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Purpose of review

Review of recent literature pertaining to frequency, associations, mechanisms, and overall significance of
sleep–wake disturbances (SWD) in the premotor and early phase of Parkinson’s disease.

Recent findings

SWD are frequent in Parkinson’s disease and their prevalence increases with disease progression. Recent
studies confirm previous findings that SWD can appear as initial manifestation of Parkinson’s disease even
decades before motor signs appear and highlight their clinical associations in these early stages. More
intriguingly, new evidence underpins their role as risk factors, predictors, or even as driving force for the
neurodegenerative process. As our understanding of sleep–wake neurobiology increases, new hypotheses
emerge concerning the pathophysiology of SWD in early Parkinson’s disease stages involving
dopaminergic and nondopaminergic mechanisms.

Summary

SWD are predictors for the development of parkinsonian syndromes including Parkinson’s disease. This
may offer the opportunity of developing new preventive strategies and interventions at an early stage of
this neurodegenerative disease.

Keywords

biomarkers, daytime sleepiness, insomnia, prodromal Parkinson’s disease, REM sleep behavior disorder
Department of Neurology, University Hospital Bern and University of
Bern, Bern, Switzerland

Correspondence to Prof. Dr med. Claudio L. Bassetti, Chairman and
Director, Department of Neurology, Inselspital, University Hospital Bern,
Freiburgstrasse 18, CH- 3010, Bern, Switzerland. Tel: +41 (0)31 632 30
66; fax: +41 (0)31 632 96 79; e-mail: claudio.bassetti@insel.ch

Curr Opin Neurol 2016, 29:763–772

DOI:10.1097/WCO.0000000000000388
INTRODUCTION

Sleep–wake disturbances (SWD) are frequent in
Parkinson’s disease and are typically attributed to
Parkinson’s disease medications, poor sleep
hygiene, and other nonmotor symptoms (NMS)
such as nocturnal akinesia, pain, cramping, and
nycturia. Over the past decade, notable advances
have been made in the understanding of the role of
the dopaminergic system in circadian mechanisms
and sleep–wake physiology [1]. In addition, non-
dopaminergic systems are involved early in the
pathogenesis of SWD in Parkinson’s disease [2,3].
These findings suggest that SWD are no longer
solely a complication of advanced PD but can
emerge, among other NMS, in the premotor stages
as a primary manifestation of neurodegeneration [4]
and increase in frequency with Parkinson’s disease
progression (Fig. 1). Considering the importance
of early diagnosis and intervention, the possibility
that SWD may have prognostic value for the
development of Parkinson’s disease is intriguing.

This review will discuss first the most recent
literature on SWD in the context of premotor
and early stage of Parkinson’s disease and then
ht © 2016 Wolters Kluwe
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important recent evidence on the pathophysiology
of SWD in early Parkinson’s disease.
SUBJECTIVE SLEEP DISTURBANCES/
INSOMNIA

Two thirds of patients with Parkinson’s disease
report poor sleep quality [5], many of them very
early in the course of the disease [6,7]. Recent studies
confirm the high prevalence of subjective sleep
disturbances in the early stages of Parkinson’s
disease and highlight their association with low
quality of life [8,9

&&

,10
&&

] and other NMS such as
global cognitive impairment, anxiety, depression
and nocturia [8]. Individuals later diagnosed with
r Health, Inc. All rights reserved.
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KEY POINTS

� Sleep–wake disturbances occur years prior to the onset
of motor Parkinson’s disease signs, and their
frequencies increase with disease progression.

� New data are emerging concerning the
pathophysiology of sleep–wake disturbances in early
Parkinson’s disease, implicating dopaminergic and
nondopaminergic mechanisms.

� Premotor sleep–wake disturbances and mainly REM
sleep behavior disorder have the potential to serve as
prodromal markers of Parkinson’s disease. The reliable
identification of individuals at high risk of developing
Parkinson’s disease could become crucial when
preventive or disease-modifying therapies
become available.

