 1; otherwise

�

Wit ¼ 1; if i is processed at time t by the candidates;
¼ 0; otherwise

�
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some time before i begins. Because the ACP does not include precedence

relationships, there are no prescribed values for the sequencing variables. The

assignment variable ZA
ia is equal to 1 if assessor a is assigned to activity i; otherwise

ZA
ia ¼ 0. For the actors, the sequencing and assignment variables (YP

ij and ZP
ip) are

interpreted in the same way. Finally, variable Vca is used to model the assessor-

assignment rule, i.e., Vca ¼ 1 if assessor a is assigned to candidate c at least once.

The objective is to minimize the AC duration D.

MinD

The duration corresponds to the latest completion time of an activity that is defined

by constraints (1).

D� Si þ pi ði 2 IÞ ð1Þ

Constraints (2)–(5) determine the resource-feasible start times of the activities.

Constraints (2) are binding if candidate c completes activity i before the start of

activity j. Otherwise, constraints (3) are binding. Because candidate c is not required

during the evaluation time, activity j can start at most pAi time units before the

completion of activity i (cf. Fig. 3).

Sj � Si �M þ ðpi � pAi þMÞYC
ij ðc 2 C; i; j 2 Ic : i\jÞ ð2Þ

Si � Sj �M þ ðpj � pAj þMÞð1� YC
ij Þ ðc 2 C; i; j 2 Ic : i\jÞ ð3Þ

Constraints (4) and (5) enforce a sequence of activities for the assessors and actors,

respectively. In the case that activity i is executed before activity j by the assessors,

constraints (4) are binding.Because the assessors are not required during the preparation

time, activity j can start at most pCj time units before the completion of activity i (cf.

Fig. 4). Similarly, constraints (5) are binding if activity i is executed before activity j by

the actors. For the actors, activity i is completed after pi � pAi þ pPi time units. Activity

j can start at most pCj time units before that completion time (cf. Fig. 5).

Sj � Si �M þ ðpi � pCj þMÞYA
ij ði; j 2 IA : i 6¼ jÞ ð4Þ

Sj � Si �M þ ðpi � pAi þ pPi � pCj þMÞYP
ij ði; j 2 IP : i 6¼ jÞ ð5Þ

Constraints (6) ensure that the lunch breaks are scheduled within the prescribed time

window.

Candidate

Assessor

Si Sj

pi

pA
i

i

i

j

j

Fig. 3 Minimum time lag between start times of activities i and j for candidates
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ESL � Si � LSL ði 2 ILÞ ð6Þ

Constraints (7) and (8) imply that the required numbers of assessors and actors are

assigned to each activity. X
a2A

ZA
ia ¼ rAi ði 2 IAÞ ð7Þ

X
p2P

ZP
ip ¼ rPi ði 2 IPÞ ð8Þ

Constraints (9) and (10) link the assignment variables to the sequencing variables. If

the same assessor a or the same actor p is assigned to two activities i and j, then a

sequence between these two activities is enforced.

YA
ij þ YA

ji � ZA
ia þ ZA

ja � 1 ði; j 2 IA; a 2 A : i\jÞ ð9Þ

YP
ij þ YP

ji � ZP
ip þ ZP

jp � 1 ði; j 2 IP; p 2 P : i\jÞ ð10Þ

Constraints (11) and (12) ensure that either activity i precedes activity j; j precedes i,
or i and j are processed in parallel.

YA
ij þ YA

ji � 1 ði; j 2 IA : i\jÞ ð11Þ

Candidate 1
Candidate 2

Assessor

Si Sj

pi

pC
j

i

i

j

j

Fig. 4 Minimum time lag between start times of activities i and j for assessors

Candidate 1
Candidate 2

Assessor 1
Assessor 2

Actor

Si Sj

pA
i

pP
i

pC
j

pi

i

i

i

j

j

j

Fig. 5 Minimum time lag between start times of activities i and j for actors
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YP
ij þ YP

ji � 1 ði; j 2 IP : i\jÞ ð12Þ

Constraints (13) enforce that the number of assessors assigned to each candidate lies

within the bounds imposed by the assessor-assignment rule.

jAj
2

� �
�

X
a2A

Vca �
jAj
2

� �
þ 1 ðc 2 CÞ ð13Þ

Constraints (14) determine whether an assessor a has been assigned to a candidate c

at least once. Vca must be equal to 1 if assessor a is assigned to at least one activity

that requires candidate c. If assessor a is never assigned to an activity that requires

candidate c, then Vca must be equal to 0.

X
i2IcnIL

ZA
ia

jIcnILj
�Vca �

X
i2IcnIL

ZA
ia ðc 2 C; a 2 AÞ ð14Þ

Finally, constraints (15) model the no-go relationships.

Vca ¼ 0 ððc; aÞ 2 NÞ ð15Þ

In sum, formulation (CT-A) reads as follows:

ðCT-AÞ

Min D

s:t: ð1Þ�ð15Þ
Si � 0 ði 2 IÞ
YC
ij 2 f0; 1g ðc 2 C; i; j 2 Ic : i\jÞ

YA
ij 2 f0; 1g ði; j 2 IA : i 6¼ jÞ

YP
ij 2 f0; 1g ði; j 2 IP : i 6¼ jÞ

Vca 2 f0; 1g ðc 2 C; a 2 AÞ
ZA
ia 2 f0; 1g ði 2 IA; a 2 AÞ

ZP
ip 2 f0; 1g ði 2 IP; p 2 PÞ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

4.2 Formulation CT-F

In this section, we present the continuous-time formulation with resource-flow

variables (CT-F), which is based on the RCPSP formulation of Artigues et al.

(2003). This MIP formulation was first proposed in Zimmermann and Trautmann

(2014). The following explanations closely follow that study.

