MS24-O2 Spin, charge and momentum densities of YTiO3 perovskite

Mohamed Souhassou1, Voufack Bolivard, Nicolas Claisier, Maxime Deutsch, Claude Lacomte, Jean Michel Gillet2, Pietro Cortona2, Zeyin Yan2, Iuri Kibaloi3, Béatrice Gillon3, Florence Porcher4, Arsen Gukasov5, Yoshiharu Sakurai6, Masayoshi Ito6, Masahisa Ito7

1. CRM2 Université de Lorraine Nancy France
2. Laboratoire SPMS, CentraleSupelec, Université Paris-Saclay, France
3. Laboratoire Leon Brillouin, CEA/CNRS, France
4. JASRI/SPRING8, Japan
5. Gunma University, Japan

email: Mohamed.Souhassou@univ-lorraine.fr

High resolution X-ray (XRD) and polarized neutron diffractions (PND) are routinely used to model charge and spin densities of localized electrons, while inelastic Compton scattering (ICS) is a valuable mean for determining delocalized electrons. Our objective is to construct a unique electron density model common to these three experimental data sets. We have demonstrated that a joint refinement of a multipolar model based on polarized neutron and X-ray diffraction data is possible and brings more insight in the electron distribution [1]. The inclusion of ICS data implies to go beyond the atom centered model to take into account bicentric terms. As the multipolar model is thus no more adapted, a new model based on atomic orbitals under development will be discussed and applied to a YTiO3 perovskite crystal. This compound is ferrimagnetic at low temperature (below 29K), suggesting that a single d electron (0.84mB/mol) mainly localized on the Ti atom gives rise to the magnetic interactions.

Keywords: charge spin densities, xray diffraction, polarised neutron diffraction, magnetic conption scattering, joint refinement, magnetic materials

MS24-O3 New antiferromagnets [CuX(pyz)]_2[BF_4] with X = Cl and Br.

Mariusz Kubus1,2, Arianna Lanza2, Nicola Casati1, Piero Macchi2, Lukas Keller1, Christoph Fiolka2, Jürg Schefes1, Christian Rüegg1, Karl Krämer2

1. Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH–5232 Villigen PSI, Switzerland
2. Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
3. Laboratory for Synchrotron Radiation – Condensed Matter, Paul Scherrer Institute, CH–5232 Villigen PSI, Switzerland

email: mariusz.kubus@psi.ch

The structures of new compound [CuX(pyz)]_2[BF_4] with X = Cl and Br and pyz = pyrazine were determined by single crystal X-ray diffraction. These tetragonal compounds crystallize in space group P4/nmm. They are built from [Cu(pyz)]_2[BF_4] layers which are connected by X ions along the c-axis. Charge is compensated by BF_4 ions in the voids of the 3D coordination compound. The antiferromagnetic interactions between the Cu^{2+} ions are mainly two-dimensional (2D) located within the [Cu(pyz)]_2[BF_4] layers. This results in a broad maximum of the magnetic susceptibility around 9 K. Towards lower temperature a kink is observed at 4 K which indicates long-range 3D magnetic order. The magnetic unit cell is doubled along the c-axis (k = 0,0,1/2) and the ordered magnetic moment amounts to \(\mu = 0.76(8) \mu_B/Cu^{2+} \) at 1.5 K. The moments are antiferromagnetically coupled along the b- and c-axes. Long-range 3D magnetic order is observed below \(T_N = 3.0(1) \) K. A fit of a 2D Heisenberg model to the magnetic susceptibility data results in \(J_{||} = 9.6 \) K.

Keywords: 2D antiferromagnet, copper, pyrazine, DMC, XRD, ESR