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REVIEW ARTICLE

Memory of chirality in reactions involving monoradicals

Christian Simon Gloora, Fabrice D�en�esb and Philippe Renauda

aDepartment of Chemistry and Biochemistry, University of Bern, Bern, Switzerland; bUniversite de Nantes, UFR Science et Techniques -
UMR CNRS 6230, 2 rue de la Houssini�ere, Nantes, France

ABSTRACT
The effects of memory of chirality (MoC) in reactions involving monoradical species are reviewed
here. Reactions involving a nonracemic chiral starting material bearing a single stereogenic elem-
ent such as a chiral center or chiral axis directly involved in the new bond formation are dis-
cussed. These reactions lead to a nonracemic product via an intermediate susceptible to rapid
racemization. Memory of chirality has been observed in cyclic radicals, aryl, ester/amide substi-
tuted acyclic radicals, and benzylic radicals at temperatures up to 130 �C.
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Introduction

Stereoselective synthesis has been during the last 50 years
one of the most important and challenging research field
in organic synthesis. A special care has been dedicated to
the transformation of enantiomerically pure chiral mole-
cules without racemization. When a single chiral element
(such as a chiral center) is present in the molecule, reac-
tions involving this element have to be stereospecific to
avoid any degradation of enantiomeric purity. This is usu-
ally achieved by using concerted reactions where bond
cleavage and bond formation are taking place at the
same time via a unique reaction pathway as for instance
the backside nucleophilic attack at a carbon center bear-
ing a leaving group in the SN2 reaction. Reaction path-
ways involving the formation of a planar unit at the
original asymmetric center (enolate anions, cations, radi-
cals) have to be avoided. However, unexpected retention
of the optical activity of products resulting from such
intermediates has been observed and this has led to the
concept of memory of chirality (MoC). This concept was
proposed by Fuji and coworkers during their work on
alkylation of enolates and it represents a challenging facet
of stereoselective synthesis with interesting mechanistic
and synthetic implications [1]. The phenomenon was
already reported by Seebach and Wasmuth in the

alkylation of di-tert-butyl N-formylaspartate involving a
sp2-hybridized enolate intermediate [2] and by Leuchs [3]
and Marquet as well as coworkers [4,5] in the halogen-
ation of chiral 2-benzylated-indan-1-ones involving an
enol intermediate. Other examples in the field of diradical
chemistry were discovered early by Jones in the thermal
and by Rinehard and van Auken in the light induced
decomposition of pyrazolines leading to cyclopropane
[6,7], as well as by Jeger and coworkers during the photo-
chemical formation of cyclobutanols from saturated
ketones [8]. Nowadays, examples of MoC involving eno-
lates [9], carbenium ions [10], radicals [11], radical cations
[12], and diradicals [6] are known. The general field of
MoC has been reviewed in 2005 by Carlier and coworkers
[13] and very recently during the writing of this manu-
script by Alezra and Kawabata [14]. In this review, we will
focus on reactions involving monoradicals species. The
chemistry of diradical intermediates as well as radical cati-
ons will be discussed in a forthcoming review article. The
reactions presented here adhere to the following defin-
ition of MoC processes: reactions involving a nonracemic
chiral starting material bearing a single chiral element dir-
ectly involved in the new bond formation leading to a
nonracemic product via an intermediate susceptible to
racemize by way of a change of conformation1.