To model the resource flows, formulation CT-F requires the dummy activities 0

and nþ 1; both have a duration of zero, and rA0 ¼ rAnþ1 ¼ jAj (rP0 ¼ rPnþ1 ¼ jPj) is
equal to the total number of available assessors (actors). Variable FC

ij (FA
ij ;F

P
ij )

denotes the quantity of candidates (assessors, actors) sent from activity i (upon

completion) to activity j (at the beginning). This resource flow prevents the

corresponding activities from being executed simultaneously. For the assessors
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(actors), the sequencing variable YA
ij (Y

P
ij ) is equal to 1 if some assessors (actors) are

sent from activity i to activity j. Because each activity requires exactly one

candidate, any flow of candidates between two activities will be either 0 or 1. Since

the resource-flow variable FC
ij is defined as binary, this variable is used

simultaneously as a resource-flow and as a sequencing variable. As a sequencing

variable, FC
ij equals 1 if and only if activity j is executed after activity i.

The following constraints have to be considered. Constraints (16) determine

resource-feasible start times of the activities for the candidates. The feasible start

times of the activities for the assessors and actors are determined as in formulation

CT-A. Constraints (16) are binding if a candidate is sent from activity i to activity j

(FC
ij ¼ 1).

Sj � Si �M þ ðpi � pAi þMÞFC
ij ðc 2 C; i; j 2 Ic : i 6¼ jÞ ð16Þ

Constraints (17)–(22) are the resource-flow conservation constraints. Constraints

(17) ensure that each activity i sends 1 unit of resource c 2 C to either an activity

j 6¼ i or the dummy activity nþ 1 (if activity i is the last activity performed by

candidate c). Constraints (18) ensure that each activity j receives 1 unit of resource

c 2 C from either an activity i 6¼ j or the dummy activity 0 (if activity j is the first

activity performed by candidate c).X
j2Ic[fnþ1g:j6¼i

FC
ij ¼ 1 ðc 2 C; i 2 Ic [ f0gÞ ð17Þ

X
i2Ic[f0g:i6¼j

FC
ij ¼ 1 ðc 2 C; j 2 Ic [ fnþ 1gÞ ð18Þ

Constraints (19)–(22) conserve the resource flow of assessors and actors, respec-

tively. The number of assessors rAi (actors rPi ) required by activity i must be sent to

and received from other activities that require the same resource.X
j2IA[fnþ1g:j 6¼i

FA
ij ¼ rAi ði 2 IA [ f0gÞ ð19Þ

X
j2IP[fnþ1g:j 6¼i

FP
ij ¼ rPi ði 2 IP [ f0gÞ ð20Þ

X
i2IA[f0g:i 6¼j

FA
ij ¼ rAj ðj 2 IA [ fnþ 1gÞ ð21Þ

X
i2IP[f0g:i 6¼j

FP
ij ¼ rPj ðj 2 IP [ fnþ 1gÞ ð22Þ

Constraints (23) and (24) link the resource-flow variables to the sequencing vari-

ables for assessors and actors, respectively.
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FA
ij � minðrAi ; rAj ÞYA

ij ði; j 2 IA : i 6¼ jÞ ð23Þ

FP
ij � minðrPi ; rPj ÞYP

ij ði; j 2 IP : i 6¼ jÞ ð24Þ

The sequencing variables YA
ij and YP

ij are only used to link the flow variables FA
ij and

FP
ij to the start times of the activities. The flow variables FA

ij and FP
ij can be greater

than 1. For this reason, they cannot be used as sequencing variables.

Constraints (1), which determine the AC duration D, and the sequencing

constraints for the assessors (4) and actors (5), and constraints (6), which specify the

time window for the lunch breaks, are also included. The same applies to the

assessor-assignment constraints (7), (9), and (11)–(15).

In sum, formulation (CT-F) reads as follows:

ðCT-FÞ

Min D

s:t: ð16Þ�ð24Þ
ð1Þ; ð4Þ�ð7Þ; ð9Þ
ð11Þ�ð15Þ
Si � 0 ði 2 IÞ
FC
ij 2 f0; 1g ðc 2 C; i; j 2 Ic [ f0; nþ 1g : i 6¼ jÞ

FA
ij � 0 ði; j 2 IA [ f0; nþ 1g : i 6¼ jÞ

FP
ij � 0 ði; j 2 IP [ f0; nþ 1g : i 6¼ jÞ

YA
ij 2 f0; 1g ði; j 2 IA : i 6¼ jÞ

YP
ij 2 f0; 1g ði; j 2 IP : i 6¼ jÞ

Vca 2 f0; 1g ðc 2 C; a 2 AÞ
ZA
ia 2 f0; 1g ði 2 IA; a 2 AÞ

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

4.3 Formulation CT-O

In this section, we present the continuous-time formulation with overlapping

variables (CT-O), which is based on the RCPSP formulation of Kopanos et al.

(2014).

For activities that cannot be processed in parallel (i.e., two activities which

require the same candidate), we use the sequencing variables YC
ij . For activities that

can be processed in parallel, the resource constraints are modeled with the following

binary variables.

• For the assessors and the actors, we introduce the sequencing variables bYij.

Specifically, bYij ¼ 1 if activity i starts before or at the same time as activity j for

the assessors. These sequencing variables are not defined separately for

assessors and actors, because the activities start at the same time for them.

T. Rihm et al.

123



• For the assessors, we introduce the overlapping variables OA
ji . Specifically, O

A
ji ¼

1 if activity j finishes after the start of activity i for the assessors. If activity j

finishes before or at the same time as activity i starts, then OA
ji is equal to 0 or 1.

The overlapping variables for the actors OP
ji are defined in the same way.

To illustrate how these variables jointly determine whether two activities i; j 2 IA

are processed in parallel by the assessors, several possible cases are depicted in

Fig. 6. For case (ii), the variable OA
ji can be equal to zero or one, but for cases (iv)

and (v), the variable must be equal to one.

Constraints (25) determine the resource-feasible start times of the activities for

the candidates. Constraints (26) ensure that either activity i precedes activity j, or j

precedes i. In contrast to constraints (2) and (3), the sequencing variables YC
ij are

used for any pair of activities involving the same candidate.

Si þ pi � pAi � Sj þMYC
ji ðc 2 C; i; j 2 Ic : i 6¼ jÞ ð25Þ

YC
ij þ YC

ji ¼ 1 ðc 2 C; i; j 2 Ic : i[ jÞ ð26Þ

Constraints (27)–(29) determine the resource-feasible start times of the activities which

can be processed in parallel. Thereby, parameter k is used to exclude some symmetric

solutions, i.e., for two activities i[ j which start at the same time, it is specified thatbYji ¼ 1 and bYij ¼ 0. As proposed in Kopanos et al. (2014), we set k ¼ 0:1.

