Sleep–wake disturbances in the premotor and early stage of Parkinson’s disease

Panagiotis Bargiotas, Michael W.M. Schuepbach, and Claudio L. Bassetti

INTRODUCTION

Sleep–wake disturbances (SWD) are frequent in Parkinson’s disease and are typically attributed to Parkinson’s disease medications, poor sleep hygiene, and other nonmotor symptoms (NMS) such as nocturnal akinesia, pain, cramping, and nycturia. Over the past decade, notable advances have been made in the understanding of the role of the dopaminergic system in circadian mechanisms and sleep–wake physiology [1]. In addition, nondopaminergic systems are involved early in the pathogenesis of SWD in Parkinson’s disease [2,3]. These findings suggest that SWD are no longer solely a complication of advanced PD but can emerge, among other NMS, in the premotor stages as a primary manifestation of neurodegeneration [4] and increase in frequency with Parkinson’s disease progression (Fig. 1). Considering the importance of early diagnosis and intervention, the possibility that SWD may have prognostic value for the development of Parkinson’s disease is intriguing.

This review will discuss first the most recent literature on SWD in the context of premotor and early stage of Parkinson’s disease and then important recent evidence on the pathophysiology of SWD in early Parkinson’s disease.

SUBJECTIVE SLEEP DISTURBANCES/INSOMNIA

Two thirds of patients with Parkinson’s disease report poor sleep quality [5], many of them very early in the course of the disease [6,7]. Recent studies confirm the high prevalence of subjective sleep disturbances in the early stages of Parkinson’s disease and highlight their association with low quality of life [8,9,10] and other NMS such as global cognitive impairment, anxiety, depression and nocturia [8]. Individuals later diagnosed with...
Parkinson’s disease had, years before Parkinson’s disease diagnosis, a higher incidence of sleep disturbances [10**] and insomnia [11*] than controls. Baig et al. [9*] showed that 769 newly diagnosed patients with Parkinson’s disease experienced significantly more sleep disturbances than first-degree Parkinson’s disease relatives and control subjects. Sleep disturbances emerged in 60% of untreated and in 70% of treated patients with Parkinson’s disease, suggesting that either the disease progression or the introduction of dopaminergic medication may negatively impact sleep quality. In the same study, patients with tremor dominant Parkinson’s disease showed a better sleep profile than other non-tremor-dominant phenotypes [9**].

In agreement with the reported subjective sleep disturbances, previous polysomnographic studies showed that patients with Parkinson’s disease exhibit significant abnormalities in sleep architecture not only in fully developed motor Parkinson’s disease [12] but in the early phase of the disease as well. These abnormalities include increased sleep latency, reduced sleep efficiency, reduced rapid eye movement (REM) sleep [7], and significant changes in the REM and non-REM sleep architecture [13–16].

Recently, Margis et al. [17*] examined differences in sleep architecture between newly diagnosed, nondepressed, nondemented, drug-naïve patients with Parkinson’s disease \((n=8) \) and age- and sex-matched controls, using scalp electroencephalography (EEG). In patients with Parkinson’s disease, alpha and sigma activity during non-REM sleep was significantly higher in almost all examined brain regions [17*]. Considering that sigma activity is associated with sleep stability [18]

KEY POINTS

- Sleep–wake disturbances occur years prior to the onset of motor Parkinson’s disease signs, and their frequencies increase with disease progression.
- New data are emerging concerning the pathophysiology of sleep–wake disturbances in early Parkinson’s disease, implicating dopaminergic and nondopaminergic mechanisms.
- Premotor sleep–wake disturbances and mainly REM sleep behavior disorder have the potential to serve as prodromal markers of Parkinson’s disease. The reliable identification of individuals at high risk of developing Parkinson’s disease could become crucial when preventive or disease-modifying therapies become available.