CONTACT Philippe Renaud philippe.renaud@dcb.unibe.ch Universitat Bern Philosophisch-naturwissenschaftliche Fakultat, Department of Chemistry
and Biochemistry, Freiestrasse 3, Bern, 3012, Switzerland
1Single diastereomers may also show memory of chirality if only one chiral element is involved in a diastereospecific new bond formation via an
intermediate susceptible to epimerize via a change of conformation (see Scheme 2 for such an example).
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This definition is more general than the one of Fuji [9] and
Carlier [13] who considered only trigonalization of asym-
metric centers (our definition also encompasses chiral
axes and planes) and differs strongly from the one of Shi
and coworkers [15] who consider also concerted reactions
that do not involve an intermediate susceptible to rapid
racemization by way of a conformational change (i.e.
stereospecific reactions). We believe that our simple and
clearly restrictive definition of the term memory of chirality
keeps the original meaning of Fuji [9] and Carlier’s [13]
definitions without going into the drifting off point as
described by Cozzi and Siegel who advise chemists to
stop using this term [16]. The concept of MoC is particu-
larly useful in the field of radical reactions that were until
the beginning of the 1980s considered to take place in a
stereorandom manner [17]. Indeed, even though the
structure of most alkyl radicals is pyramidal [18], their
umbrella inversion barrier is very low as demonstrated
experimentally for the tert-butyl radical by Griller et al.
(inversion barrier of 0.51 kcal/mol) [19] as well as by calcu-
lations (inversion barriers of 1.1 kcal/mol) [20]. As a conse-
quence, racemization is often suggested as evidence for
the involvement of radical intermediates in a reaction and
has been used as a synthetic tool for efficient racemization
processes [21]. The design of MoC in radical reactions is at
first sight particularly challenging since radicals are config-
urationally unstable.

Cycloalkyl radicals

Due to the very high rate constants of radical processes,
reactions involving cycloalkyl radicals may in a few
cases compete with epimerization processes.
Cyclopropyl radicals represent the earliest class of cyclo-
alkyl radicals showing MoC effects and this topic has
been reviewed by Walborsky [22]. They were first exam-
ined by Ando et al. in 1970 who showed that the deha-
logenation of 1-halo-1-fluorocyclopropane was
occurring with retention of configuration and that the
level of retention of configuration was influenced by
the source of hydrogen atom [23]. For instance, Bu3SnH
afforded the fluorocyclopropane with full retention of
configuration at 130–140 �C. By using a slower hydro-
gen donor such as tributylsilane, partial epimerization
of the intermediate radical could be detected.
Walborsky reported that the decarboxylation of the
Barton ester of 1-fluoro-2,2-diphenylcyclopropane 1 in
BrCCl3 afforded the bromide 2 as a single enantiomer
(Scheme 1) [24]. The decarboxylation of 1 in refluxing
benzene using Bu3SnH to trap the radical afforded the
fluorocyclopropane 3 in 83% ee, demonstrating again
that the reactivity of the trap was influencing the level

of MoC. The presence of a fluorine atom, which
decreases the inversion frequency of the cyclopropyl
r-radical 1r favors strongly MoC [25]. Related MoC
effects have been observed with a methoxy-substituted
cyclopropyl radical, although to a much lower extent
than the fluorinated analogue [22]. Interestingly, MoC
has been observed in the metal-mediated reductive
lithiation involving the fast epimerizing 1-methylcyclo-
propyl radical [26,27]. Reactions involving dissolved
metals showing MoC have also been reported [28], but
the interpretation of the results is more complex [29].

In 1998, Rychnovsky and coworkers examined the
radical-mediated reductive decyanation of 2-cyanotetra-
hydropyrans [30]. When the tetrahydropyran derivative
4 was treated with dissolved lithium in ammonia at low
temperature, the reduced product 5 was obtained with
partial retention of the relative configuration
(Scheme 2). This observation can be rationalized by a
rapid stereoselective reduction of the radical 4r to the
axial organolithium species that is faster than the chair-
chair interconversion which has an energy barrier of
approximately 10 kcalmol�1. The radicals ax-4r and eq-
4r derived from ax-4 and eq-4 are expected to be rap-
idly equilibrating pairs of r-radicals lying preferentially
in the axial conformations ax-4rax and eq-4rax due to a
stabilizing anomeric effect [31]. The axial radicals ax-
4rax and eq-4rax are then rapidly converted to the cor-
responding configurationally stable axial organolithium
species and, after protonation to cis-5 and trans-5,
respectively. It is important to notice that in this case
the retention of configuration is not caused, as in the
case of the 1-flurocyclopropyl radical, by a slow epimeri-
zation of the radical center but rather by a slow ring flip
of the tetrahydropyran. The chirality is conserved by the
conformation of the six-membered ring.