Degenerative and cognitive diseases
Parkinson’s disease had, years before Parkinson’s
disease diagnosis, a higher incidence of sleep
disturbances [10

&&

] and insomnia [11
&

] than con-
trols. Baig et al. [9

&&

] showed that 769 newly
diagnosed patients with Parkinson’s disease experi-
enced significantly more sleep disturbances than
first-degree Parkinson’s disease relatives and control
subjects. Sleep disturbances emerged in 60% of
untreated and in 70% of treated patients with
 Copyright © 2016 Wolters Kluwer 
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Parkinson’s disease, suggesting that either the
disease progression or the introduction of dopamin-
ergic medication may negatively impact sleep
quality. In the same study, patients with tremor
dominant Parkinson’s disease showed a better
sleep profile than other nontremor-dominant
phenotypes [9

&&

].
In agreement with the reported subjective

sleep disturbances, previous polysomnographic
studies showed that patients with Parkinson’s
disease exhibit significant abnormalities in sleep
architecture not only in fully developed motor
Parkinson’s disease [12] but in the early phase of
the disease as well. These abnormalities include
increased sleep latency, reduced sleep efficiency,
reduced rapid eye movement (REM) sleep [7], and
significant changes in the REM and non-REM sleep
architecture [13–16].

Recently, Margis et al. [17
&

] examined differ-
ences in sleep architecture between newly
diagnosed, nondepressed, nondemented, drug-
naı̈ve patients with Parkinson’s disease (n¼8) and
age- and sex-matched controls, using scalp electro-
encephalography (EEG). In patients with Parkin-
son’s disease, alpha and sigma activity during
non-REM sleep was significantly higher in almost
all examined brain regions [17

&

]. Considering that
sigma activity is associated with sleep stability [18]
Health, Inc. All rights reserved.
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and processing speed [19] and, as an important
determinant of spindle production, with cognitive
abilities [20,21], these findings contradict previous
reports that patients with Parkinson’s disease
without REM sleep behavior disorder (RBD) showed
a significantly lower sleep spindle density in non-
REM sleep when compared to matched controls
[22]. The inclusion of treated patients with
Parkinson’s disease in the Danish study may be a
reasonable explanation for this discrepancy. How-
ever, the impact of dopaminergic medication on
sleep architecture was not confirmed in a recent
polysomnographic study. In 15 newly diagnosed
patients with Parkinson’s disease, after initiation
of dopaminergic treatment, subjective sleepiness
(assessed by Epworth sleepiness scale, ESS) improved
but no significant changes in sleep macro-
architecture and other objective sleep parameters
were found [23].
DISRUPTION OF CIRCADIAN RHYTHM

Several normal circadian patterns are desynchron-
ized in Parkinson’s disease including diurnal
fluctuation of sleep–wake cycles, cardiovascular
(blood pressure, heart rate), and sensory functions
[24

&

]. Recent studies focusing on circadian rhyth-
micity in early Parkinson’s disease are limited.
Breen et al. [7] showed that circadian alterations
are linked to differences in peripheral clock
gene expression and to fluctuations on circulating
hormones also in early Parkinson’s disease.
Although there was no evidence of a melatonin
phase shift in patients with Parkinson’s disease
compared to controls, alterations in melatonin
secretion were significantly correlated with objec-
tive sleep parameters including sleep latency and
reduced slow-wave sleep [7]. Interestingly, Lauretti
et al. showed that circadian rhythm disruption may
contribute to 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP)-induced neurotoxicity, sugges-
ting that circadian disturbances might be a driving
force for neurodegenerative processes [25]. How-
ever, symptomatic treatment with exogenous
melatonin in patients with idiopathic RBD did
not affect neurodegenerative outcome [26

&&

].
Therefore, the hypothesis of circadian rhythm
disorder as an environmental or endogenous risk
factor for developing Parkinson’s disease needs
further investigation.
RAPID EYE MOVEMENT SLEEP BEHAVIOR
DISORDER