Sj þ pCj � Si þ pCi þMbYij ði; j 2 IA : i[ jÞ ð27Þ

Si þ pCi þ k� Sj þ pCj þ ðM þ kÞbYji ði; j 2 IA : i[ jÞ ð28Þ

bYij þ bYji ¼ 1 ði; j 2 IA : i[ jÞ ð29Þ

Constraints (30) and (31) link the overlapping variables to the start times of the

activities.

Candidate 1
Candidate 2

Assessor 1
Assessor 2

i

i

j

j

(i) OA
ji − Yij = 0

i

i

j

j

(ii) OA
ji − Yij = 0 or 1

Candidate 1
Candidate 2

Assessor 1
Assessor 2

i

i

j

j

(iii) OA
ji − Yij = 0

i

i

j

j

(iv) OA
ji − Yij = 1

i

i

j

j

(v) OA
ji − Yij = 1

Fig. 6 Five possible cases (i)–(v) that illustrate the values of the sequencing and overlapping variables
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ðSj þ pjÞ � ðSi þ pCi Þ�MOA
ji ði; j 2 IA : i 6¼ jÞ ð30Þ

ðSj þ pj � pAj þ pPj Þ � ðSi þ pCi Þ�MOP
ji ði; j 2 IP : i 6¼ jÞ ð31Þ

Constraints (32) and (33) ensure that all activities that are executed in parallel do not

require more than the available number of assessors and actors, respectively.

Thereby, the term OA
ji � bYij ¼ 1 if activity j starts before activity i and if both

activities overlap for the assessors. The same applies to the actors.

rAi þ
X

j2IA:j6¼i

rAj ðOA
ji � bYijÞ� jAj ði 2 IAÞ ð32Þ

rPi þ
X

j2IP:j6¼i

rPj ðOP
ji � bYijÞ� jPj ði 2 IPÞ ð33Þ

Constraints (34) and (35) ensure that the terms OA
ji � bYij and OP

ji � bYij are greater

than or equal to zero.

bYij �OA
ji ði; j 2 IA : i 6¼ jÞ ð34Þ

bYij �OP
ji ði; j 2 IP : i 6¼ jÞ ð35Þ

Constraints (36) link the sequencing and overlapping variables to the assignment

variables. If the same assessor a is assigned to two activities i and j, then both

activities cannot overlap for the assessors.

ðOA
ji � bYijÞ þ ZA

ia þ ZA
ja � 2 ða 2 A; i; j 2 IA : i 6¼ jÞ ð36Þ

Constraints (1), which determine the AC duration D, and constraints (6), which

specify the time window for the lunch breaks, are also included. The same applies to

the assessor-assignment constraints (13)–(15).

In sum, formulation (CT-O) reads as follows:

ðCT-OÞ

Min D

s.t. ð25Þ�ð36Þ
ð1Þ; ð6Þ; ð7Þ; ð13Þ�ð15Þ
Si � 0 ði 2 IÞ
YC
ij 2 f0; 1g ðc 2 C; i; j 2 Ic : i 6¼ jÞ
bYij 2 f0; 1g ði; j 2 IA : i 6¼ jÞ
OA

ji 2 f0; 1g ði; j 2 IA : i 6¼ jÞ
OP

ji 2 f0; 1g ði; j 2 IP : i 6¼ jÞ
Vca 2 f0; 1g ðc 2 C; a 2 AÞ
ZA
ia 2 f0; 1g ði 2 IA; a 2 AÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
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4.4 Formulation DT-P

In this section, we present the discrete-time formulation with pulse variables (DT-

P), which is based on the RCPSP formulation of Pritsker et al. (1969). This

formulation involves the discretization of the planning horizon into uniform time

intervals. The endpoints of a time interval are denoted by the time points t and t þ 1,

respectively (t ¼ 0; . . .; T � 1). Binary pulse variables Xit state if activity i starts at

time t. For each time point t, resource constraints are formulated that ensure that the

resource capacities are not violated. We extend the resource constraints of the

RCPSP formulation such that the preparation and evaluation times of the AC

activities are considered.

For the ACP, the following constraints have to be taken into consideration. The

AC duration corresponds to the latest completion time of an activity, which is

defined by constraints (37).

D�
XT�pi

t¼0

ðt þ piÞXit ði 2 IÞ ð37Þ

Constraints (38) and (39) ensure that each activity starts once. Furthermore, con-

straints (39) state that the lunch breaks are scheduled within the prescribed time

window.

XT�pi

t¼0

Xit ¼ 1 ði 2 InILÞ ð38Þ

XLSL
t¼ESL

Xit ¼ 1 ði 2 ILÞ ð39Þ

Constraints (40) to (42) ensure that the resource capacities are not violated. Con-

straints (40) ensure that each candidate performs at most one activity at the same

time t. Candidate c performs activity i at time t if the activity started between time

t � ðpi � pAi Þ þ 1 and t. Constraints (41) and (42) ensure that all activities that are

scheduled in parallel do not require more than the maximum available numbers of

assessors and actors, respectively. An assessor performs activity i at time t if the

activity started between time t � pi þ 1 and t � pCi . An actor performs activity i at

time t if the activity started between time t � ðpi � pAi þ pPi Þ þ 1 and t � pCi .

X
i2Ic

Xt

s¼maxð0;t�piþpA
i
þ1Þ

Xis � 1 ðc 2 C; t ¼ 0; . . .; TÞ ð40Þ

X
i2IA

Xt�pC
i

s¼maxð0;t�piþ1Þ
rAi Xis � jAj ðt ¼ 0; . . .; TÞ ð41Þ
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X
i2IP

Xt�pCi

s¼maxð0;t�piþpA
i
�pP

i
þ1Þ

rPi Xis � jPj ðt ¼ 0; . . .; TÞ ð42Þ

Additionally, the assessor-assignment constraints (7), (9), (11), and (13)–(15) are

also included. Constraints (43) link the variables Xit to the sequencing variables YA
ij .