FIGURE 1. Sleep–wake disturbances over the course of Parkinson’s disease. Subjective sleep–wake disturbances are prevalent in all stages of Parkinson’s disease (phase I–IV) and present in almost all patients with advanced Parkinson’s disease. In individuals at high risk of developing Parkinson’s disease, RBD symptoms (mainly dream-enacting behavior), fatigue, and probably EDS are more frequently reported than in the general population even a decade prior to onset of motor Parkinson’s disease signs (phase I). Gradually, as neuronal degeneration progresses, SWD increase in frequency and their spectrum expands. Dopaminergic medication often provides a relief on motor Parkinson’s disease signs but has only a minor (or even a negative) impact on sleep–wake disturbances. EDS, excessive daytime sleepiness; PLMS, periodic limb movements in sleep; RBD, REM sleep behavior disorder; RLS, restless legs syndrome.
and processing speed [19] and, as an important determinant of spindle production, with cognitive abilities [20,21], these findings contradict previous reports that patients with Parkinson’s disease without REM sleep behavior disorder (RBD) showed a significantly lower sleep spindle density in non-REM sleep when compared to matched controls [22]. The inclusion of treated patients with Parkinson’s disease in the Danish study may be a reasonable explanation for this discrepancy. However, the impact of dopaminergic medication on sleep architecture was not confirmed in a recent polysomnographic study. In 15 newly diagnosed patients with Parkinson’s disease, after initiation of dopaminergic treatment, subjective sleepiness (assessed by Epworth sleepiness scale, ESS) improved but no significant changes in sleep macro-architecture and other objective sleep parameters were found [23].

DISRUPTION OF CIRCADIAN RHYTHM

Several normal circadian patterns are desynchronized in Parkinson’s disease including diurnal fluctuation of sleep–wake cycles, cardiovascular (blood pressure, heart rate), and sensory functions [24*]. Recent studies focusing on circadian rhythmicity in early Parkinson’s disease are limited. Breen et al. [7] showed that circadian alterations are linked to differences in peripheral clock gene expression and to fluctuations on circulating hormones also in early Parkinson’s disease. Although there was no evidence of a melatonin phase shift in patients with Parkinson’s disease compared to controls, alterations in melatonin secretion were significantly correlated with objective sleep parameters including sleep latency and reduced slow-wave sleep [7]. Interestingly, Lauretti et al. showed that circadian rhythm disruption may contribute to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, suggesting that circadian disturbances might be a driving force for neurodegenerative processes [25]. However, symptomatic treatment with exogenous melatonin in patients with idiopathic RBD did not affect neurodegenerative outcome [26**]. Therefore, the hypothesis of circadian rhythm disorder as an environmental or endogenous risk factor for developing Parkinson’s disease needs further investigation.

RAPID EYE MOVEMENT SLEEP BEHAVIOR DISORDER

In patients with Parkinson’s disease, RBD is prevalent in up to 50% (varying between 15 and 60%) [27,28], worsens with disease progression [29,30], and has a negative impact on quality of life [31].

Rapid eye movement sleep behavior disorder is part of prodromal Parkinson’s disease

In the last decade, many studies provided evidence that RBD precedes Parkinson’s disease motor signs by several years, suggesting that RBD should no longer be considered a complication but a part of the prodromal phase of the disease [13,32]. Recent studies confirm this notion: in the Parkinson’s Progression Markers Initiative (PPMI) study, possible RBD emerged in 25.5% of drug-naïve patients with Parkinson’s disease [33*]. In 1719 newly diagnosed Parkinson’s disease cases, the prevalence of RBD, assessed by RBD questionnaire (RBDQ), was 43% [34]. RBD in the pre-motor Parkinson’s disease phase is associated with other NMS including neuropsychiatric symptoms, such as hallucinatory phenomena, axial symptoms, and cognitive impairment [33*,34,35]. Furthermore, dream enactment was frequently perceived more than 10 years before the onset of Parkinson’s disease motor signs [10**] and was reported more frequently by individuals at high risk for Parkinson’s disease [36,37]. Interestingly, in the study from Beavan et al. [36], GBA mutation carriers showed a significant deterioration in RBDQ over the 2 years of follow up, suggesting a progression of RBD symptoms already before any motor signs appear [36]. Finally, RBD prevalence significantly increased from the de-novo Parkinson’s disease state to 2-year follow-up, suggesting that RBD may also represent a marker of Parkinson’s disease progression [38**,39*].

