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Continuously updated network
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Abstract

Pairwise and network meta-analysis (NMA) are traditionally used retrospectively to assess existing evidence. However,

the current evidence often undergoes several updates as new studies become available. In each update recommendations

about the conclusiveness of the evidence and the need of future studies need to be made. In the context of prospective

meta-analysis future studies are planned as part of the accumulation of the evidence. In this setting, multiple testing issues

need to be taken into account when the meta-analysis results are interpreted. We extend ideas of sequential monitoring

of meta-analysis to provide a methodological framework for updating NMAs. Based on the z-score for each network

estimate (the ratio of effect size to its standard error) and the respective information gained after each study enters

NMA we construct efficacy and futility stopping boundaries. A NMA treatment effect is considered conclusive when it

crosses an appended stopping boundary. The methods are illustrated using a recently published NMA where we show

that evidence about a particular comparison can become conclusive via indirect evidence even if no further trials address

this comparison.
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1 Introduction

In 1898, George Gould, the first president of the Association of Medical Librarians, presented his vision regarding
the optimal use of existing evidence. He was looking forward to a situation where ‘‘a puzzled worker in any part of
the civilized world shall in an hour be able to gain a knowledge pertaining to a subject of the experience of every
other man in the world’’.1 Highlighting the increasing information overload and the pivotal role of systematic
reviews in health care,2 Mike Clarke updated Gould’s vision in 2004, hoping for a system in which decision makers
‘‘would be able, in 15 minutes, to obtain up-to-date, reliable evidence of the effects of interventions they might
choose, based on all the relevant research.’’3

In essence Gould and Clarke call for cumulative (network) meta-analyses of randomized trials of health care
interventions.4–7 Ideally, cumulative meta-analyses are prospectively planned: investigators establish a
collaboration before the design of their trials is finalized, so that study procedures, interventions and outcomes
can be harmonized and analyses can be done as soon as the results become available.6,7 Prospectively planned
meta-analyses have the potential to reduce bias because key decisions on inclusion criteria, outcome definition and
other procedures are made a priori.7 Several prospective meta-analyses have been conducted in recent years, for
example in cardiology8,9 or oncology.10,11
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However, the vast majority of meta-analyses are not prospectively planned. Reviewers tend to update their
meta-analysis when relevant studies are published but have no direct influence over the planning of future studies.
Nevertheless, after each update they need to characterize the evidence (for a particular treatment comparison and
outcome) as conclusive or not, decide whether future updates of the evidence are needed and recommend the
realization of further studies or not. The Cochrane Collaboration has a policy about when a systematic review
should be updated.12 Updating meta-analysis (either because it is prospectively planned or because its result would
be used to form a decision about conclusiveness) involves multiple tests as evidence accumulates and effect sizes are
recalculated at each step, resulting in an inflated type I error.13–15 Sequential methods for standard pairwise meta-
analysis have been developed to account for multiple testing and adjust nominal significance.5,16–19

For many conditions, several treatment options exist and data on their comparative effectiveness are of primary
interest to clinicians. At present comparisons of one treatment with no treatment, or with placebo, continue to
dominate clinical research, and head-to-head comparisons remain uncommon. Network meta-analysis (NMA)
addresses this situation. Under the condition that studies are similar with respect to the variables that might
modify the treatment effects, NMA can synthesize evidence from trials that form a network of interventions in a
single analysis. Summary estimates of comparative effectiveness for all treatment options are thus obtained,
including treatments that have not been compared directly in head-to-head comparisons.20,21 In line with recent
calls for comparative evidence at the time of market authorization,22,23 Naci and O’Connor suggested the use
of prospective, cumulative NMA in the regulatory setting.19 Evidence on relative effects of treatments can become
conclusive even if there are no new trials that directly compare them because of new studies contributing indirect
evidence.

In this article we extend ideas of sequential monitoring of trials to provide methods for updating NMAs.
We argue that sequential methods are relevant in any setting where a decision is to be made based on the
results of an updated meta-analysis; when future studies are to be planned based on existing meta-analytic
results (prospective meta-analysis) or when decisions are made about the necessity of future updates. We
introduce cumulative NMA, discuss ways to adjust for multiple testing and recommend graphical
representations of the sequential NMA process. We then discuss how important outputs of NMA can be
monitored when updating a NMA.

2 Illustrative example: Coronary revascularization in diabetic patients

To illustrate the methodology we use a recently published NMA evaluating the optimal revascularization
technique in diabetic patients.24 The primary outcome examined is a composite of all-cause mortality, non-fatal
myocardial infarction and stroke measured using odds ratio (OR). Authors combined 15 studies examining the
effectiveness of three interventions; percutaneous coronary intervention with bare mental stent (BMS) or drug
eluting stents (DES) and coronary artery bypass grafting (CABG). For illustration purposes we consider that
NMA has been undertaken sequentially; each study included in the data as soon as it is published and the
systematic reviewers have to decide, after each update, whether future updates of the NMA are necessary to
provide a conclusive answer. This particular NMA was chosen because it examines few treatments and includes a
substantial number of studies to ensure that methods will be easily exemplified and the sequential process will be
conveniently presented. Throughout we assume that comparability between trial populations and characteristics
that may act as potential effect modifiers is justified, so that the synthesis of the planned trials in a NMA model is
sensible. The data set comprises 12 two-arm studies and three three-arm studies. NMA suggests that the best
treatment is CABG which is significantly better than BMS (OR 0.59; 95% confidence interval 0.44 to 0.78)
and marginally better than DES (OR 0.73; 95% confidence interval 0.54 to 0.98). Studies were published
between 2007 and 2013 and it would be interesting to see whether significance is sustained after correcting for
multiple testing and if yes, at which point in time the accumulated evidence was conclusive. Note that when
updating NMA the comparison of ‘BMS versus CABG’ can become statistically significant even when
‘BMS versus DES’ studies are published via indirect comparison.

In order to undertake a sequential analysis, one needs to specify type I and type II errors, as well as the
alternative hypothesis. The specification of the effect size to be detected is of crucial importance as the
alternative hypothesis should express a clinically important effect reflecting the perspectives, needs and
preferences of different individuals.15,25–28 However, determination of an effect that reflects patient perceptions
is very challenging when the primary outcome is a composite endpoint.24 For illustrative reasons, in the remainder
of the paper we will use arbitrarily (yet clinically plausible) log ORs for the three comparisons to be
�BMSvsCABG ¼ 0:28, �BMSvsDES ¼ 0:10, and �DESvsCABG ¼ 0:18; these correspond to ORs of 1.32, 1.11 and 1.20,
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respectively. In clinical applications however, we recommend the consideration of a variety of alternative
hypotheses taking into account patient preferences that may be driven by discomfort, inconvenience and risk
of adverse events.28 Note that in a NMA context, the alternative treatment effects need to be consistent (e.g. here
�BMSvsDES ¼ �BMSvsCABG � �DESvsCABG). Particular attention is needed when more than three treatments are
examined; alternative effect sizes should be determined for all comparisons in the network and consistency
between them needs to be satisfied. Clinicians who suggest values for the alternative effect sizes are often asked
to guess absolute effects for the various treatments. Consequently, the assumption of consistency would be
satisfied in practice.

