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ABSTRACT 

The pathway diversity of the self-assembly of amphiphilic DNA-pyrene conjugates is described. 

The hydrophobic pyrene units drive the self-assembly of the anionic oligomers in an aqueous environ-

ment into ribbon-shaped, DNA-grafted supramolecular polymers. Isothermal mixing of two types of 

sorted ribbons, each of which contains only one kind of two complementary oligonucleotides, results in 

the formation of tight networks. Thermal disassembly of these kinetically trapped networks and subse-

quent re-assembly of the liberated components leads to mixed supramolecular polymers, which now 

contain both types of oligonucleotides. The scrambling of the oligonucleotides prevents the interaction 

between ribbons and, thus, network formation. The results show that a high local density of DNA 

strands in linear arrays favors hybridization among sorted polymers, whereas hybridization among 

mixed arrays is prevented. The lack of DNA hybridization among mixed ribbons is ascribed to the elec-

trostatic repulsion between identical, hence non-complementary, oligonucleotides. The findings high-

light the importance of kinetically trapped states on the structural and functional properties of supramo-

lecular polymers containing orthogonal self-assembly motifs. 
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INTRODUCTION 

Supramolecular polymers provide direct access to a large diversity of functional materials due to their 

dynamic nature, their responsiveness to external stimuli as well as the tunability and reversibility of the 

noncovalent interactions governing their assembly.
1,2
 A thorough understanding of the self-assembly 

pathways is essential for extending the functionalities of these materials.
3-7
 Directing the noncovalent 

interactions allows controlling the properties of the resulting supramolecular constructs.
8-12
 In addition, 

the proper choice of assembly protocols helps in tuning the properties of biomaterials
13
 or improves the 

performance of organic semiconductors.
14
 Thus, the chemical composition alone is often insufficient to 

achieve the best performance of complex supramolecular assemblies, among which DNA-based materi-

als take a prominent role.
15
 DNA-assembled objects are of interest in the design and development of 

drug carriers, nanomachines, and other types of sophisticated nanomaterials.
16-21

 The wide range of po-

tential applications has led to considerable interest in the properties of oligonucleotides conjugated to 

polymers or lipophilic chains.
22-30

 DNA conjugates often combine multiple self-assembly motifs ena-

bling selective and orthogonal noncovalent interactions.
31-37

 To date, little is known about materials 

from DNA conjugates, in which the interactions between the non-DNA parts are central for the hierar-

chical organization. Therefore, the study of the mechanistic details of self-assembly in such systems is 

important. The characterization of individual processes leading to morphologically different products, as 

well as the identification of escape pathways from kinetically trapped states into the thermodynamically 

favored structure, are of special interest. Recently, we have reported on the synthesis of one-dimensional 

DNA-grafted supramolecular polymers
38,39

 using short, chimeric DNA-pyrene oligomers.
40,41

 Here, we 

describe different competitive aggregation pathways of these oligomers and highlight the importance of 

kinetically trapped states for the controlled self-assembly of DNA hybrid materials.  
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RESULTS AND DISCUSSION 

Two-component system - We will first describe a two-component system consisting of two chimeric 

oligomers, Py-a and Py-b (Scheme 1). Both oligomers were synthesized by solid phase synthesis. They 

contain the same heptapyrenotide
42
 segment but different DNA sequences. The pyrenotide part, which 

consists of seven phosphodiester-linked 1,6-dialkynyl substituted pyrenes, is conjugated to the 5`-end of 

a 10-mer DNA sequence (Scheme 1). The DNA sequences of Py-a and Py-b are complementary. As 

established before,
38
 the oligomers self-assemble in an aqueous medium into one-dimensional (1D) rib-

bon-like supramolecular polymers via stacking interactions between pyrene units (Scheme 2). The rib-

bons consist of a pyrene core with DNA single strands tethered along the edges.  

 

Scheme 1. Chemical structure of pyrene-DNA chimeric oligomers, sequences used in the current study 

and illustration of oligomers Py-a and Py-b. 
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Scheme 2. Schematic illustration of the self-assembly pathways of pyrene-DNA hybrids into one-

dimensional DNA-grafted supramolecular polymers and networks.  

 

 

 

The supramolecular polymers are prepared by cooling a solution of oligomers Py-a and/or Py-b from 

95 °C to 20 °C using a temperature gradient of 0.1 °C/min. At 95 °C, the oligomers are dissolved. The 

slow cooling gradient ensures that the self-assembly process takes place at or near the thermodynamic 

equilibrium. Nucleation starts around 80 °C and is followed by a cooperative elongation process. The 

objects obtained via co-annealing of Py-a and Py-b to give poly(Py-a/Py-b) are morphologically indis-

tinguishable from the ones obtained in the single-component systems poly(Py-a) or poly(Py-b), which 

are prepared from the respective monomer solutions (Supporting Information Figure S2). Isothermal 

mixing of equal quantities of the separately prepared, sorted poly(Py-a) and poly(Py-b) results in the 

formation of poly(Py-a)*poly(Py-b) networks through base pairing as illustrated in Scheme 2. Poly(Py-

a/Py-b), on the other hand, does not form this type of networks although these polymers are quantita-
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tively composed of the same components. Figure 1 shows typical atomic force microscopy (AFM) im-

ages of poly(Py-a/Py-b) copolymers and poly(Py-a)*poly(Py-b) networks.  