In patients with Parkinson’s disease, RBD is preva-
lent in up to 50% (varying between 15 and 60%)
 Copyright © 2016 Wolters Kluwe
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[27,28], worsens with disease progression [29,30],
and has a negative impact on quality of life [31].
Rapid eye movement sleep behavior disorder
is part of prodromal Parkinson’s disease

In the last decade, many studies provided evidence
that RBD precedes Parkinson’s disease motor signs
by several years, suggesting that RBD should no
longer be considered a complication but a part of
the prodromal phase of the disease [13,32]. Recent
studies confirm this notion: in the Parkinson’s
Progression Markers Initiative (PPMI) study, possible
RBD emerged in 25.5% of drug-naı̈ve patients with
Parkinson’s disease [33

&

]. In 1719 newly diagnosed
Parkinson’s disease cases, the prevalence of RBD,
assessed by RBD questionnaire (RBDQ), was 43%
[34]. RBD in the premotor Parkinson’s disease
phase is associated with other NMS including
neuropsychiatric symptoms, such as hallucinatory
phenomena, axial symptoms, and cognitive impair-
ment [33

&

,34,35]. Furthermore, dream enactment
was frequently perceived more than 10 years before
the onset of Parkinson’s disease motor signs [10

&&

]
and was reported more frequently by individuals at
high risk for Parkinson’s disease [36,37]. Interest-
ingly, in the study from Beavan et al. [36], GBA
mutation carriers showed a significant deterioration
in RBDQ over the 2 years of follow up, suggesting a
progression of RBD symptoms already before any
motor signs appear [36]. Finally, RBD prevalence
significantly increased from the de-novo Parkinson’s
disease state to 2-year follow-up, suggesting that RBD
may also represent a marker of Parkinson’s disease
progression [38

&&

,39
&

].
Conversion to synucleinopathy

A large proportion of patients with idiopathic RBD
(iRBD) are susceptible to develop a synucleinopathy
[2,40,41]. Patients with iRBD frequently reported
NMS commonly found in advanced Parkinson’s
disease such as dribbling saliva, cognitive deficits,
and hyposmia [42]. Moreover, the presence of RBD
in the prodromal Parkinson’s disease phase was
associated with more cognitive deficits and with
greater annual rate of cognitive decline, suggesting
that RBD may be a risk factor for the development of
dementia in Parkinson’s disease [33

&

]. Recent efforts
aimed at identifying factors that coexist with iRBD
and can predict this phenoconversion. Among
89 patients with iRBD, about half developed a
synucleinopathy over 10 years. Advanced age, loss
of olfaction, abnormal color vision, motor function,
and nonuse of antidepressants were associated
with this conversion. Combining several of these
markers, subpopulations can be identified with up
r Health, Inc. All rights reserved.
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Degenerative and cognitive diseases
to 65% conversion rates risk in 3 years [26
&&

]. Inter-
estingly, the presence of RBD symptoms in combi-
nation with hyposmia and cognitive decline in
women could effectively differentiate de-novo
Parkinson’s disease cases from healthy controls
[43]. Pont-Sunyer et al. [10

&&

] assessed the possible
clustering of NMS and found no associations with
motor phenotypes. However dream enacting behav-
ior was associated with frequent nightmares and
constipation across all premotor timespans [10

&&

].
Finally, EEG slowing in cortical regions during
wakefulness [44

&

], early biochemical changes, such
as the downregulation of serum for specific miRNAs
(miR-19b) [45] and specific genetic polymorphisms
[46] have been also suggested as promising
markers to predict phenoconversion of iRBD into
a synucleinopathy.
PERIODIC LIMB MOVEMENTS IN SLEEP-
RESTLESS LEGS SYNDROME

In patients with Parkinson’s disease, periodic limb
movements in sleep (PLMS) are present in 30–80%
[47,48]. Only one study assessed PLMS in early
Parkinson’s disease and reported no differences in
the PLM-Index between untreated patients with
Parkinson’s disease and healthy controls [14]. The
prevalence of restless legs syndrome (RLS), system-
atically reviewed in 18 Parkinson’s disease cohorts
by Rijsman et al. [49] varies between 0 and 50%,
although rates close to zero were reported solely
in the Asian population. For RLS, most of the studies
showed no increased frequency before the onset
of Parkinson’s disease motor signs [50,51], despite
other findings in some earlier reports [52].