3 Methods

3.1 Cumulative NMA

Consider a network of n trials forming a set P ¼ fX,Y,Z, . . .g of T competing interventions for a healthcare
condition. We assume that the evidence base is updated sequentially; each trial indexed with i ¼ 1, . . . , n enters the
analysis when its results become available. After the inclusion of each study, pairwise and NMA models are
updated and cumulative treatment effects are derived. We assume that the number and timing of interim
analyses are not known at the start of NMA and that updates take place after the publication of any new
study that meets the inclusion criteria. The method can be generalized to NMAs that are updated after more
than one studies are included.

Let l̂
D
i be the vector of all cumulative direct relative effects for each treatment comparison after the inclusion of

trial i. Vector l̂
N
i contains the respective cumulative NMA treatment effects, derived from any appropriate

statistical NMA model which integrates direct and indirect evidence and accounts for the correlation
introduced by multi-arm trials.29–31 Elements of l̂

D
i and l̂

N
i are replaced with the addition of each study i to

represent the updated treatment estimates. As evidence is accumulated and treatments are added in the evidence
base, l̂

D
i and l̂

N
i may change dimensions to include additional treatment effects with the dimension of l̂

D
i being

equal to or smaller than the dimension of l̂
N
i . In the last step l̂

D
i and l̂

N
i will contain at most

T
2

� �
treatment

effects and will be denoted as l̂
D and l̂

N respectively; note that the dimensions of l̂
D and l̂

N will be exactly
T
2

� �
in

a fully connected network. We may focus on each element of l̂
D
i and l̂

N
i or restrict ourselves to a subset of

comparisons that are of more interest. Reasons to restrict the set of comparisons of interest may include the

establishment of their comparative effectiveness or safety, their association with adverse events or even the

withdrawal of certain treatments from the market. Consider for instance the comparison ‘Y versus X’; �̂D
i,XY

and �̂N
i,XY denote the respective cumulative direct and NMA treatment effects with standard errors se �̂D

i,XY

� �
and se �̂N

i,XY

� �
where X,Yð Þ 2 P and i index the last study introduced. Similarly to cumulative pairwise meta-

analysis, a cumulative NMA is a mechanism of displaying the cumulative NMA treatment effects �̂N
i,XY along with

their confidence intervals for i ¼ 1, . . . , n in a table or in a plot. Each ‘Y versus X’ NMA cumulative effect is
modified not only when a study comparing the particular set of treatments is performed, but also when indirect
evidence that informs the ‘Y versus X’ comparison becomes available. From this point we will focus on �̂N

i,XY to
illustrate the sequential methodology for NMA estimates. The developments equally apply to any element of l̂

N
i

as well as to the direct cumulative estimates.

3.2 Assumptions underlying the updating of NMA

The justification of similarity in effect modifiers is important to ensure the plausibility of the transitivity
assumption after each update of the network.19,20,32 Throughout, we assume that the transitivity assumption is
epidemiologically evaluated and deemed reasonable. The consistency assumption is the statistical manifestation of
transitivity and lies on the statistical agreement between different sources of evidence.33 A statistical test for
inconsistency can be monitored as soon as its evaluation is possible, that is when a closed loop (not composed
only by multi-arm trials) is formed. Large amounts of inconsistency should prohibit a joint synthesis of the data
and explore the differences between the various sources of evidence. However, the power of inconsistency tests
might be low even after the inclusion of several studies in NMA.34,35 In collaborative prospective NMAs
inconsistency is likely to be avoided through the efforts of the researchers to ensure the comparability of the
studies and maximize the chances of transitivity.
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We adopt a random effects NMA model and we assume a network specific heterogeneity variance �2. One could
re-estimate the heterogeneity variance at each step of the analysis; this process would be associated with poor
estimation of heterogeneity while the number of included studies is small.36,37 To overcome this limitation we
choose to inform the unknown heterogeneity parameter by predictive distributions conditional on the type of
outcome and treatment comparison based on findings from previous meta-analyses.38,39 In order to account for
uncertainty in the imputations of the heterogeneity parameter, we suggest the use of the 25th, the 50th and the 75th
quantiles of the respective predictive distribution of heterogeneity formulated in Turner et al. (for binary
outcomes) and Rhodes et al. (when continuous outcomes are assessed).38,39 Setting a priori an expected value
for heterogeneity might be more appropriate in the setting of prospective meta-analysis as studies are prospectively
designed and their inclusion criteria are similar. Alternative strategies for heterogeneity, such as the re-estimation
of heterogeneity after a sizeable number of included studies, could be applied.

3.3 Z-score and relevant information of cumulative network estimates

The cumulative network estimate �̂N
i,XY is assumed to approximately follow the normal distribution �̂N

i,XY �

N
�
�N
i,XY,

�
�Ni,XY

�2�
; we assume variances

�
�Ni,XY

�2
to be known and equal to the sampling variances, denoted as

se
�
�̂N
i,XY

�2
. The null hypothesis H0 : �N

i,XY ¼ 0 is tested using the statistic

ZN
i,XY ¼

�̂N
i,XY

se �̂N
i,XY

� � � N 0, 1ð Þ

which we refer to as z-score. It is rejected if ZN
i,XY

��� ��� � z1�a
2
for a two-sided test where the value z1�a

2
is the 1� a

2
quantile of the N 0, 1ð Þ distribution.

Several approaches have been suggested for measuring information in pairwise meta-analysis; we adopt an
approach which is directly related to the precision of the meta-analytic estimates and consequently to the amount
of evidence accumulated.5,15,40,41 According to that approach the information contained within each comparison
in the network can be measured as

INi,XY ¼
1

se �̂N
i,XY

� �

We will conventionally refer to INi,XY as the ‘amount of information’. Plotting the z-score versus the amount
of information at each update i provides a visualization of the accumulation of evidence for the network
estimate ‘Y versus X’.