Scheme 1. MoC in reaction involving fluorinated cyclopropyl
radicals.
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This strategy was applied to the cyclization reaction
of the enantiomerically pure nitrile 6 to the spirocyclic
compound 7 in 65% yield and 42% ee (Scheme 3).
The reductive lithiation was performed with lithium di-
tert-butyl-biphenylide (LiDBB) at �78 �C [32]. Under
these conditions, the intermediate radical 6r was con-
verted to the conformationally stable organolithium 8
faster than chair-chair interconversion. The axial organo-
lithium intermediate 8 undergoes a carbometallation
reaction before it is trapped with CO2 and esterified
with diazomethane.

The MoC in such system is not limited to processes
involving reductive lithiation. Decarboxylation of a
Barton ester has been shown to proceed with a good
level of conservation of enantiomeric excess when a

fast radical trap such thiophenol is used [33]. Irradiation
of ester (R)-9 in the presence of thiophenol gave the
decarboxylated 2-benzyltetrahydropyran (R)-10 in 92%
yield and 86.5% ee at �78 �C (Scheme 4). This result is
possible because (1) the starting Barton ester exists in
one single chair conformation (axial ester group); (2)
the chair-chair interconversion is slow at the tempera-
ture of the reaction (�78 �C, energy barrier of ca.
10 kcalmol�1) relative to the hydrogen transfer; (3) as a
consequence of an anomeric effect, radical 9r exists
almost exclusively in its axial form 9rax; (4) both radicals
9rax and 9req are expected to react at approximately
the same rate from the front lobe, therefore hydrogen

Scheme 2. MoC in decyanation reaction involving tetrahydropyranyl radicals (major reaction pathways depicted in black).

Scheme 3. Cyclization of a a-cyanotetrahydropyran derivative.
Scheme 4. MoC in the decarboxylation of a tetrahydropyran-
2-carboxylic acid derivative (major reaction pathway depicted
in black, kH� [PhSH]> krac).
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transfer leading to (R)-10 represents the major pathway
of the reaction [31]. The racemization of radical 9r gen-
erated from (R)-9 can be used as a fast radical clock
reaction, with an estimated rate krac¼ 5.7� 108 s�1

at 22 �C.
Dalgard and Rychnovsky reported another example

of memory of chirality where the chiral information is
preserved by the conformation of the radical intermedi-
ate and not the radical center [34]. Irradiation of the
mixed oxalate of cyclodecenol 11 (89% ee) afforded the
product of transannular cyclization with 26% ee (88%
yield) at 23 �C and with 68% ee (51% yield) at �15 �C
(Scheme 5). Further analysis of these results is difficult
since the absolute configuration of the starting alcohol
as well as of the product are not given. However, forma-
tion of the sp2-hybridized secondary alkyl radical center
in a cycle lying in a chiral conformation (tentatively
depicted as 11r in Scheme 5) that is slowly intercon-
verting into its mirror image can explain the results.

Aryl radicals

Curran et al. reported cyclization of acrylanilide deriva-
tives to oxindoles [35]. In this reaction, an axial-to-cen-
tral chirality is taking place [36]. Indeed, 2-iodo-6-
methylanilide (M)-12 (97% ee) exists as a stable atro-
pisomer at room temperature and gives upon radical
cyclization the oxindole (R)-13 in 84% ee (Scheme 6).
Although the racemization barrier of 12r is expected to
be low due the absence of the 2-iodo substituent that
is necessary for atropisomerism, its rapid cyclization
ensures a high enantioselectivity for the formation
of oxindole (R)-13. The stereoselectivity of the
cyclization is explained by the transition state depicted
in Scheme 6. The formation of the minor enantiomer is
either the result of a racemization of radical 12r (in
gray) or of a not perfectly selective radical cyclization

process (attack of the radical on the other face of
the olefin).