Conversion to synucleinopathy

A large proportion of patients with idiopathic RBD (iRBD) are susceptible to develop a synucleinopathy [2,40,41]. Patients with iRBD frequently reported NMS commonly found in advanced Parkinson’s disease such as dribbling saliva, cognitive deficits, and hyposmia [42]. Moreover, the presence of RBD in the prodromal Parkinson’s disease phase was associated with more cognitive deficits and with greater annual rate of cognitive decline, suggesting that RBD may be a risk factor for the development of dementia in Parkinson’s disease [33*]. Recent efforts aimed at identifying factors that coexist with iRBD and can predict this phenocversion. Among 89 patients with iRBD, about half developed a synucleinopathy over 10 years. Advanced age, loss of olfaction, abnormal color vision, motor function, and nonuse of antidepressants were associated with this conversion. Combining several of these markers, subpopulations can be identified with up
to 65% conversion rates risk in 3 years [26**]. Interestingly, the presence of RBD symptoms in combination with hyposmia and cognitive decline in women could effectively differentiate de-novo Parkinson’s disease cases from healthy controls [43]. Pont-Sunyer et al. [10**] assessed the possible clustering of NMS and found no associations with motor phenotypes. However, dream enacting behavior was associated with frequent nightmares and constipation across all premotor timespans [10**]. Finally, EEG slowing in cortical regions during wakefulness [44*], early biochemical changes, such as the downregulation of serum for specific miRNAs (miR-19b) [45] and specific genetic polymorphisms [46] have been also suggested as promising markers to predict phenocconversion of iRBD into a synucleinopathy.

PERIODIC LIMB MOVEMENTS IN SLEEP-RESTLESS LEGS SYNDROME

In patients with Parkinson’s disease, periodic limb movements in sleep (PLMS) are present in 30–80% [47,48]. Only one study assessed PLMS in early Parkinson’s disease and reported no differences in the PLM-Index between untreated patients with Parkinson’s disease and healthy controls [14]. The prevalence of restless legs syndrome (RLS), systematically reviewed in 18 Parkinson’s disease cohorts by Rijsman et al. [49] varies between 0 and 50%, although rates close to zero were reported solely in the Asian population. For RLS, most of the studies showed no increased frequency before the onset of Parkinson’s disease motor signs [50,51], despite other findings in some earlier reports [52].

Recent studies support the concept of a relatively modest role of RLS as prodromal feature in Parkinson’s disease. The frequency of RLS, assessed by specific questionnaires, did not differ among patients with Parkinson’s disease, individuals at high risk for Parkinson’s disease, and controls [53]. RLS assessed with the RLS Diagnostic Index was present at baseline in only 4.6% of newly diagnosed drug-naïve patients with Parkinson’s disease and increased to 6.5% after 2 years and 16.3% after 4 years, suggesting that, in most patients, RLS is a complication rather than a prodromal feature of Parkinson’s disease [54*]. In the same study, RLS severity, assessed with the IRLSSG rating scale, was not related to Parkinson’s disease progression [54*].

In line with these findings, the presence of RLS was not associated with risk for Parkinson’s disease [52]. Notably, the presence of RLS in the premotor Parkinson’s disease phase was related with delayed Parkinson’s disease onset, reduced dyskinesia occurrence, and possibly slower progression of Parkinson’s disease in comparison to matched patients with Parkinson’s disease without RLS [55]. Genetic data strengthen further the notion that RLS and Parkinson’s disease are likely to be distinct entities. Gan-Or et al. [56] analyzed the genetic profile of patients with Parkinson’s disease and healthy controls regarding known and well-validated genetic RLS risk markers, and found no association with increased Parkinson’s disease risk [56].

SLEEP DISORDERED BREATHING

The prevalence of sleep disordered breathing (SDB) in Parkinson’s disease varies between 20 and 66% [57,58], claiming higher rates than in the general population (9–17% among 50- to 70-year-old individuals [59]) and an association with disease progression [60,61]. However, other studies reported a similar or even reduced prevalence of SDB in Parkinson’s disease compared to healthy controls [62,63]. This discrepancy might reflect the small sample sizes, differences in methodology of the assessments and bias in patients selection and therefore the data should be interpreted with caution.

Although there are polysomnographic studies reporting the Apnea-Hypopnea-Index (AHI), to our best knowledge, studies assessing the prevalence of obstructive sleep apnea (OSA) in premotor or drug-naïve early motor Parkinson’s disease are lacking. Recently, two population-based studies from Taiwan assessed the risk for developing Parkinson’s disease in patients with OSA [64,65]. The incidence of Parkinson’s disease in the OSA cohort was approximately two times higher than that in individuals without OSA with women aged 50–69 and individuals with insomnia being at high risk [64]. These findings were confirmed by Sheu et al. [65].