 

 

Figure 1. Representative AFM images of discrete ribbons poly(Py-a/Py-b) (A) and interconnected pol-

ymer networks poly(Py-a)*poly(Py-b) (B). Conditions: 200 mM NaCl, 10 mM phosphate buffer system 

pH=7, concentration of each oligomer = 2 µM. 

 

Figure 2 shows the disassembly-reassembly cycles of poly(Py-a)*poly(Py-b) (kinetically trapped 

product) and poly(Py-a/Py-b) (thermodynamically favored product) monitored by temperature depend-

ent intensity changes at 305 nm. This wavelength corresponds to the maximum of the absorption band 

for the aggregated pyrenes (J-band) and serves as a reliable indicator of the aggregation state of py-

renes.
43
 Upon slowly heating to 95 °C, both poly(Py-a)*poly(Py-b) and poly(Py-a/Py-b) disassemble 

into molecularly dissolved Py-a and Py-b chains as indicated by the complete disappearance of the J-

band (Figure 2C). However, the normalized heating curves (red lines in Figures 2A and 2B) exhibit a 

similar shape only in the range from 65 °C to 95 °C. Below 65 °C, the pyrene absorbance of poly(Py-

a)*poly(Py-b) reveals competing processes which occur in the course of the heating event (Figure 2B). 

The initial gradual decrease in absorption from 20 to 50 °C is probably due to sedimentation of large 

network aggregates.
44
 Between 50 and 65 °C, a stepwise recovery of the signal takes place until the 

same value is reached as in the heating curve (cf. Figure 2A) of the mixed polymer poly(Py-a/Py-b). 

Above 65 °C, the decrease of the absorbance reflects the disassembly of pyrenes solely, which is reflect-
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ed by identical shapes of the melting curves of both, poly(Py-a)*poly(Py-b) and poly(Py-a/Py-b). Re-

newed slow cooling of the obtained molecularly dissolved chains from 95 °C to 20 °C leads in both cas-

es to the formation of the mixed polymer poly(Py-a/Py-b) in a cooperative process.  

 

 

Figure 2. Normalized temperature-dependent change of absorption measured at 305 nm for poly(Py-

a/Py-b) (A) and poly(Py-a)*poly(Py-b) (B). Heating (red) and cooling (blue) were performed using a 

gradient of 0.1 °C/min. (C) UV-vis spectra for poly(Py-a)*poly(Py-b). For experimental conditions, see 

Figure1. 

 

The disassembly process of the networks was further studied by performing additional heating-cooling 

experiments and analyzing the morphology of the newly formed aggregates by AFM at 20 °C. The ex-

periments consisted of heating poly(Py-a)*poly(Py-b) from 20 °C to a certain temperature T and cool-

ing it back to 20 °C. The observed morphology turned out to be highly dependent on T. For example, 

heating to T = 35 °C and further cooling to 20 °C results in the exclusive formation of large and tightly 

packed networks (Figure 3A). Apparently, increasing the temperature to 35 °C seems to favor the inter-

actions between individual ribbons. Sedimentation of the large aggregates would explain the decrease in 

absorption. Heating poly(Py-a)*poly(Py-b) to T = 55 °C, which is still in a region with a descending 
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pyrene absorption, led to the formation of networks together with short polymers (Figure 3B). This indi-

cates the partial dissolution of the large networks at this temperature liberating individual Py-a and Py-b 

oligomers, which subsequently reassemble into mixed polymers poly(Py-a/Py-b). Heating to 75 °C 

yielded morphologically similar structures as the experiment conducted to T = 55 °C (Figure 3C). Final-

ly, at T = 95 °C, the networks are completely disassembled, which is demonstrated by the exclusive 

formation of poly(Py-a/Py-b) after reassembly; no networks could be detected (Figure 3D). These re-

sults imply that the networks are metastable and rearrange into thermodynamically favored 1D supra-

molecular polymers in a temperature-induced disassembly-assembly process.  

 

 

Figure 3. Melting curve and AFM images of materials obtained upon applying heating-cooling cycles 

(for more details see main text) to poly(Py-a)*poly(Py-b). Conditions see Figure 1. 