XT�pj

t¼0

tXjt �
XT�pi

t¼0

tXit �M þ ðpi � pCj þMÞYA
ij ði; j 2 IA : i 6¼ jÞ ð43Þ

In sum, formulation (DT-P) reads as follows:

ðDT-PÞ

Min D

s:t: ð37Þ�ð43Þ
ð7Þ; ð9Þ; ð11Þ; ð13Þ�ð15Þ
Xit 2 f0; 1g ði 2 I; t ¼ 0; . . .; TÞ
YA
ij 2 f0; 1g ði; j 2 IA : i 6¼ jÞ

Vca 2 f0; 1g ðc 2 C; a 2 AÞ
ZA
ia 2 f0; 1g ði 2 IA; a 2 AÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

4.5 Formulation DT-O

In this section, we present the discrete-time formulation with on/off variables (DT-

O), which is based on the RCPSP formulation of Kopanos et al. (2014). For the

RCPSP, Kopanos et al. (2014) extend the formulation of Pritsker et al. (1969) with

binary on/off variables Wit, which specify if activity i is in progress at time t. With

these variables, the resource constraints can be modeled in a different manner than

in Pritsker et al. (1969).

For the ACP, we extend the formulation DT-P (cf. Sect. 4.4) with binary on/off

variables. Due to the preparation and the evaluation time, these on/off variables

must be defined individually for candidates, assessors, and actors. However, this

results in a large number of additional variables, which has a negative impact on the

performance. For this reason, we only define the on/off variables for the candidates,

and take the resource constraints of DT-P for the assessors and the actors. Hence,

the resource constraints (40) for the candidates are replaced by constraints (44)–

(46).

Constraints (44) ensure that each candidate performs at most one activity at a

time. X
i2Ic:t� T�pA

i
�1

Wit � 1 ðc 2 C; t ¼ 0; . . .; TÞ ð44Þ

Constraints (45) link the pulse variables Xit to the on/off variables Wit.
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Wit ¼
Xt

s¼maxð0;t�piþpA
i
þ1Þ

Xis ði 2 I; t ¼ 0; . . .; T � pAi � 1Þ ð45Þ

Constraints (46) are valid equalities that tighten the formulation.

XT�pAi �1

t¼0

Wit ¼ pi � pAi ði 2 IÞ ð46Þ

In sum, formulation (DT-O) reads as follows:

ðDT-OÞ

Min D

s:t: ð44Þ�ð46Þ
ð37Þ�ð39Þ; ð41Þ�ð43Þ
ð7Þ; ð9Þ; ð11Þ; ð13Þ�ð15Þ
Xit 2 f0; 1g ði 2 I; t ¼ 0; . . .; TÞ
Wit 2 f0; 1g ði 2 I; t ¼ 0; . . .; T � pAi � 1Þ
YA
ij 2 f0; 1g ði; j 2 IA : i 6¼ jÞ

Vca 2 f0; 1g ðc 2 C; a 2 AÞ
ZA
ia 2 f0; 1g ði 2 IA; a 2 AÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

5 Lower bounds

In this section, we derive some lower bounds for the AC duration. In Sect. 5.1, we

present four lower bounds based on the assessors’ workload. In Sect. 5.2, we present

two lower bounds based on the candidates’ workload.

5.1 Lower bounds based on the assessors’ workload

In this section, we present four different lower bounds (LB1; . . .; LB4) that are based

on the assessors’ workload. In contrast to lower bounds LB1 and LB2, lower bounds

LB3 and LB4 consider the no-go relationships.

Lower bound LB1 corresponds to the average workload of the assessors increased

by the shortest preparation time of an activity. This preparation time is included

because the assessors are never required before that time. The lower bound LB1

reads as follows.

LB1 ¼
X
i2IA

rAi ðpi � pCi Þ
Aj j

& ’
þmin

i2IA
pCi

Lower bound LB2 is obtained by considering only the activities that require two

assessors. The total workload of these activities must be completed by an even
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number of assessors. Hence, if the number of assessors jAj is odd, then the following
lower bound LB2 is valid.

LB2 ¼
X

i2IA:rA
i
¼2

2ðpi � pCi Þ
jAj � 1

2
666

3
777þmin

i2IA
pCi

Lower bound LB3 takes the no-go relationships of each assessor into consider-

ation. The workload of all activities to which assessor a cannot be assigned due to

no-go relationships is evenly distributed among the remaining jAj � 1 assessors and

increased by the shortest preparation time. For each assessor a 2 A, this corresponds

to a lower bound.

LB3 ¼ max
a2A

X
c2C:ðc;aÞ2N

X
i2Ic

rAi ðpi � pCi Þ
jAj � 1

2
666

3
777þmin

i2IA
pCi

Lower bound LB4 combines the underlying ideas of LB2 and LB3. We only

consider activities that require two assessors and for which the corresponding

candidates have a no-go relationship with assessor a. For these activities, an even

number of assessors is required at any time. However, if the number of assessors is

even and assessor a cannot be assigned to these activities due to the no-go

relationships, it follows that one assessor a� 6¼ a is not needed. Hence, the workload

of all activities that require two assessors and to which assessor a cannot be assigned

is evenly distributed among the remaining jAj � 2 assessors. Again, the shortest

preparation time of an activity is added to increase the lower bound. Hence, if the

number of assessors |A| is even, then lower bound LB4 is valid.

LB4 ¼ max
a2A

X
c2C:ðc;aÞ2N

X
i2Ic:rAi ¼2

2ðpi � pCi Þ
jAj � 2

2
666

3
777þmin

i2IA
pCi

5.2 Lower bounds based on the candidates’ workload

In this section, we present two lower bounds for the AC duration based on the

candidates’ workload. The first lower bound (LB5) is valid in general, and the

second lower bound (LB6) is only valid under certain conditions. Because each

candidate must perform the same tasks, we do not need to differentiate between

different candidates. Hence, in the following, we consider the tasks to be executed

by each candidate and the lunch break rather than activities for individual

candidates. The set of tasks and the lunch break are denoted by Q and l,

respectively. It should be noted that the lunch break is not included in Q. Let pq; p
C
q ,

and pAq be the duration, the preparation time, and the assessors’ evaluation time of

task q 2 Q, respectively. The duration of the lunch break is pl, and its preparation

time (pCl ) and evaluation time (pAl ) are zero.
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Because the tasks and the lunch break must be performed sequentially, lower

bound LB5 is valid.