Recent studies support the concept of a
relatively modest role of RLS as prodromal feature
in Parkinson’s disease. The frequency of RLS,
assessed by specific questionnaires, did not differ
among patients with Parkinson’s disease, individ-
uals at high risk for Parkinson’s disease, and controls
[53]. RLS assessed with the RLS Diagnostic Index
was present at baseline in only 4.6% of newly diag-
nosed drug-naı̈ve patients with Parkinson’s disease
and increased to 6.5% after 2 years and 16.3% after
4 years, suggesting that, in most patients, RLS is a
complication rather than a prodromal feature
of Parkinson’s disease [54

&

]. In the same study,
RLS severity, assessed with the IRLSSG rating
scale, was not related to Parkinson’s disease
progression [54

&

].
In line with these findings, the presence of RLS

was not associated with risk for Parkinson’s disease
[52]. Notably, the presence of RLS in the premotor
Parkinson’s disease phase was related with delayed
Parkinson’s disease onset, reduced dyskinesia
 Copyright © 2016 Wolters Kluwer 
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occurrence, and possibly slower progression of
Parkinson’s disease in comparison to matched
patients with Parkinson’s disease without RLS [55].
Genetic data strengthen further the notion that RLS
and Parkinson’s disease are likely to be distinct
entities. Gan-Or et al. [56] analyzed the genetic
profile of patients with Parkinson’s disease and
healthy controls regarding known and well-validated
genetic RLS risk markers, and found no association
with increased Parkinson’s disease risk [56].
SLEEP DISORDERED BREATHING

The prevalence of sleep disordered breathing (SDB)
in Parkinson’s disease varies between 20 and 66%
[57,58], claiming higher rates than in the general
population (9–17% among 50- to 70-year-old
individuals [59]) and an association with disease
progression [60,61]. However, other studies reported
a similar or even reduced prevalence of SDB in
Parkinson’s disease compared to healthy controls
[62,63]. This discrepancy might reflect the small
sample sizes, differences in methodology of the
assessments and bias in patients selection and there-
fore the data should be interpreted with caution.

Although there are polysomnographic studies
reporting the Apnea-Hypopnea-Index (AHI), to our
best knowledge, studies assessing the prevalence
of obstructive sleep apnea (OSA) in premotor or
drug-naı̈ve early motor Parkinson’s disease are lack-
ing. Recently, two population-based studies from
Taiwan assessed the risk for developing Parkinson’s
disease in patients with OSA [64,65]. The incidence
of Parkinson’s disease in the OSA cohort was
approximately two times higher than that in indi-
viduals without OSA with women aged 50–69 and
individuals with insomnia being at high risk [64].
These findings were confirmed by Sheu et al. [65].
EXCESSIVE DAYTIME SLEEPINESS

Excessive daytime sleepiness (EDS) affects 15–50%
of patients with Parkinson’s disease [66]. With
disease progression, EDS becomes very frequent
and prominent [67], and the addition of dopamin-
ergic medication appears to worsen its severity [66].
In early studies, subjective sleepiness and short sleep
latencies in the multiple sleep latency test indicative
of objective EDS were present in some drug-naı̈ve
patients with Parkinson’s disease but not more
often than in controls [68–70]. However, men with
EDS had a three-fold higher risk of developing
Parkinson’s disease than controls without EDS [71].