EXCESSIVE DAYTIME SLEEPINESS

Excessive daytime sleepiness (EDS) affects 15–50% of patients with Parkinson’s disease [66]. With disease progression, EDS becomes very frequent and prominent [67], and the addition of dopaminergic medication appears to worsen its severity [66]. In early studies, subjective sleepiness and short sleep latencies in the multiple sleep latency test indicative of objective EDS were present in some drug-naïve patients with Parkinson’s disease but not more often than in controls [68–70]. However, men with EDS had a three-fold higher risk of developing Parkinson’s disease than controls without EDS [71].

Recently, studies based solely on subjective tools (e.g. ESS) to assess EDS in the early Parkinson’s disease phase reported controversial results. Two
studies reported a two-fold prevalence of EDS in newly diagnosed drug-naïve patients with Parkinson’s disease compared to controls [10**,72*]. In the ONSET Parkinson’s disease study, EDS was assessed as part of the overall NMS burden and was frequently perceived by patients with Parkinson’s disease more than 10 years prior to the motor phase [10**]. Five years after Parkinson’s disease diagnosis, EDS prevalence was three times higher compared to baseline and main risk factors for developing EDS was an increased sleepiness score and the use of dopamine agonists at baseline [72*]. Mollenhauer et al. [38**] confirmed the findings regarding the progressive worsening of EDS over the course of Parkinson’s disease. However, at baseline the prevalence of EDS did not differ between drug-naïve patients with Parkinson’s disease and controls [38**]. Similarly, EDS did not differ between 423 untreated newly diagnosed patients with Parkinson’s disease from the PPMI study and 196 matched controls [73]. Finally, Pont-Sunyer et al. [74] reported EDS to start after the onset of parkinsonism.

Demonstration that EDS might be a risk factor for neurodegeneration came recently from Arnulf et al. [75*]. The authors assessed EDS with the ESS and concluded that EDS is frequent in patients with iRBD and that an ESS >8 at the time of iRBD diagnosis predicts more rapid conversion to parkinsonism and dementia [75*].

FATIGUE

Fatigue is present in about 60% (range between 33 and 70%) [76,77] of individuals with Parkinson’s disease. As the disease progresses, fatigue becomes very prominent and disabling [78] and has a negative impact on quality of life [79]. The addition of dopaminergic medication seems to worsen its negative impact on quality of life [79]. The authors assessed EDS with the ESS and concluded that EDS is frequent in patients with iRBD and that an ESS >8 at the time of iRBD diagnosis predicts more rapid conversion to parkinsonism and dementia [75*].

Recent studies support this notion: fatigue was the most frequently reported NMS in drug-naïve and treated patients with Parkinson’s disease and its prevalence (57%) did not differ between the two groups. Demonstration that fatigue is part of the prodromal Parkinson’s disease’s phase came from two recent studies. Schrag et al. [11*], based on medical records of 8166 individuals with and 46 755 individuals without PD, reported that fatigue preceeds for several years the onset of typical motor signs and its prevalence is higher among individuals who will develop Parkinson’s disease than those who will not. In agreement, fatigue, assessed by NMS-Questionnaire, was four-fold more frequent in 109 drug-naïve patients with Parkinson’s disease compared to controls and was perceived up to 10 years prior to the onset of motor signs. In the same study, fatigue in combination with other NMS increased the ability to discriminate Parkinson’s disease from controls, identifying fatigue as a possible biomarker of Parkinson’s disease [10**].

SLEEP-WAKE NEUROBIOLOGY IN PRODROMAL PARKINSON’S DISEASE

In recent years, new hypotheses involving dopaminergic and nondopaminergic mechanisms emerged concerning sleep–wake neurobiology in Parkinson’s disease (Table 1).

The dopaminergic system is related to the regulation of sleep and wakefulness at several levels. First, dopamine is implicated in circadian mechanisms including the light input and adaptation in the retina [102,103] and the regulation of specific hormones, such as cortisol, prolactin, and melatonin [104]. The interaction between dopamine and melatonin [105], a major regulator of the circadian rhythm, seems to be closely linked to Parkinson’s disease progression [106,107]. Second, the loss of dopaminergic transmission in Parkinson’s disease not only affects the nigro-striatal projection but also dopaminergic circuits between basal ganglia and brainstem structures (particularly the pedunculopontine and laterodorsal tegmental nucleus), where important neurons of the arousal pathway and for the modulation of sleep stages are located [1,101,108]. Finally, mesocortical dopamine neurons innervate limbic areas (thalamus and hypothalamus) [1,101], where important regulators of sleep–wake cycle are located: a) the master circadian clock in the suprachiasmatic nuclei of the hypothalamus, which mainly involves coordinated expression and activation of various clock genes [109–114] and regulation of melatonin production [115], and b) orexin/hypocretin-containing neurons, important excitatory neuromodulators of sleep homeostasis [116], which interestingly seem to be progressively reduced over the course of Parkinson’s disease [117].