LB5 ¼
X

q2Q[flg
pq � pAq

� �

The term minq2Q[flg p
A
q could be added to LB5 because the AC cannot end before all

tasks and the lunch break are completed. However, the evaluation time of the lunch

break is always equal to zero and, thus, this term is always zero. The lunch break

cannot be excluded from this term, because each candidate can have the lunch break

at the end if the latest possible start time is not violated.

To motivate lower bound LB6, we first consider an illustrative example with two

candidates and three assessors. Each candidate has to perform a task (activities k1
and k2) that requires two assessors and a lunch break (activities l1 and l2); activities

k1 and k2 cannot be scheduled in parallel due to the limited number of assessors.

Figure 7 depicts two feasible schedules for this example. In the schedule on the left,

both candidates have the lunch break at the end. Due to the limited number of

assessors, candidate C2 has a waiting time. In this case, the AC duration

D corresponds to the lower bound LB5 plus the waiting time. In the schedule on the

right, candidate C2 performs the lunch break first. In this case, the AC duration

D correspond to the lower bound LB5 plus the evaluation time of the task.

In this example, either a candidate has a waiting time, or the last activity of a

candidate does not correspond to the lunch break.With this in mind, we propose lower

bound LB6, which is valid under certain conditions. According to our industry partner,

these conditions are fulfilled by a considerable number of real-life instances.

Theorem 1 Let r be a task with the shortest evaluation time. If (i) jAj=2b c\jCj
and (ii) all tasks except task r require two or more assessors, then the following

lower bound is valid.

LB6 ¼ d0 þmin d1; d2ð Þ

whereas

d0 ¼
X

q2Q[flg
pq � pAq

� �

d1 ¼ min
q2Qnfrg

pAq

d2 ¼ min
q2Qnfrg

ðpq � pCq � pAq Þ þ min
q2Qnfrg

pAq �maxðpl; pr � pAr Þ

time
LB5 D0

C1

C2

A1

A2

A3

k1 l1
k2 l2

k1
k1

k2
k2

time
LB5 D0

C1

C2

A1

A2

A3

k1 l1
k2l2

k1
k1

k2
k2

Fig. 7 Schedules of an example with (left) and without (right) waiting time for the candidates
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Proof If the conditions (i) and (ii) hold for a given problem instance, any feasible

solution belongs either to case 1 or to case 2.

• Case 1: The last activity of at least one candidate does not correspond to a lunch

break or an activity of task r. It results that after the candidate completes this last

activity, the assessors have an evaluation time of at least d1. Hence, d0 þ d1 is a
lower bound if the solution belongs to case 1.

• Case 2: The last activity of each candidate either corresponds to a lunch break or

an activity of task r. We show that in this case, at least one candidate has a

waiting time of at least d2 because condition (i) implies that not all candidates

can perform an activity that requires two assessors at the same time. d2
corresponds to the length of the minimum time interval during which the

required number of assessors exceeds the number of available assessors.

Let k denote an arbitrary task that requires two assessors. To determine d2, we
first consider the four possibilities for ordering the last activities such that the

lunch break or task r are performed at the end by each candidate (cf. Fig. 8).

(a) The lunch break is performed at the end and preceded by task r. Task r is

preceded by task k.

(b) Task r is performed at the end and preceded by the lunch break. The lunch

break is preceded by task k.

(c) Task r is performed at the end and preceded by task k. The lunch break ends

some time before task k.

(d) The lunch break is performed at the end and preceded by task k. Task r ends

some time before task k.

In Fig. 8, the time point t4 in (a) and (b) corresponds to the earliest possible

finish time of task k for the assessors. The time points t1; t2, and t3 correspond

time
Dδ0t1 t2 t3 t4

A1
A2

Task k Task r Lunch
Task k
Task k

Task r

A1
A2

Task k Task rLunch
Task k
Task k

Task r

A1
A2

Task k Task r

Task k
Task k

Task r

(a) C

(b) C

(c) C

(d) C
A1
A2

Task k Lunch
Task k
Task k

Fig. 8 All possible orders of the last activities and corresponding assessor requirements
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to the possible start times of task k for the assessors if no candidate has a

waiting time. The values of these time points are as follows.

t1 ¼ d0 � pl � ðpr � pAr Þ � ðpk � pCk � pAk Þ
t2 ¼ d0 � ðpr � pAr Þ � ðpk � pCk � pAk Þ
t3 ¼ d0 � pl � ðpk � pCk � pAk Þ
t4 ¼ d0 � pl � ðpr � pAr Þ þ pAk

Overall, the latest possible start time of task k for the assessors corresponds to

maxðt1; t2; t3Þ ¼ d0 �minðpl; pr � pAr Þ � ðpk � pCk � pAk Þ:

If t4 [ maxðt1; t2; t3Þ and no candidate has a waiting time, then there is a time

interval with a minimum length of t4 �maxðt1; t2; t3Þ during which every

candidate performs a task that requires two assessors. Because jAj=2b c\jCj,
the required number of assessors exceeds the available number of assessors in

this interval. To resolve this conflict, at least one task kmust be delayed, which

leads to a minimum waiting time for at least one candidate of t4 �max

ðt1; t2; t3Þ.
To derive a lower bound for theACduration,we determine the smallest possible

value of t4 and the largest possible value of maxðt1; t2; t3Þ as follows.

t4 � d0 � pl � ðpr � pAr Þ þ min
q2Qnfrg

pAq

maxðt1; t2; t3Þ� d0 �minðpl; pr � pAr Þ � min
q2Qnfrg

ðpq � pCq � pAq Þ

Hence, the minimum waiting time corresponds to

t4 �maxðt1; t2; t3Þ� min
q2Qnfrg

ðpq � pCq � pAq Þ þ min
q2Qnfrg

pAq �maxðpl; pr � pAr Þ

¼ d2:

Thereby, we used aþ b�minða; bÞ ¼ maxða; bÞ, where a; b are two arbitrary

numbers. Hence, d0 þ d2 is a lower bound if the solution belongs to case 2.