3.4 Construction of efficacy stopping boundaries

Several methods have been proposed to control type I error in clinical trials when multiple looks at the data are
taken through the construction of stopping boundaries for deciding whether or not to reject the null hypothesis.
These methods include the Haybittle-Peto method, the Pocock boundaries and the O’Brien-Flemming monotone
decreasing boundaries.42 Application of different stopping boundaries can lead to different conclusions regarding
early stopping of a clinical trial in an interim analysis. It has been suggested that the O’Brien-Flemming method is
more close to the behavior of data monitoring committees who require a great beneficial effect to stop a trial at
an early stage.43 An important problem associated with standard sequential methods is the necessity to define the
number of interim analyses at the beginning and the requirement of equally spaced interim analyses.
These problems are handled by the introduction of alpha spending functions which extend group sequential
designs to allow flexibility in the number and timing of interim analyses.44 An alpha spending function a tð Þ
describes the rate at which the total significance level is spent at each intermediate testing; information fraction
t indicates the proportion of the information that has been accumulated.

Appending efficacy boundaries to the
�
ZN

i,XY, INi,XY
�
plane can lead to a stopping framework when updating

NMA. We adopt the continuous alpha spending function which resembles the O’Brien-Flemming boundaries,
defined as

a tNi,XY

� �
¼ 2 1�� z1�a

2

. ffiffiffiffiffiffiffiffiffi
tNi,XY

q� �� �
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where � represents the cumulative standard normal distribution.42,44 The parameter tNi,XY 2 0ð , 1� indicates the

position in the analysis regarding the accumulated information and is calculated as tNi,XY ¼
IN
i,XY

IN
max,XY

.

As the total amount of information that will be employed is unknown, the specification of INmax,XY needs to rest
on assumptions. In order to specify the respective quantity in a sequential framework for pairwise meta-analysis,
Wetterslev et al. assume that studies are approximating one big trial and follow conventional calculations made in
sequential analysis of individual trials.41 Higgins et al. use values obtained from the O’Brien and Flemming design
for specific values of the alternative effect size, type I and type II errors.15 We specify INmax,XY following
conventional power calculations, imposing consistency between alternative effect sizes, �XY, for all comparisons
involved in the network and taking into account the multiplicity induced by multiple comparisons. Specifically,
INmax,XY is derived as the information that would be needed in an adequately powered multi-arm trial. As se

�
�̂N
i,XY

�
involves the estimation of heterogeneity, INi,XY and tNi,XY are also affected by the heterogeneity value. In particular,

larger heterogeneity values are associated with smaller INi,XY and tNi,XY with the respective meta-analytic estimates

occupying places which are further to the left in the
�
ZN

i,XY, INi,XY
�
plane. Details on derivation of INmax,XY can be

found in Appendix A1.

The alpha spending function is used to allocate a portion of the total a to each ZN
i,XY. The efficacy boundaries

EN
i,XY are the quantiles corresponding to a

�
tNi,XY

�
=2. If ZN

i,XY crosses the boundaries (�EN
i,XY, E

N
i,XYÞ the meta-

analysis has reached a conclusive answer for the ‘Y versus X’ comparison. Note that even when a NMA effect
estimate is deemed conclusive, indirect evidence may continue to feed into that particular comparison if the rest of
the comparisons in the network do not contain sufficient evidence to infer about their conclusiveness. Similarly, a
NMA effect estimate is updated and might reach conclusiveness even in the absence of trials addressing that
particular comparison because of indirect evidence. A counter-intuitive situation can occur when a conclusive
result becomes inconclusive in the next update. This could be the result of an important increase in heterogeneity
or inconsistency leading to less precise effect estimates when data is synthesized using the random effects approach.
In such situations, formal exploration and interpretation of sources of variability is required before inclusion of the
new evidence in warranted updating of the network.

Figure 1 panel a presents the
�
ZN

i,XY, INi,XY
�
plane of a fictional example where nine studies are synthesized

sequentially and conclusiveness is achieved after eight studies for a ¼ 0:05. The
�
ZN

i,XY, INi,XY
�
plane along with the

derived efficacy stopping boundaries can equivalently be presented by repeated confidence intervals on the
estimates of the summary effects as �̂N

i,XY � EN
i,XYse

�
�̂N
i,XY

�
.44,45 The repeated confidence interval would include

0 when jZN
i,XYj � EN

i,XY. This particular representation provides the same information regarding stopping decisions

Figure 1. Panel a: Hypothetical stopping framework for efficacy and futility. Futility here means that Y will not be shown better than

X by more than 0.5 effect size. Panel b: Hypothetical forest plot with repeated confidence intervals (dotted lines).
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while it offers the advantage of displaying the NMA stopping framework in a forest plot along with the effect
estimates15 as shown in Figure 1 panel b.

3.5 Construction of futility stopping boundaries

Future updates of NMA can be considered unnecessary when there are early signs of efficacy or because it is
considered unlikely that the relative superiority of a treatment will be shown in subsequent steps of analysis. Such
decisions in clinical trials are known as stopping for futility.46 Roughly, there are four major methods used to stop
further experiments for futility: conditional power, predictive power—which is the analogue of conditional power
in Bayesian analysis—, construction of triangular regions—also known as sequential probability ratio tests—, and
beta spending functions.46–48 We choose to transfer the later method for stopping for futility in NMA because of
its analogy to the alpha spending functions and its convenient visualization along with the efficacy boundaries in
the

�
ZN

i,XY, INi,XY
�
plane. Note that the use of conditional power in NMA has been considered elsewhere.49

We adopt a method described by Lachin to determine futility boundaries.50 Without loss of generality we
assume that positive values of �̂N

i,XY represent a relative advantage of treatment Y. We consider that a study is
futile if it cannot show that Y is better than X with an effect size of at least fXY. The treatment effect parameter fXY
is an additive measure and should be defined so that it represents a clinically significant advantage of Y over X.
Then, a decision to stop for futility can be specified if the upper confidence limit of the interim effect estimate

�̂N
i,XY þ

z1�a
2

.
INi,XY

does not exceed the pre-defined value fXY. It turns out that the futility confidence limit is

equivalent to the determination of a futility stopping boundary for the interim ZN
i,XY value. Then, the futility

stopping rule for a relative advantage of Y over X can be expressed as

ZN
i,XY 5 fXY INi,XY � z1�a

2

and we define the futility boundaries for Y over X on the
�
ZN

i,XY, INi,XY
�
plane as FN

i,XY ¼ fXY INi,XY � z1�a
2
. Note that

while fXY is constant throughout the analysis, FN
i,XY depends on the amount of information accumulated at the ith

update.
The value fXY could be set equal to �XY employed in power calculations. Values of clinical significance fXY

should be chosen so as to satisfy consistency; that is for a triangular network that includes treatments X, Y and Z,
we need to specify the respective values for only two out of the three treatment comparisons. If we specify fXY and
fXZ it turns out that the value of clinical significance for the comparison ‘Z versus Y’ is fXZ � fXY. In the
hypothetical example illustrated in Figure 1 panel a we present the futility boundary for the case that we
expect Y being better than X with an effect size of at least 0.5 which results to a decision of stopping for
futility after the inclusion of the third study.