Similar results were obtained with axially chiral N-
allyl amides [37,38] and carbamates [39] (Scheme 7). In
this case, the model explaining the stereoselectivity of
the cyclization differs from the one presented for the
acrylamide in Scheme 6, since the alkene twists away
from aryl radical due to the different positioning of the
amide/carbamate bond [37,39]. The high level of MoC is
rationalized by the very high rate constant for such cyc-
lization processes (kcycl� 109 M�1 s�1) [37].

The radical phosphanylation of similar aryl radicals
was also reported to occur with a high level of MoC
[40]. When the axially chiral 2-iodo-5-methylanilide
(P)-18 (92% ee) was treated with Me3SnPPh2, the aryl
radical 18r was trapped before racemization. After oxi-
dative treatment, the axially chiral phosphine oxide (P)-
19 was obtained with complete retention of chirality
(92% ee) (Scheme 8). This is the first example of MoC
involving the conversion of an axially chiral starting
material into another axially chiral product. The axial

Scheme 5. MoC in a transannular cyclization.

Scheme 6. Cyclization of an axially chiral acrylamide.
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chirality of the transient radical is preserved despite a
strongly decreased energy barrier for its racemization
relative to the starting iodide. A rate constant close to
109M�1 s�1 has been determined for the phosphanyla-
tion reaction that outperforms the racemization process
(Scheme 8 in gray).

Acyclic ester and amide-substituted alkyl
radicals

In 1967, Heiba and Dessau reported an intriguing rad-
ical addition–translocation–cyclization cascade with

partial retention of optical rotation [11]. Treating the
optically active ester 20 with benzoyl peroxide in car-
bon tetrachloride gave the lactone 21 (Scheme 9).
Interestingly, the product was still optically active
but the ratio of enantiomers was not reported. The
reaction involves the addition of the trichloromethyl
radical to the terminal alkyne followed by 1,5-hydro-
gen atom transfer, 5-exo-trig cyclization and a final
fragmentation of a chlorine atom. Racemization of
the intermediate radical, which possesses a transient
chiral axis, involves a relatively small change of con-
formation and was expected to be fast. Curran and
co-workers could confirm later that the small residual
optical activity was not an artifact but they were
unable to measure an enantiomeric excess for the
product 21 [41]. To overcome analytical problems
associated with lactone 21, they modified the sub-
strate to amide 22 (Scheme 10). Upon treatment of
22 with Bu3SnH and azobisisobutyronitrile (AIBN), a
mixture of two diastereomeric lactams was obtained
in 38% yield. Both diastereomers showed the same
enantiomeric excess of 68% ee showing that the
axially chiral radical intermediate is cyclizing faster
than racemizing (homofacial cyclization).

Benzylic radicals

In 2001, Quirant, Bonjoch and coworkers reported that
the radical cyclization of trichloroacetamide 24
afforded, beside the expected bicyclic lactam 25, the
unexpected byproduct 26 with complete inversion of
stereochemistry at the benzylic center (Scheme 11) [42].
A similar result was observed when 240, the diaster-
eomer of 24, was used for this transformation.

Scheme 8. Phosphanylation reaction converting an axially chiral substrate to an axially chiral product.

Scheme 7. Cyclization of axially chiral N-allyl amide and
carbamate.
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The reaction gave beside the expected 250 the product
of translocation-cyclization 260 (Scheme 11).