Overall, LB6 ¼ d0 þmin d1; d2ð Þ is a lower bound for the AC duration if

conditions (i) and (ii) hold. h

In the performance analysis, we use the maximum of these problem-specific

lower bounds. If for an instance the necessary conditions for any of the lower

bounds are not fulfilled, we set their respective value to 0.

LBþ ¼ maxðLB1; LB2; . . .; LB6Þ

6 Comparative analysis

We implemented the MIP formulations presented in Sect. 4 in AMPL, and we used

the Gurobi Optimizer 6.0.5 as solver. All calculations were performed on an HP

workstation with an Intel Xeon 2.67 GHz CPU and 24 GB RAM. The computational
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experiment was performed using four real-life instances and 240 test instances

derived from real-life data. We limited the CPU time of the solver to 3600 s for the

real-life instances and to 600 s for the test instances. We used Gurobi with its

default settings. Additionally, we applied Gurobi with the parameter MIPFocus set

to 1. The parameter MIPFocus determines the MIP solution strategy of the solver.

When this parameter is set to 1, Gurobi focuses on quickly generating good feasible

solutions rather than increasing the lower bound. The default setting is 0, which

aims to balance between finding good feasible solutions and proving optimality. For

the DT formulations, the upper bound of the AC duration was set to T ¼ 200 for all

instances; this value is prescribed by the human resource provider.

In Sect. 6.1, we describe the instances that we used in our computational study. In

Sect. 6.2, we discuss our computational results for the real-life instances. In Sect.

6.3, we provide the results for the test instances. In Sect. 6.4, we compare our

problem-specific lower bounds.

6.1 Instances

The number of candidates |C|, assessors |A|, actors |P|, tasks |E| and activities |I| of the

four real-life instances are listed in Table 5. The last column indicates whether at least

one no-go relationship exists. We denote the real-life instances with RL1, …, RL4.

To test the different MIP formulations, we additionally devised a test set with 240

test instances based on real-life data. For the RCPSP, the well-known test instances

of Kolisch and Sprecher (1997) were generated by systematically varying the

complexity factors resource strength (RS), resource factor (RF), and network

complexity (NC). These factors are only partially applicable to generate the ACP

instances. The factor NC corresponds to the average number of precedence

relationships per activity. Because there are no precedence relationships among the

activities of the AC, we do not require such a factor. The factors RF and RS

correspond to the average portion of the resources used by an activity and the

scarcity of the resources, respectively. The factor RF can be interpreted as the

average number of assessors required by an activity. To ensure that the instances are

as close to reality as possible, we selected real-life tasks with given requirements for

assessors and actors. Hence, we do not require a factor such as RF. The factor RS

can be interpreted as the scarcity of the assessors. We use a similar factor to

determine the number of available assessors. In total, we generated the 240 test

instances by varying five complexity factors. Thereby, the employed experimental

levels of each complexity factor were based on real-life data provided by the human

resource management service provider. The complexity factors are as follows.

Table 5 Real-life instances
Instance |C| |A| |P| |E| |I| No-go relationships

RL1 7 10 2 5 42 No

RL2 11 11 3 5 66 No

RL3 9 11 3 5 54 Yes

RL4 6 9 3 5 36 No
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The complexity factors nC and nE correspond to the number of candidates and

tasks, respectively, and determine the number of activities of an instance. The tasks

were randomly selected from a set of 15 real-life tasks. The experimental levels

nC 2 f4; 5; . . .; 10; 11g and nE 2 f4; 5g were used.

The complexity factor aS corresponds to the average number of assignments per

assessor. This factor is used to determine the number of assessors nA of an instance.

The number of assessors is equal to the nearest integer to
P

i2IA r
A
i =a

S; thus, the

numerator corresponds to the total number of assessor assignments. The experi-

mental levels aS 2 f6:0; 8:5; 10:4g correspond to the observed real-life minimum,

average, and maximum.

The complexity factor aN corresponds to the proportion of assessors who have

one or more no-go relationships (no-go assessors). The number of no-go assessors is

given by the nearest integer to aNnA. The no-go assessors were randomly selected

from the set of all assessors. The experimental levels aN 2 f1
6
; 1
3
g were used.

The complexity factor aR corresponds to the average number of no-go

relationships per no-go assessor. The number of no-go relationships is equal to

the product of aR and the number of no-go assessors. The no-go relationships were

randomly assigned to pairs of candidates and no-go assessors such that (1) each no-

go assessor has at least one no-go relationship and (2) at least b Aj j=2c different

assessors can be assigned to each candidate. The experimental levels aR 2 f2; 3g
were used.

Because the actors are paid for each role play in which they actually perform,

they are not considered to be a critical resource. Hence, the number of actors was set

to 3 for all instances, which corresponds to the observed real-life maximum.

For each combination of complexity factor levels, an instance was generated; this

leads to 8 � 2 � 3 � 2 � 2 ¼ 192 test instances. Additionally, 8 � 2 � 3 ¼ 48 test

instances without no-go relationships (i.e., aN ¼ aR ¼ 0) were generated.

6.2 Computational results: real-life instances

For the real-life instances RL1, …, RL4, the results obtained by the solver using the

MIP formulations CT-A, CT-F, CT-O, DT-P, and DT-O with MIPFocus set to 0 are

reported in Table 6. We compare the objective function values (D) with the lower

bounds obtained by the solver (LB) and the maximum value over all problem-

Table 6 Results for real-life instances with MIPFocus set to 0

Instance CT-A CT-F CT-O DT-P DT-O LBþ

D LB D LB D LB D LB D LB

RL1 89 67 90 37 88 74 128 81 95 71 82

RL2 136 59 158 36 132 49 149 103 173 72 110

RL3 106 62 121 36 107 49 125 80 118 63 90

RL4 83 70 86 36 82 74 87 81 86 80 82

The best objective function values obtained are highlighted in boldface
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specific lower bounds (LBþ). The best objective function values obtained are

highlighted in boldface. Using the default solver settings, the solver obtains on

average the best objective function values with CT-O and the highest lower bounds

with DT-P. For all real-life instances, these lower bounds are smaller than or equal

to the problem-specific lower bound. The problem-specific lower bound of instance

RL4 corresponds to the objective function value obtained with CT-O, i.e., this

solution is optimal.