It has been shown that under the alternative hypothesis fXY 6¼ 0, stopping for futility inflates type II error.51

A common solution to this limitation is the delay in making inferences regarding stopping for futility in the
updating procedure, for instance appending futility boundaries only after at least half of the total planned
information has been accumulated (that is at tNi,XY � 0:5).50 The vertical line in Figure 1 panel a indicates this
point in the analysis which is termed ‘half-information futility assessment’.

3.6 Other network characteristics to be monitored

Monitoring changes in the conclusions from NMA should be accompanied by an evaluation in changes in the
inconsistency and heterogeneity (if re-estimated at each update) so as to put results into context. Investigators
planning NMA should make sure that the inclusion criteria of the studies ensure their comparability and maximize
the chances of transitivity and that the distribution of effect modifiers is comparable across treatment comparisons.
However, even after careful planning, there is always the possibility of inconsistency in the assembled data.20,52

Thus, we consider that in each update of NMA an estimation of inconsistency is included; here, we consider the
cumulative performance of the loop specific approach.53 Taking into account the low power of tests for
inconsistency, we do not recommend adjusting for multiple testing.34,35 Any signs of inconsistency in interim
stages should be explored and the inclusion of new evidence should be carefully reconsidered.

Monitoring changes in the treatment ranking might also be useful in particular in large networks where many
treatments are compared. Probabilities for each treatment being at each possible rank can be obtained and the
surface under the cumulative ranking probabilities (SUCRAs) and their equivalent P-scores or mean ranks can
be illustrated in graphs.54,55 As these measures are based on the estimated summary effects at each update,
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their uncertainty should be expressed by the repeated confidence intervals while P-scores could be based on the
adjusted p values.

4 Application

We apply our methodology to the network of trials for coronary revascularization in diabetic patients.24 Arm level
data for the 15 studies along with the year of publication and the respective ORs are given in Appendix Table 1.
For a ‘non-pharmacological versus any’ intervention comparison type and a semi-objective outcome a log-normal
distribution for heterogeneity �2 � LN �2:89, 1:912

� �
has been recommended corresponding to 25th, 50th and

75th quantiles � ¼ 0:12, � ¼ 0:24, and � ¼ 0:45 respectively (Appendix Figure 4).39 We adopt a significance level
of � ¼ 0:05 and a type II error b ¼ 0:1. Using the alternative effect sizes described in section 2 we estimate the
maximum information needed to detect them as INmax,BMSvsCABG ¼ 13:24, INmax,BMSvsDES ¼ 38:56, and
INmax,DES vsCABG ¼ 20:16. To derive futility boundaries we assumed fXY values equal to the alternative effect sizes;
that is we consider it is futile to continue undertaking trials if we cannot show that CABG is better than
DES and BMS with log ORs 0:18 and 0:28, respectively. From consistency it follows that fBMSvsDES ¼ 0:10
(in favor of DES).

4.1 Description of the accumulation of evidence

When evidence is updated regularly, researchers perform both pairwise and NMA and evaluate the criteria of
stopping early for efficacy or futility for both procedures. Appendix Figure 5 shows the cumulative pairwise and
NMA effect estimates along with their confidence and predictive intervals after the inclusion of each study.

Figure 2 shows the stopping framework for the three evaluated comparisons in the network assuming a
heterogeneity standard deviation equal to the median of the predictive distribution, � ¼ 0:24.

While inference regarding the comparison ‘BMS versus CABG’ is inconclusive using evidence only from the
four trials providing direct evidence this is not the case for the accumulated evidence from NMA. More
specifically, the 13th study was conducted in December of 2012 and examined the relative effectiveness of DES
compared to CABG. This study informs the comparison ‘BMS versus CABG’ indirectly leading to a conclusion
that further research is not needed for that particular comparison. Note that the comparison ‘BMS versus CABG’
would have become marginally significant after the inclusion of the 12th study in an unadjusted cumulative NMA
as the respective ‘z-score’ lies on the dotted boundary which represents conventional stopping. The inclusion of
nearly half of the included studies rendered the ‘DES versus CABG’ comparison statistically significant in favor of
DES in an unadjusted cumulative NMA; adjusting for multiple testing though, both ‘DES versus BMS’ and ‘DES
versus CABG’ comparisons remain inconclusive using either pairwise meta-analysis or NMA (Figure 2).

For all three comparisons, the accumulated data do not cross the futility boundaries so no decision over
stopping for futility is being made throughout the updating process of NMA or pairwise meta-analysis.

During the updating process, the inclusion of the 13th study would lead investigators to reach conclusive results
about the relative effectiveness of one out of the three evaluated comparisons indicating that CABG is better than
BMS. After the inclusion of 15 studies, DES would appear to have an insignificant advantage over BMS and
CABG a non-statistical significant benefit over DES. As INmax,BMSvsDES and INmax,DES vsCABG would not have been
reached, studies would continue to be performed (if the particular comparisons were still of interest).

The information regarding stopping for efficacy using results from pairwise meta-analysis or NMA given in
Figure 2 can also be visualized in the form of repeated confidence intervals (Appendix Figure 6).

Assuming a 25th and 75th quantile of the predictive distribution for heterogeneity instead of the median in our
calculations does not markedly change the conclusions of the stopping framework (Appendix Figure 7 and
Appendix Figure 8). The influence of the 13th study continues to be pronounced in the stopping decisions. In
general, greater values of heterogeneity render the repeated confidence intervals larger and consequently stopping
for efficacy is less likely to occur.

Appendix Figure 9 shows the cumulative estimates of the inconsistency factor for the loop ‘DES-BMS-CABG’.
It suggests that the initial inconsistency factor of 1.34 (on a logOR scale) in 2007 was decreased to 0.84 in 2009 and
finally to a relatively small inconsistency factor of 0.26 in 2013. The confidence intervals become smaller as more
studies are included and, although the method is underpowered, initial concerns that the network might be
inconsistent are challenged.