Recently, studies based solely on subjective tools
(e.g. ESS) to assess EDS in the early Parkinson’s
disease phase reported controversial results. Two
Health, Inc. All rights reserved.
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studies reported a two-fold prevalence of EDS in
newly diagnosed drug-naı̈ve patients with Parkin-
son’s disease compared to controls [10

&&

,72
&

]. In the
ONSET Parkinson’s disease study, EDS was assessed
as part of the overall NMS burden and was
frequently perceived by patients with Parkinson’s
disease more than 10 years prior to the motor phase
[10

&&

]. Five years after Parkinson’s disease diagnosis,
EDS prevalence was three times higher compared to
baseline and main risk factors for developing EDS
was an increased sleepiness score and the use of
dopamine agonists at baseline [72

&

]. Mollenhauer
et al. [38

&&

] confirmed the findings regarding the
progressive worsening of EDS over the course of
Parkinson’s disease. However, at baseline the
prevalence of EDS did not differ between drug-naı̈ve
patients with Parkinson’s disease and controls
[38

&&

]. Similarly, EDS did not differ between
423 untreated newly diagnosed patients with
Parkinson’s disease from the PPMI study and 196
matched controls [73]. Finally, Pont-Sunyer et al.
[74] reported EDS to start after the onset
of parkinsonism.

Demonstration that EDS might be a risk factor
for neurodegeneration came recently from Arnulf
et al. [75

&

] The authors assessed EDS with the ESS
and concluded that EDS is frequent in patients
with iRBD and that an ESS >8 at the time of iRBD
diagnosis predicts more rapid conversion to
parkinsonism and dementia [75

&

].
FATIGUE

Fatigue is present in about 60% (range between
33 and 70%) [76,77] of individuals with Parkinson’s
disease. As the disease progresses, fatigue becomes
very prominent and disabling [78] and has a
negative impact on quality of life [79]. The addition
of dopaminergic medication seems to worsen its
severity. However, most of the data suggest that
fatigue is related to disease progression, even in
the premotor phase [80–82].

Recent studies support this notion: fatigue was
the most frequently reported NMS in drug-naı̈ve and
treated patients with Parkinson’s disease and its
prevalence (57%) did not differ between the two
groups. Demonstration that fatigue is part of the
prodromal Parkinson’s disease phase came from two
recent studies. Schrag et al. [11

&

], based on medical
records of 8166 individuals with and 46 755 indi-
viduals without PD, reported that fatigue precedes
for several years the onset of typical motor signs and
its prevalence is higher among individuals who will
develop Parkinson’s disease than those who will not.
In agreement, fatigue, assessed by NMS-Question-
naire, was four-fold more frequent in 109 drug-naı̈ve
 Copyright © 2016 Wolters Kluwe
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patients with Parkinson’s disease compared to con-
trols and was perceived up to 10 years prior to the
onset of motor signs. In the same study, fatigue in
combination with other NMS increased the ability
to discriminate Parkinson’s disease from controls,
identifying fatigue as a possible biomarker of
Parkinson’s disease [10

&&

].
SLEEP-WAKE NEUROBIOLOGY IN
PRODROMAL PARKINSON’S DISEASE

In recent years, new hypotheses involving dopamin-
ergic and nondopaminergic mechanisms emerged
concerning sleep–wake neurobiology in Parkinson’s
disease (Table 1).

The dopaminergic system is related to the regu-
lation of sleep and wakefulness at several levels.
First, dopamine is implicated in circadian mechan-
isms including the light input and adaptation in the
retina [102,103] and the regulation of specific hor-
mones, such as cortisol, prolactin, and melatonin
[104]. The interaction between dopamine and
melatonin [105], a major regulator of the circadian
rhythm, seems to be closely linked to Parkinson’s
disease progression [106,107]. Second, the loss
of dopaminergic transmission in Parkinson’s disease
not only affects the nigro-striatal projection but
also dopaminergic circuits between basal ganglia
and brainstem structures (particularly the peduncu-
lopontine and laterodorsal tegmental nucleus),
where important neurons of the arousal pathway
and for the modulation of sleep stages are
located [1,101,108]. Finally, mesocortical dopamine
neurons innervate limbic areas (thalamus and
hypothalamus) [1,101], where important regulators
of sleep–wake cycle are located: a) the master
circadian clock in the suprachiasmatic nuclei of
the hypothalamus, which mainly involves coordi-
nated expression and activation of various clock
genes [109–114] and regulation of melatonin pro-
duction [115], and b) orexin/hypocretin-containing
neurons, important excitatory neuromodulators
of sleep homeostasis [116], which interestingly
seem to be progressively reduced over the course
of Parkinson’s disease [117].