Table 7 lists the results obtained by the solver with MIPFocus set to 1. The best

objective function values obtained are highlighted in boldface. Except for CT-O, the

average AC duration is improved. However, on average, the lower bounds are worse.

CT-A devises the best solutions for three instances, CT-F for two instances, andDT-P and

DT-O for one instance. The smallest instance (RL4) is even solved to optimality using

formulation DT-P. Both, CT-A and DT-O, also find a solution with an optimal objective

function value, but they do not prove optimality within the prescribed CPU time.

6.3 Computational results: test instances

Based on the number of activities |I|, we divide the 240 test instances into small-

sized (20–34 activities, 75 instances), medium-sized (35–49 activities, 90

instances), and large-sized (50–66 activities, 75 instances) instances. For these

three ranges of |I|, the average number of variables and constraints for the different

formulations are presented in Fig. 9. Regardless of the number of activities, DT-O

has the highest number of variables. For small- and medium-sized instances, DT-O

has also the highest number of constraints. However, with an increasing number of

activities, the number of constraints increases less for the DT formulations than for

Table 7 Results for real-life instances with MIPFocus set to 1

Instance CT-A CT-F CT-O DT-P DT-O LBþ

D LB D LB D LB D LB D LB

RL1 86 49 86 36 88 49 98 76 88 70 82

RL2 124 49 128 36 129 54 159 70 150 69 110

RL3 102 49 100 36 108 49 118 59 114 63 90

RL4 82 56 84 36 84 55 82 82 82 76 82

The best objective function values obtained are highlighted in boldface
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Fig. 9 Average number of variables (left) and constraints (right)
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the CT formulations. For the large-sized instances, CT-O has the highest number of

constraints.

Table 8 reports the average relative gaps between the obtained solutions and the

problem-specific lower bound (gapþ ¼ ðD� LBþÞ=D), as well as the average

relative gaps between the obtained solutions and the lower bounds obtained by the

solver (gap ¼ ðD� LBÞ=D). To evaluate the quality of the solutions, we use gapþ.
To evaluate the quality of the lower bounds provided by the solver, we use gap. The

best results are highlighted in boldface.

Regardless of the solver settings employed, the best gapþ is obtained with CT-A

(10.3 % for MIPFocus set to 0 and 9.3 % for MIPFocus set to 1), and the worst

gapþ is obtained with DT-P. In contrast, the smallest gap is obtained with DT-O.

Similarly to the results of Kopanos et al. (2014), better solutions are obtained with

DT-O than with DT-P. We conclude that the CT formulations provide better

solutions, and that the DT formulations provide better lower bounds. For all

formulations, gap considerably exceeds gapþ. We deduce that the problem-specific

lower bounds are considerably higher than the lower bounds obtained by the solver

within the prescribed CPU time limit.

With CT-A, CT-O, and DT-P, feasible solutions are obtained for all 240 test

instances within the prescribed CPU time limit. With CT-F and MIPFocus set to 0,

feasible solutions are obtained only for 216 instances (i.e., 90 % of the instances).

With MIPFocus set to 1, this number increases to 235 (i.e., 97.9 %); feasible

solutions could not be obtained for five of the large-sized instances.

To determine the number of optimal solutions, we compare the objective function

value obtained with the maximum value over all problem-specific lower bounds and

the lower bound obtained by the solver. With 36 instances, CT-A obtains the highest

number of optimal solutions.

The number of best solutions corresponds to the number of times that a

formulation generates a best solution. With MIPFocus set to 0, CT-A provides a best

solution for 170 instances. This means that the other formulations generate better

solutions for 70 instances only.

Table 8 Aggregated results for all 240 test instances

Formulation MIP-focus CT-A CT-F CT-O DT-P DT-O

Average gapþ (in %) 0 10.3 15.1 12.5 27.7 19.4

1 9.3 11.1 11.2 26.8 18.5

Average gap (in %) 0 44.7 59.8 50.4 37.5 36.6

1 56.7 65.0 55.1 44.6 37.8

Number of feasible solutions 0 240 216 240 240 234

1 240 235 240 240 238

Number of optimal solutions 0 36 29 32 22 19

1 27 24 30 22 27

Number of best solutions 0 170 51 80 22 60

1 161 69 81 27 57

The best results are highlighted in boldface
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With MIPFocus set to 1, the average solution quality for all formulations is

improved. This is indicated by a reduction of gapþ. For CT-F, this reduction is quite

considerable (from 15.1 to 11.1 %). This might indicate that theMIP solution strategy

used by the solver exploits the resource-flow information in an efficient manner.

However, the average gap is larger with MIPFocus set to 1 because this solver setting

focuses less on improving the lower bounds but gives priority to the quick generation

of good feasible solutions. Therefore, the number of feasible solutions is increased for

CT-F. Surprisingly, for the CT formulations CT-A, CT-F and CT-O, the number of

optimal solutions obtained is lower with MIPFocus set to 1.

Table 9 Average gapþ for different instance characteristics

Instance characteristics MIP-focus Average gapþ

CT-A CT-F CT-O DT-P DT-O

|I| 20–34 0 1.8 3.1 2.6 10.7 11.0

1 2.4 3.0 2.6 6.8 6.0

35–49 0 8.3 14.9 11.4 28.0 12.7

1 7.8 9.3 9.5 28.0 13.8

50–66 0 21.2 31.8 23.6 44.4 36.5

1 18.1 22.0 21.8 45.4 37.3

aS 6 0 10.1 15.2 12.8 29.3 22.4

1 9.6 11.3 11.9 23.4 20.3

8 0 12.1 17.8 14.3 31.0 20.4

1 11.2 12.9 12.5 32.2 19.4

10.4 0 8.8 11.9 10.4 22.9 15.3

1 7.1 9.0 9.1 24.8 15.8

aN 0 0 10.7 16.9 12.5 25.9 18.8

1 9.2 10.6 11.0 24.9 17.5

0.17 0 10.3 14.9 12.8 27.4 19.4

1 9.4 11.3 11.2 26.9 17.5

0.33 0 10.2 14.5 12.2 29.0 19.6

1 9.3 11.2 11.2 27.6 20.0

aR 0 0 10.7 16.9 12.5 25.9 18.8

1 9.2 10.6 11.0 24.9 17.5

2 0 10.3 15.9 12.4 26.8 18.0

1 9.4 11.3 10.8 27.0 17.8

3 0 10.2 13.5 12.6 29.6 21.1

1 9.3 11.2 11.7 27.6 19.8

f 11–13 0 9.3 13.0 12.2 25.6 10.6

1 8.6 10.0 10.5 26.8 11.2

13–15 0 8.9 13.5 10.7 24.4 18.8

1 7.3 9.4 9.8 22.9 17.5

15–17 0 11.5 17.0 13.5 30.3 23.2

1 10.7 12.4 12.2 28.8 21.9

The best results are highlighted in boldface
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Table 9 reports the average results for all instances with the same problem