We calculate the SUCRAs of the three treatments in each interim analysis allowing for uncertainty expressed by
the repeated confidence intervals. Cumulative estimation of SUCRAs is illustrated in Figure 3. Repeated SUCRAs
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Figure 2. Stopping framework for efficacy (solid lines) and futility (dashed lines) for the network of coronary revascularization in

diabetic patients. Maximum information is not displayed in the graphs as it is everywhere larger than 10. Heterogeneity standard

deviation is assumed to be equal to the median of the predictive distribution, � ¼ 0:24. Black circles indicate that the latest update

comes from a study with direct evidence; blue circles indicate that the latest update comes from indirect evidence and red circles

indicate that the latest update comes from a three-arm trial (both direct and indirect evidence). Stopping for efficacy is taking place if

observations are outside the efficacy boundaries. The arrow on the Y-axis indicates the side of the futility boundary that suggests

stopping. Conventional significance thresholds are represented with dotted lines.
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are relatively close to each other in the first years of the sequential NMA while their distinction is growing as
evidence is accumulated.

It is important to note that the assumptions feeding into the analysis (values for heterogeneity, type I and type
II error, alternative effect sizes) may not be universally acceptable to all health-care professionals and patients.
Thus, results from a sequential NMA should be interpreted in the light of such decisions. Moreover, firm
recommendations on the need of further studies should take into account that new studies might be useful for
the examination of a secondary outcome; indeed Tu et al. point out that although CABG seems to be better than
BMS and DES in terms of the primary outcome, it is associated with an increased risk of stroke and might not be
preferred for patients at high risk of such an event.24 In that case, it is even more important to avoid undertaking
further trials that involve CABG because its superiority has been established and further experimentation might be
deemed unethical. Instead, indirect evidence, e.g. by planning more ‘BMS versus DES’ studies, should be sought
for all comparisons of interest. In general, clinical judgment considering several outcomes that might be of interest
to patients is necessary to evaluate which intervention is appropriate to which patient group.

5 Discussion

We suggest formal statistical monitoring when decisions need to be made every time a MMA is updated. The
outlined method is adopted from the respective methodologies developed for clinical trials and pairwise meta-
analyses. We consider two situations in which our methodology can be appropriate; in both situations the analyses
of studies are performed as their results become available. The first one is the prospective design of a NMA at the
time of market entry of a new drug as suggested by Naci and O’Connor.19 In contrast to the current practice that
drug approval often relies on the evaluation of each drug in placebo-controlled trials, such a procedure would feed
regulatory agencies with the optimal level of evidence regarding the comparative efficacy and safety of the new
drug. The establishment of designing prospective NMAs in the regulatory setting may be challenged by the
potential reluctance of manufacturers to compare their treatments with all competing alternatives, which might
lead to selective inclusion of pieces of evidence. Moreover, efforts to reduce the cost of performing a series of trials
might lead to postponing the design of prospective NMA until a competing company has collected enough

Figure 3. Accumulated SUCRAs for the network of coronary revascularization in diabetic patients. Heterogeneity standard

deviation is assumed to be equal to the median of the predictive distribution, � ¼ 0:24. SUCRA: surface under the cumulative ranking

probabilities.
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relevant evidence. Informing policy decision-making by health technologies assessments could also include an
evaluation of the sufficiency of included evidence using methods described in this paper.

The second context that our method can be used in is the regular update of systematic reviews that contain
multiple treatments when new trials become available. Application of the statistical monitoring is of particular
interest to organizations that produce and maintain systematic reviews such as the Cochrane Collaboration. As the
main aim of the Cochrane Collaboration is to provide the best available and most up-to-date evidence, authors not
only prepare systematic reviews but are also committed into updating them. This commitment aims to minimize
the risk of the reviews to become out-of-date and potentially misleading. Frequent updates of systematic reviews,
however, can result in an inflated type I error, in a similar manner as in a genuinely prospective NMA.

Appending a stopping rule to the meta-analysis context has received considerable criticism.15,56 In particular,
expressed concerns highlight the lack of direct control over the process of collecting and synthesizing studies in the
sense that the meta-analyst is not in a position to decide whether more trials are to be conducted or not. We
consider the formal statistical monitoring to be relevant for situations in which a researcher can have control—or
at least provide recommendations—over future updates of the meta-analysis.

Our methods are similar to those proposed by Whitehead and Higgins et al. for pairwise meta-analyses,
extended to the case where multiple treatments are competing.5,15 Whitehead has developed a sequential
method for meta-analysis using the triangular test in a series of concurrent clinical trials and Higgins et al.
focused on the restricted procedure of Whitehead, equivalent to an O’Brien and Flemming boundary.5,15

Wetterslev et al. have developed an alternative sequential method for pairwise meta-analysis41; they have also
created software (www.ctu.dk/tsa) which has been largely applied in practice and they argue that their
methodology should be adopted by Cochrane authors.25 Their approach has technical and conceptual
similarities and dissimilarities with that proposed by Higgins et al.15,25 For instance, Wetterslev et al. adjust the
required sample size by a factor that depends on the estimated heterogeneity. As estimation of heterogeneity is
difficult at the beginning of the sequential process, the estimate at the final update is employed. This is something
that can be feasible only on retrospective cumulative meta-analysis. Higgins et al. explores several ways to handle
heterogeneity in a sequential random-effects meta-analysis approach including incorporating a prior distribution
for the between-studies variance parameter. They argue in the discussion that ‘‘further empirical research is needed
to characterize the degree of heterogeneity that can be anticipated in a meta-analysis with particular clinical and
methodological features, so that realistic informative prior distributions can be formulated.’’15 As such empirical
research has been conducted since then,38,39 we here employ informative priors for the heterogeneity variance.

Whitehead suggests that the sequential procedure in meta-analysis may be more justifiable for safety outcomes
while Higgins et al. propose the area of adverse effects of pharmacological interventions as a potential application
of sequential methods.5,15 Whether the proposed methods work well in the context of rare events is an issue that
remains to be investigated. It has been argued that when a major adverse event is rare it might be inappropriate to
control over inflated type I error as even a small signal could be sufficient for the meta-analysis to ‘stop’.5 In any
case, the practice of accumulating evidence in a formal way becomes even more imperative in the context of rare
events.