 

Scheme 2 summarizes the processes occurring in the two-component system. On the one hand, the 

separate self-assembly of Py-a and Py-b leads to linear poly(Py-a) and poly(Py-b). Mixing these two 

types of sorted, supramolecular polymers at 20 °C results in the formation of metastable networks 

poly(Py-a)*poly(Py-b), in which individual ribbons are interconnected by DNA hybridization. These 

aggregates are converted by sequential thermal denaturation and reassembly into the thermodynamically 
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favored poly(Py-a/Py-b), which has mixed DNA strands and, thus, forms only one-dimensional supra-

molecular polymers but no networks. The absence of networks is rationalized by the electrostatic repul-

sion between non-complementary DNA strands.
45,46

 On the other hand, the hybridization of complemen-

tary DNAs between sorted ribbons, poly(Py-a) and poly(Py-b), leads to the networks observed for 

poly(Py-a)*poly(Py-b). Multiple sites of interactions between individual ribbons render the aggregation 

process highly cooperative. The results show that individual oligomers Py-a and Py-b remain kinetical-

ly trapped in poly(Py-a)*poly(Py-b) and only thermal activation allows their transformation into the 

energetically more favored product. We tested the property of poly(Py-a)*poly(Py-b) and poly(Py-

a/Py-b) to entrap hydrophobic molecules using Nile Red as a fluorescent reporter. The emission spectra 

show that both linear supramolecular polymers and networks accommodate the dye in their hydrophobic 

environments (see Supporting Information). 

 

Three-component system – In addition to Py-a and Py-b, the three-component system also involves 

oligonucleotide ON-a, which is complementary to Py-b (Scheme 1). AFM imaging shows that the addi-

tion of ON-a to preformed poly(Py-a)*poly(Py-b) at 20 °C does not have an effect on the appearance 

of the networks (Figure 4B, C). As previously shown, the addition of ON-a to poly(Py-b) also leads to 

the formation of networks (poly(Py-b)*ON-a).
39
 These networks, however, are formed via blunt-end 

interactions
47,48

 (see Figure 5). That type of network is structurally different and can be distinguished 

spectroscopically from poly(Py-a)*poly(Py-b). CD spectroscopy (Supporting Information, Figure S1) 

confirms that the latter type of network originates from DNA hybridization and not blunt-end interac-

tions. Disassembly of these aggregates (poly(Py-a)*poly(Py-b)+ON-a) by heating to 95 °C leads to the 

molecularly dissolved chains comparable to the two-component system (Figure 6A). Renewed cooling 

from 95 °C to 20 °C exhibits a single transition in accordance with a nucleation-elongation mechanism 

and exclusively leads to linear supramolecular polymers (Figure 4D). Next, poly(Py-b) and ON-a were 

mixed to form networks of poly(Py-b)*ON-a as confirmed by AFM (Figure 5B) and CD analysis (Sup-

porting Information, Figure S1). 
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Figure 4. AFM images of materials obtained at different stages in a three-component mixture using 

poly(Py-a)*poly(Py-b) networks. Conditions see Figure 1. 

 

Figure 5. AFM images of materials obtained at different stages in a three-component mixture using 

poly(Py-b)*ON-a networks. Conditions see Figure 1. 
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Figure 6. Normalized temperature-dependent absorption measured at 305 nm for poly(Py-a)*poly(Py-

b)+ON-a (A) and poly(Py-b)*ON-a+poly(Py-a) (B). Conditions: see Figure 1. 

 

After addition of poly(Py-a) to this system, AFM images show the presence of both, poly(Py-b)*ON-

a networks and linear poly(Py-a) (Figure 5C). This indicates that hybridization of DNA chains of 

poly(Py-b) with ON-a precludes duplex formation between complementary strands of poly(Py-a) and 

poly(Py-b). This underlines the slow dynamics of hybrid oligomer exchange. Performing an additional 

heating/cooling cycle (Figure 6B) leads again to the formation of the thermodynamically favored, mixed 

supramolecular polymers (Figure 5D).  

 

CONCLUSIONS 

The pathway complexity of the self-assembly in systems containing pyrene-DNA conjugates Py-a and 

Py-b has been elucidated. Supramolecular polymerization of a mixture of equal amounts of Py-a and 

Py-b leads to the formation of poly(Py-a/Py-b). These mixed polymers contain both types of comple-

mentary DNA strands arranged along their edges and network formation is completely prevented. Alter-

natively, combining the separately prepared, sorted polymers poly(Py-a) and poly(Py-b) leads to the 

formation of metastable networks via crosslinking of individual ribbons by DNA hybridization. The 

networks are stable at room temperature due to a slow rate of oligomer exchange between the polymers. 

However, temperature induced disassembly of the networks and subsequent reannealing of the released 

oligomers Py-a and Py-b results in the formation of the thermodynamically preferred mixed polymer 
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poly(Py-a/Py-b), which does not form networks. The lack of DNA hybridization among ribbons of 

poly(Py-a/Py-b) is ascribed to the electrostatic repulsion between identical, hence non-complementary, 

oligonucleotides that are present in a high density at the edges of the polymeric ribbons. The findings 

illustrate the importance of kinetically trapped states on the structural and functional properties of su-

pramolecular polymers. 
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