characteristics. The best results are highlighted in boldface. The overall results show

that with MIPFocus set to 1 the best solutions are obtained. However, for CT-A and

small-sized instances, the solver performs better with MIPFocus set to 0.

The number of activities |I| and the level of complexity factor aS, which defines

the number of available assessors, have a significant impact on both relative gaps. In

contrast, the levels of complexity factors aN and aR, which define the no-go

relationships, have no systematic impact on the relative gaps. Parameter f

corresponds to the average duration of the activities. The performance of DT-O is

affected most by the value of f. For instances with short activities (11� f � 13), the

performance of DT-O is almost as good as the performance of CT-A. However, for

the instances with longer activities, the average gaps are much higher. Surprisingly,

such an effect is not observed with DT-P.

According to the results obtained by Koné et al. (2011) for the RCPSP, DT

formulations are better for instances with activities that have a short duration.

Although the durations of the AC activities are quite short, we do not observe similar

results for the ACP. Overall, the CT formulations provide the best solutions. A

drawback of the DT formulations may be the large number of variables (cf. Fig. 9)

which depend on the number of time points considered. In the RCPSP, the number of

variables is reduced considerably with a simple preprocessing like the definition of

earliest and latest start times for the activities. However, this preprocessing is based on

precedence relationships, which do not exist in the ACP. Considering the CT

formulations, CT-A performs best, and CT-O performs better than CT-F.

6.4 Computational results: problem-specific lower bounds

Table 10 compares the six problem-specific lower bounds presented in Sect. 5. The

last row shows the number of instances for which the different lower bounds

obtained the highest values. LB1 and LB2 each provide the highest lower bounds for

more than 90 instances. However, lower bounds that consider no-go relationships

(LB3 and LB4) only provide the highest values for a few instances. If the conditions

for LB6 hold, this lower bound provides the highest values for 22 instances.

7 Conclusions

Comparisons of alternative MIP formulations in the literature for project scheduling

problems are primarily based on generic test instances. In this study, we analyzed

the performance of two discrete-time and three continuous-time MIP formulations

Table 10 Comparison of problem-specific lower bounds

LB1 LB2 LB3 LB4 LB5 LB6

Number of instances with best lower bound 93 90 0 8 32 22
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in a real-life application of project scheduling. We considered the problem of

planning assessment centers. For this problem, we developed new MIP formula-

tions, and we provided problem-specific lower bounds. In contrast to the results

generally obtained for the RCPSP, our comparative study indicates that the CT

formulations outperform the DT formulations in terms of solution quality. However,

using the DT formulations, the best MIP-based lower bounds are obtained.

The assessment center planning problem is an interesting and challenging

optimization problem for future research. An important area is the development of

heuristic solution procedures. Preliminary versions of an MIP-based heuristic and a

list-scheduling heuristic are presented in Rihm and Trautmann (2016) and

Zimmermann and Trautmann (2015). In the MIP-based heuristic, first, the activities

are scheduled without assessor assignments; second, the assessors are assigned to

the activities using the CT formulation with resource-flow variables presented in

this study. In the list-scheduling heuristic, the activities are scheduled sequentially

based on problem-specific priority rules. The MIP formulations and the problem-

specific lower bounds presented in this paper can be used to analyze the

performance of such heuristic approaches.
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Koné O, Artigues C, Lopez P, Mongeau M (2013) Comparison of mixed integer linear programming

models for the resource-constrained project scheduling problem with consumption and production of

resources. Flex Serv Manuf J 25(1–2):25–47

Kopanos GM, Kyriakidis TS, Georgiadis MC (2014) New continuous-time and discrete-time

mathematical formulations for resource-constrained project scheduling problems. Comput Chem

Eng 68:96–106

Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for the resource-

constrained project scheduling problem based on a new mathematical formulation. Manag Sci

44(5):714–729

Naber A, Kolisch R (2014) MIP models for resource-constrained project scheduling with flexible resource

profiles. Eur J Oper Res 239(2):335–348

Pritsker AAB, Waiters LJ, Wolfe PM (1969) Multiproject scheduling with limited resources: a zero-one

programming approach. Manag Sci 16(1):93–108

Rihm T, Trautmann N (2016) A decomposition approach for an assessment center planning problem. In:

Ruiz R, Alvarez-Valdes R (eds) Proceedings of the 15th international conference on project

management and scheduling, Valencia, pp 206–209

Stefansson H, Sigmarsdottir S, Jensson P, Shah N (2011) Discrete and continuous time representations

and mathematical models for large production scheduling problems: a case study from the

pharmaceutical industry. Eur J Oper Res 215(2):383–392

Vanhoucke M, Coelho J, Debels D, Maenhout B, Tavares LV (2008) An evaluation of the adequacy of

project network generators with systematically sampled networks. Eur J Oper Res 187(2):511–524

Vielma JP (2015) Mixed integer linear programming formulation techniques. SIAM Rev 57(1):3–57

Zapata JC, Hodge BM, Reklaitis GV (2008) The multimode resource constrained multiproject scheduling

problem: alternative formulations. AIChE J 54(8):2101–2119

Zimmermann A, Trautmann N (2014) Scheduling of assessment centers: an application of resource-

constrained project scheduling. In: Fliedner T, Kolisch R, Naber A (eds) Proceedings of the 14th

international conference on project management and scheduling, Munich, pp 263–266

Zimmermann A, Trautmann N (2015) A list-scheduling approach for the planning of assessment centers.
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