Acetamides 26 and 260 are formed by a 1,4-hydro-
gen transfer and subsequent 5-exo-trig cyclization
(Scheme 12). The fact that 26 and 260 are diastereomers
indicates that MoC is involved. Indeed, radical 24r and
24r0 do not interconvert although their relative config-
uration differs only by the configuration of the transient
chiral axis formed upon hydrogen atom abstraction at
the benzylic position. Diaba, Bonjoch and coworkers
have described more recently that similar MoC is also
taking place when the reaction is performed under
copper(I)-mediated chlorine atom transfer conditions
[43]. To the best of our knowledge, these examples are
the only reactions involving MoC in a radical process
that is taking place in a heterofacial manner with inver-
sion of the absolute configuration at the radical center.
These results are well explained by the generation of

the radical in a conformation that is perfectly organized
for the subsequent heterofacial cyclization (Scheme 12).

Inoue and coworkers reported a surprising example
of MoC in the intermolecular radical amination of a
C(sp3)–H bond with dialkyl azodicarboxylate mediated
by N-hydroxyphthalimide (NHPI) [44]. The amination of
the enantiomerically enriched 27 (95% ee) afforded the
hydrazide 28 in 46% yield and 11% ee (Scheme 13). The
origin of the partial retention of stereochemistry is so
far not elucidated.

Schmalz, de Koning and coworkers have gener-
ated a Cr(CO)3-complexed benzylic radical 29r from
the corresponding chiral benzylic ether 29 using lith-
ium di-tert-butyl-biphenylide (LiDBB) [45]. This radical
is better described as the 17 valence electron reson-
ance structure 29r0 and it exhibits a significant con-
figurational stability based on a calculated rotational

Scheme 9. Radical addition–translocation–cyclization process.

Scheme 10. Radical translocation-cyclization. Scheme 11. Unexpected formation of acetamides via a trans-
location-cyclization pathway.
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barrier of 13.2 kcalmol� 1. This radical intermediate
can be further reduced to the anion by a second
equivalent of LiDBB and stereoselectively reacted
with different electrophiles such as methyl

chloroformate with a good overall level of retention
enantiomeric purity (Scheme 14).

Allylic radicals

The stereochemical outcome of the [3,2] rearrange-
ment of allylperoxyl radical has been investigated by
Porter et al. [46]. They reported that the radical gen-
erated from methyl (R)-(Z)-11-hydroperoxyloleate
(R)-(Z)-30 afforded a mixture of (S)-(E)-30 and (R)-(E)-
31 with high level of MoC. A b-fragmentation mech-
anism involving an intermediate allyl radical is sup-
ported by mechanistic investigations including the
influence of solvent viscosity and isotopic labeling
experiments. The initially generated peroxyl radical
(R)-(Z)-30r fragments to form an allyl radical–dioxy-
gen caged pair that collapses to form (R)-(E)-31r at a
rate comparable with that of diffusion with full
memory of chirality. The rearranged peroxyl radical
(R)-(E)-31r can, after a conformational change, further
rearrange to give stereoselectively (S)-(E)-30r. Allyl
radicals that diffuse in solution react with the oxy-
gen from the solvent with loss of stereochemistry

Scheme 12. Heterofacial mechanism in a translocation–cyclization reaction.

Scheme 13. Radical amination of a benzylic C(sp3)–H bond.

13 kcal mol–1

ent-29r’29r’

Scheme 14. Reaction involving Cr(CO)3-complexed benzylic
radicals.
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and are responsible for the observed erosion of ee's.
Decreasing the reaction temperature and increasing
the viscosity of the solvent are both slowing down
the cage escape process and favor the MoC.

Conclusions

Except for some specific applications in the field of
enolate alkylation, the MoC has been considered so
far as a curiosity rather than as a real strategy for
preparative asymmetric synthesis. In this short review,
we have summarized the state of the art of MoC for
radical reactions involving monoradicals. Due to the
exceptional reactivity of radicals, examples of MoC
are reported in reactions that are not only run at
low temperature but also in reactions performed at
room temperature and above. Reaction cascades
involving MoC during difficult C–H activation steps
have been developed. We strongly believe that fur-
ther applications of this approach may lead in the
near future to mechanistically interesting and syn-
thetically useful transformations.
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