6 Concluding remarks

The evolvement of technology can decisively contribute to the realization of living systematic reviews—the high
quality, up-to-date online summaries, updated as new research become available—by providing semi-automation
to the production process. The inclusion of all available treatment options in such ‘real-time’ syntheses has been
termed as ‘‘live cumulative network meta-analysis’’ and can further facilitate informed research prioritization and
decision-making.57 Development, refinement, and evaluation of appropriate statistical methodology as well as
guidance over the optimal update of systematic reviews can aid the attempt of living systematic reviews and live
cumulative NMA to bridge the gap between research evidence and health care practice.4

Methodology described in this paper should ideally be viewed as part of a holistic framework for strengthening
existing evidence by judging when evidence summaries provide conclusive answers,28,58 planning new studies when
needed27,49,58,59 and subsequently updating meta-analysis to include the—assumed justified—future studies. While
methodological developments regarding parts of this process have appeared in the literature, they are rarely used
in practice. In order to shift the paradigm to evidence-based research planning, methodology needs to be refined
and summarized in a comprehensive global framework while its properties need to be evaluated in real world
examples. The development of user-friendly software routines along with educational material could also
contribute to the usefulness and applicability of the methodology.

Nikolakopoulou et al. 1321

www.ctu.dk/tsa


Acknowledgements

The authors thank the reviewers for their helpful comments, which greatly improved this paper.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article:

GS received funding from a Horizon 2020 Marie-Curie Individual Fellowship (Grant no. 703254). AN, DM and ME received

no financial support for this article.

References

1. Gould GM. The work of an association of medical librarians. 1898. Bull Med Libr Assoc 1998; 86: 223–227.

2. Egger M, Smith GD and Altman DG. Systematic reviews in health care: meta-analysis in context. London: BMJ Books,

2001.

3. Clarke M. Doing new research? Don’t forget the old. PLoS Med 2004; 1: e35.
4. Elliott JH, Turner T, Clavisi O, et al. Living systematic reviews: an emerging opportunity to narrow the evidence-practice

gap. PLoS Med 2014; 11: e1001603.
5. Whitehead A. A prospectively planned cumulative meta-analysis applied to a series of concurrent clinical trials. Stat Med

1997; 16: 2901–2913.
6. Turok DK, Espey E, Edelman AB, et al. The methodology for developing a prospective meta-analysis in the family

planning community. Trials 2011; 12: 104.
7. Ghersi D and Berlin JAL. Chapter 19. Prospective meta-analysis. In: Higgins JPT and Green S (eds) Cochrane handbook

for systematic reviews of interventions. Chichester: Wiley-Blackwell, 2011, pp.559–570.
8. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of

data from 90,056 participants in 14 randomised trials of statins. Lancet 2005; 366: 1267–1278.
9. Chen ZM, Sandercock P, Pan HC, et al. Indications for early aspirin use in acute ischemic stroke: a combined analysis of

40000 randomized patients from the chinese acute stroke trial and the international stroke trial. On behalf of the CAST and

IST collaborative groups. Stroke J Cereb Circ 2000; 31: 1240–1249.
10. Nitti D, Wils J, Dos Santos JG, et al. Randomized phase III trials of adjuvant FAMTX or FEMTX compared with surgery

alone in resected gastric cancer. A combined analysis of the EORTC GI Group and the ICCG. Ann Oncol Off J Eur Soc

Med Oncol ESMO 2006; 17: 262–269.
11. Efficacy of adjuvant fluorouracil and folinic acid in colon cancer. International Multicentre Pooled Analysis of Colon

Cancer Trials (IMPACT) investigators. Lancet Lond Engl 1995; 345: 939–944.
12. Takwoingi Y, Hopewell S, Tovey D, et al. A multicomponent decision tool for prioritising the updating of systematic

reviews. BMJ 2013; 347: f7191.
13. Berkey CS, Mosteller F, Lau J, et al. Uncertainty of the time of first significance in random effects cumulative meta-

analysis. Control Clin Trials 1996; 17: 357–371.
14. Borenstein M, Hedges LV, Higgins JPT, et al. Cumulative meta-analysis. In: Introduction to meta-analysis. Chichester, UK:

John Wiley & Sons, Ltd, 2009, pp.371–376.
15. Higgins JPT, Whitehead A and Simmonds M. Sequential methods for random-effects meta-analysis. Stat Med 2011; 30:

903–921.

16. Hu M, Cappelleri JC and Lan KKG. Applying the law of iterated logarithm to control type I error in cumulative meta-

analysis of binary outcomes. Clin Trials Lond Engl 2007; 4: 329–340.

17. Brok J, Thorlund K, Wetterslev J, et al. Apparently conclusive meta-analyses may be inconclusive—trial sequential

analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive

neonatal meta-analyses. Int J Epidemiol 2009; 38: 287–298.
18. Kulinskaya E and Wood J. Trial sequential methods for meta-analysis. Res Synth Methods 2014; 5: 212–220.

19. Naci H and O’Connor AB. Assessing comparative effectiveness of new drugs before approval using prospective network

meta-analyses. J Clin Epidemiol 2013; 66: 812–816.
20. Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many

benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods 2012; 3: 80–97.
21. Caldwell DM, Ades AE and Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect

evidence. BMJ 2005; 331: 897–900.

1322 Statistical Methods in Medical Research 27(5)



22. Sorenson C, Naci H, Cylus J, et al. Evidence of comparative efficacy should have a formal role in European drug
approvals. BMJ 2011; 343: d4849.

23. O’Connor AB. Building comparative efficacy and tolerability into the FDA approval process. JAMA 2010; 303: 979–980.

24. Tu B, Rich B, Labos C, et al. Coronary revascularization in diabetic patients: a systematic review and Bayesian network
meta-analysis. Ann Intern Med 2014; 161: 724–732.

25. Higgins J. COMMENT on ‘Trial sequential analysis: methods and software for cumulative metaanalyses’ by Wetterslev
and colleagues. Cochrane Database Syst Rev 2012; (Suppl 1): 1–56.

26. Jennison C and Turnbull BW. Group sequential methods with applications to clinical trials. 1st edition. Boca Raton, FL:
Chapman and Hall/CRC, 1999.

27. Roloff V, Higgins JPT and Sutton AJ. Planning future studies based on the conditional power of a meta-analysis. Stat Med

2013; 32: 11–24.
28. Ferreira ML, Herbert RD, Crowther MJ, et al. When is a further clinical trial justified? BMJ 2012; 345: e5913.
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Appendix

A1 Specification of maximum information

We aim to specify the maximum information needed, Imax, and consequently the required amount of evidence
contained in a synthesis of a series of trials.