The degeneration of other, non dopaminergic
sleep–wake networks in the brainstem is likely
to play also a crucial role in SWD in Parkinson’s
disease. Lower brainstem nuclei including the
cholinergic pedunculopontine nucleus (PPN), the
noradrenergic locus coeruleus, and the serotonergic
raphe nuclei are directly involved with the regula-
tion of both wakefulness and sleep [108]. It has been
suggested, in agreement with the proposed Lewy
pathology staging scheme [118], that SWD in the
prodromal phase of Parkinson’s disease are directly
r Health, Inc. All rights reserved.
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related to neurodegeneration in these brainstem
nuclei [2,3,84,119]. Recently, De Natale et al. [120]
showed that abnormalities in brainstem reflexes
(vestibular-evoked myogenic potential) were more
severe in patients with advanced Parkinson’s disease
compared with patients in the early phase and
were significantly correlated with high scores on
RBD Screening Questionnaire, an indicator for
RBD severity. Similarly, dysfunction in brainstem
ventilatory control mechanisms may be the link for
the involvement of Parkinson’s disease in the patho-
genesis of SDB [93,94]. In contrast, Qamhawi et al.
[121

&

] using 123I-FP-CIT single photon emission
computed tomography showed that tremor but
not SWD, including fatigue, EDS, and RBD is associ-
ated with dopamine and serotonin transporter avail-
ability in raphe nuclei in early Parkinson’s disease.

Apart from the brainstem, other brain regions
involving nondopaminergic pathways have been
linked to SWD in early Parkinson’s disease. Recently,
Tessitore et al. [98

&

] using resting-state functional
MRI showed that patients with Parkinson’s disease
and fatigue exhibited altered connectivity in the
supplementary motor area as well as in the prefron-
tal and posterior cingulate cortices, suggesting alter-
ations in the sensorimotor and the default mode
network respectively. Wen et al. [122

&

] confirmed
previous reports that EDS in drug-naı̈ve patients
with Parkinson’s disease is related to altered neural
activity in fronto-temporal and limbic areas, prob-
ably reflecting a dysfunction of the arousal system.
Similarly, the slow-to-fast power ratio in resting-
state waking EEG was significantly higher in frontal,
central, parietal, temporal, and occipital regions
in patients with iRBD who developed a synuclein-
opathy compared to those who did not [44

&

].
Finally, the presence of RBD in drug-naı̈ve de-novo
patients with Parkinson’s disease was associated
with brain glucose hypometabolism in posterior
cortical regions [123

&

].
CONCLUSION

SWD are prevalent in Parkinson’s disease. Although
the frequency and often the severity of SWD
increase with advancing Parkinson’s disease, they
occur in all stages of the disease. An increasing
number of observational studies provide evidence
regarding the prevalence of SWD in the prodromal
phase and supported their role as risk factors
but probably also as driving force of year-long
degenerative processes that leads to the full Parkin-
son’s disease phenotype. As our understanding of
sleep–wake neurobiology increases, several hypoth-
eses are emerging concerning the pathophysiology
of SWD in premotor and early Parkinson’s disease.
 Copyright © 2016 Wolters Kluwe
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Taking into account the knowledge on SWD when
considering the diagnosis of Parkinson’s disease
may facilitate the identification of individuals at
high risk of developing Parkinson’s disease. Future
disease-modifying therapies will probably be at their
most effective in patients in the earliest stage of
the disease, before neurodegeneration leads to
significant neuronal loss.
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