A1.1 Pairwise meta-analysis

The power that would be obtained in a pairwise meta-analysis using a two-sided test with information IDmax,XY is

Power ¼ 1� b ¼ 1�� z1�a
2
� �XY IDmax,XY

� �
þ� za

2
� �XY IDmax,XY

� �
¼ � za

2
þ �XY IDmax,XY

� �
þ� za

2
� �XY IDmax,XY

� �

A common approximation claims that when �XY IDmax,XY � 1 the term � za
2
� �XY IDmax,XY

� �
is practically zero.

Following this approximation it follows that

Power ¼ � za
2
þ �XY IDmax,XY

� �

implying that

z1�b ¼ za
2
þ �XY IDmax,XY

where zx is the x quantile of the N 0, 1ð Þ distribution. Consequently, it holds that
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Appendix Table 1. Data of the network of coronary revascularization in diabetic patients.

Study

Publication

time

Set of treatments

compared

Treatment Events Sample size

OR (95% CI)X Y X Y X Y

1. Jlmenez-Quevedo August 2007 ‘DES vs. BMS’ DES BMS 7 12 80 80 0.54 (0.20, 1.46)

2. Rodriguez September 2007 ‘DES vs. BMS vs. CABG’ DES CABG 11 6 47 39 1.68 (0.56, 5.05)

2. Rodriguez September 2007 ‘DES vs. BMS vs. CABG’ DES BMS 11 5 47 39 2.08 (0.65, 6.60)

2.Rodriguez September 2007 ‘DES vs. BMS vs. CABG’ BMS CABG 5 6 39 39 0.81 (0.22, 2.91)

3. Kirtane February 2008 ‘DES vs. BMS’ DES BMS 58 68 408 419 0.86 (0.58, 1.25)

4. Maresta June 2008 ‘DES vs. BMS’ DES BMS 14 16 75 75 0.85 (0.38, 1.89)

5. Booth July 2008 ‘BMS vs. CABG’ BMS CABG 7 9 68 74 0.83 (0.29, 2.36)

6. Chan November 2008 ‘DES vs. BMS’ DES BMS 2 4 54 29 0.24 (0.04, 1.40)

7. Calxeta September 2009 ‘DES vs. BMS’ DES BMS 40 37 195 233 1.37 (0.83, 2.24)

8. Kapur February 2010 ‘DES vs. BMS vs. CABG’ BMS CABG 13 26 82 248 1.61 (0.78, 3.30)

8. Kapur February 2010 ‘DES vs. BMS vs. CABG’ DES CABG 20 26 172 248 1.12 (0.61, 2.09)

8. Kapur February 2010 ‘DES vs. BMS vs. CABG’ DES BMS 20 13 172 82 0.70 (0.33, 1.48)

9. Mauri December 2010 ‘DES vs. BMS’ DES BMS 35 19 555 132 0.40 (0.22, 0.73)

10. Onuma March 2011 ‘DES vs. BMS vs. CABG’ DES BMS 25 28 159 112 0.56 (0.31, 1.02)

10. Onuma March 2011 ‘DES vs. BMS vs. CABG’ DES CABG 25 16 159 96 0.93 (0.47, 1.85)

10. Onuma March 2011 ‘DES vs. BMS vs. CABG’ BMS CABG 28 16 112 96 1.67 (0.84, 3.31)

11. Park May 2011 ‘DES vs. CABG’ DES CABG 12 9 102 90 1.20 (0.48, 2.30)

12. Sinning March 2012 ‘DES vs. BMS’ DES BMS 30 30 95 95 1.00 (0.54, 1.84)

13. Farkouh December 2012 ‘DES vs. CABG’ DES CABG 253 177 953 947 1.57 (1.26, 1.95)

14. Kamalesh February 2013 ‘DES vs. CABG’ DES CABG 27 19 101 97 1.50 (0.77, 2.92)

15. Kappeteln May 2013 ‘DES vs. CABG’ DES CABG 54 39 231 221 1.42 (0.90, 2.26)
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Appendix Figure 4. Predictive distribution (log-normal ð�2:89, 1:912Þ: median¼ 0:056; 95% range ð0:001 to 2:35Þ) for

heterogeneity variance �2 for a semi-objective outcome type and a non-pharmacological versus any intervention comparison type

plotted on log scale.
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IDmax,XY ¼
z1�b � za

2

�XY

Assuming b ¼ 0:10, a ¼ 0:05, and �XY ¼ 0:1, it turns out IDmax,XY ¼ 36:76. For any other values of b, a, and �XY,
the maximum information can be calculated accordingly.

A.1.2 Network meta-analysis

Specifying the required information in the NMA setting, one needs to take into account the consistency between
alternative effect sizes, �XY, and adjust the significance level to account for the fact that multiple comparisons are
examined simultaneously. Thus, for a triangular network involving treatments X, Y, and Z we calculate
the information needed as the information that would be needed in an adequately powered three-arm trial.
We specify alternative effect sizes, �XY, �XZ, and �XZ � �XY for comparisons ‘Y versus X’, ‘Z versus X’ and
‘Z versus Y’, respectively. It follows that the maximum information needed for each evaluated comparison is
calculated as

INmax,XY ¼
z1�b � za

6

�XY
, INmax,XZ ¼

z1�b � za
6

�XZ
, INmax,YZ ¼

z1�b � za
6

�XZ � �XY

where za
6
has been adjusted using the Bonferroni correction. The total INmax required in the NMA is obtained as

INmax ¼
INmax,XY þ INmax,XZ þ INmax,YZ

2

Bonferroni correction might turn out to be conservative and other, more powerful, multiplicity adjustments could
be alternatively applied.60 In special prospective NMA contexts, where there is a strong dependence between tested
hypotheses, e.g. when multiple doses or different schedules of a treatment are compared, an omnibus test could be
applied to test simultaneously all hypotheses of interest in the network.61,62 The way in which a formal stopping
rule could be appended in an omnibus test is to be investigated. In most NMA applications, though, investigating
all or a subset of comparisons of interest separately would be of more interest than making a decision of stopping
or continuing the entire NMA.

A2 Monitoring using predictions

The idea of using previously available evidence to inform a statistical model falls naturally within the Bayesian
philosophy.63,64 Monitoring sequential trials is considered an area of clear distinction between frequentist and
Bayesian approaches and it has been said to reach ‘‘to the very foundations of the two paradigms’’.65,66 Under a
Bayesian perspective one can use probabilities derived from posterior distributions of the treatment effects in order
to monitor clinical trials.65 For instance it might be decided to terminate a trial when the posterior probability of a
treatment benefit is within a specific range. However, some argue that these probabilities should not formulate
strict stopping criteria.65 This argument comes from the opinion that clinical trials can provide inferences but is
unrealistic to place them in a decision theoretic context.65,67 Various Bayesian methods for monitoring trials have
been proposed and could be extended to pairwise meta-analysis and NMA but have been found to have poor
frequentist properties in terms of inflated type I error.68

A2.1 Application

In Appendix Figure 5, red lines with the extended dotted intervals represent the cumulative NMA effects along
with their confidence and predictive intervals. The respective pairwise meta-analysis results—effects estimates,
confidence, and predictive intervals—are shown in the graph as black and extended dotted lines. Predictive
intervals for the three comparisons imply that in a future study, the underlying effect size might be in favor of
either intervention. It should be pointed out that predictive intervals do not account for repeated updates and
make strong assumptions about the comparability of new data to the existing. Therefore, their use is restricted on
inference and interpretation of NMA effects and they are not constructed for guiding stopping decisions.
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Appendix Figure 6. Cumulative pairwise (black) and network meta-analysis (red) estimates for the three comparisons in the

network of coronary revascularization in diabetic patients along with repeated confidence intervals (dotted lines). Heterogeneity

standard deviation is assumed to be equal to the median of the predictive distribution, � ¼ 0:24. Exclusion of line of no effect from the

repeated confidence interval suggests that the particular comparison provides conclusive evidence after adjusting for multiple testing.

Effects are measured as log odds ratios and are given in Appendix Figure 5. RCI: repeated confidence intervals.

Appendix Figure 5. Cumulative pairwise (black) and network meta-analysis (red) estimates for the three comparisons in the

network of coronary revascularization in diabetic patients along with predictive intervals (dotted lines). Heterogeneity standard

deviation is assumed to be equal to the median of the predictive distribution, � ¼ 0:24. Effects are measured as log odds ratios. logOR:

log odds ratio. CI: confidence interval. PrI: predictive interval.
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A3 Repeated confidence intervals

Inspecting the repeated confidence intervals in parallel to the sequential panel (Figure 2) is associated with several
advantages. At first, instead of evaluating only statistical significance, the uncertainty surrounding stopping
decisions is taken into account. Moreover, repeated confidence intervals illustrate why cumulative NMA

Appendix Figure 7. Cumulative pairwise (black) and network meta-analysis (red) estimates for the three comparisons in the

network of coronary revascularization in diabetic patients along with repeated confidence intervals (dotted lines). Heterogeneity

standard deviation is assumed to be equal to the 25th quantile of the predictive distribution, � ¼ 0:12. Exclusion of line of no effect

from the repeated confidence interval suggests that the particular comparison provides conclusive evidence after adjusting for multiple

testing. Effects are measured as log odds ratios and are given in Appendix Figure 5. RCI: repeated confidence intervals.

Appendix Figure 8. Cumulative pairwise (black) and network meta-analysis (red) estimates for the three comparisons in the

network of coronary revascularization in diabetic patients along with repeated confidence intervals (dotted lines). Heterogeneity

standard deviation is assumed to be equal to the 75th quantile of the predictive distribution, � ¼ 0:45. Exclusion of line of no effect

from the repeated confidence interval suggests that the particular comparison provides conclusive evidence after adjusting for multiple

testing. Effects are measured as log odds ratios and are given in Appendix Figure 5. RCI: repeated confidence intervals.
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without appropriate adjustments is not sufficient when the analysis is designed sequentially. It might be that
certain comparisons are rendered statistical significant after a number of steps whereas their respective repeated
confidence intervals do not support stopping decisions.

Appendix Figure 9. Accumulated inconsistency plot using the loop specific approach for the network of coronary revascularization

in diabetic patients. Heterogeneity standard deviation is assumed to be equal to the median of the predictive distribution, � ¼ 0:24.

Dotted lines indicate the latest update comes from a three-arm trial. Inconsistency factors are measured on the logOR scale. IF:

inconsistency factor.

Appendix Figure 10. Influence measures of each study to the respective network effect sizes for the network of coronary

revascularization in diabetic patients. Greater values indicate greater influence of the study effect size to the NMA effect.

Heterogeneity standard deviation is assumed to be equal to the median of the predictive distribution, � ¼ 0:24. Black circles indicate

that the latest update comes from a study with direct evidence; blue circles indicate that the latest update comes from indirect

evidence and red circles indicate that the latest update comes from a three-arm trial.
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A3.1 Application

Consider the comparison ‘BMS versus CABG’ in Appendix Figure 6. Despite the fact that the NMA summary
effect lies below the line of no effect favoring CABG from the 12th study, this does not imply that ‘BMS versus
CABG’ trials should stop being performed as the repeated confidence interval includes zero. A formal stopping
decision would be made after the inclusion of the 13th study where the repeated confidence interval is entirely
below zero indicating that there is sufficient evidence to conclude against the assumption that CABG and BMS
pertain to the same odds of the outcome. Similarly, the comparison ‘DES versus CABG’ is marginally significant
at the end of the sequential process but the repeated confidence interval includes the line of no effect.

A4 Influence of accumulated studies

A feature of the analysis that may be of interest when updating NMA is the influence that each study has on the
network estimates. Motivated by the calculation of the Cook’s distance for influential observations in a regression
model, we define the influence function as

DN
i,XY ¼ �̂N

i,XY � �̂N
i�1,XY

� �
INi,XY

h i2

where �̂N
i�1,XY is the network effect of ‘Y versus X’ before the inclusion of the i study.69 Cook’s statistics DN

i,XY

measure the influence that each study has in the estimation of the treatment effect. Their representation in a graph
can give insight in the cumulative process of the meta-analytical model and help in the visualization of studies with
a great influence in network estimates.

Cook’s statistics have been also used to identify outliers studies in meta-analysis.70,71 An alternative influence
function has been derived by Krahn et al. to determine the impact of each direct comparison to each network
estimate.72 Display of such information could be important if the evidence from a specific comparison or study is
considered a potential source of inconsistency and monitoring of study influence should be presented alongside the
changes in inconsistency (Appendix Figure 9).

A4.1 Application

The influence function using Cook’s distance is derived for each of the three evaluated comparisons (Appendix
Figure 10). As expected, direct effects (denoted as black circles) are the most influential yielding great values and
indicating that their absence might have a significant impact on the NMA effects. However, certain studies
providing indirect evidence (denoted as blue circles) are also influential to the estimation of treatment effects.
For instance, the 13th study informs indirectly the ‘BMS versus CABG’ comparison while its influence value is
relatively not small. The 13th study is also rather influential to the ‘DES versus CABG’ NMA effect while the
comparison ‘DES versus BMS’ is not substantially driven by studies providing indirect evidence.
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