The degeneration of other, non dopaminergic sleep–wake networks in the brainstem is likely to play also a crucial role in SWD in Parkinson’s disease. Lower brainstem nuclei including the cholinergic pedunculopontine nucleus (PPN), the noradrenergic locus coeruleus, and the serotonergic raphe nuclei are directly involved with the regulation of both wakefulness and sleep [108]. It has been suggested, in agreement with the proposed Lewy pathology staging scheme [118], that SWD in the prodromal phase of Parkinson’s disease are directly
<table>
<thead>
<tr>
<th>Subjective sleep disturbances/Insomnia [68,69,74,83,84]</th>
<th>30–70%</th>
<th>60–95%</th>
<th>Quality of life, Cognitive impairment, Depression/anxiety, Female gender, Nocturia</th>
<th>Locus coeruleus, Raphe nuclei, hypothalamus, Subcortical/limbic system (amygdala, thalamus and entorhinal cortex)</th>
<th>α-Synuclein progressive pathology, Nocturnal recurrence of Parkinson’s disease symptoms (e.g., nycturia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBD [27,28,34,35, 83–91]</td>
<td>20–25%</td>
<td>15–60%</td>
<td>Neuropsychiatric symptoms, Axial symptoms, Cognitive impairment, Visual/olfactory deficits, Obstipation, Dysautonomia</td>
<td>Posterior cortical regions, laterodorsal brainstem nuclei (latero-dorsal pontine tegmental nuclei, pedunculopontine nucleus, locus subcoeruleus)</td>
<td>Dysfunction involving GABAergic, glutamatergic and cholinergic systems (lateral vestibular pathology), Nigrostriatal dopaminergic degeneration?</td>
</tr>
<tr>
<td>RLS [49,54*]</td>
<td>4–5%</td>
<td>0–50%</td>
<td>Depression, Insomnia, Daytime sleepiness</td>
<td>Iron stores in the striatum and substantia nigra, Spinal cord?</td>
<td>CNS iron homeostatic dysregulation, Augmentation: dopaminergic overstimulation of D1 receptors in the spinal cord</td>
</tr>
<tr>
<td>SDB [93,94]</td>
<td>na</td>
<td>20–50%</td>
<td>?</td>
<td>Brainstem?</td>
<td>Motor Parkinson’s disease manifestations (e.g., rigidity) affecting upper airway and respiratory pump muscles, Autonomic dysfunction, Dysfunction in brainstem ventilatory control mechanisms and impaired respiratory drive in response to hypercapnia</td>
</tr>
<tr>
<td>EDS [73,95–97]</td>
<td>10–15</td>
<td>15–50%</td>
<td>Depression, Dysautonomia</td>
<td>Posterior lateral hypothalamus, Brainstem</td>
<td>Impaired dopaminergic, serotonergic, noradrenergic and cholinergic neurons involved in arousal systems, Loss of hypocretin pathways and circadian control, D1/D2 receptors</td>
</tr>
<tr>
<td>Fatigue [11,76,77, 80,81,98*,99,100]</td>
<td>10–20</td>
<td>35–70%</td>
<td>Depression, Reduced activities of daily living, Reduced sleep quality (sleep refreshment?)</td>
<td>Basal ganglia, Limbic system, Supplementary motor area, Prefrontal and posterior cingulate cortices</td>
<td>Abnormal connectivity between premotor and primary motor cortex, Altered connectivity within the sensorimotor and default mode network</td>
</tr>
<tr>
<td>Circadian disturbances [7,101]</td>
<td>na</td>
<td>20–50%</td>
<td>Reduced slow-wave sleep, Reduced REM sleep, Increased sleep latency, Daytime sleepiness?</td>
<td>Retina, Hypothalamus (SCN), Thalamus, Pineal</td>
<td>Melatonin, Clock genes, Orexin/hypocretin-containing neurons</td>
</tr>
</tbody>
</table>

CNS, central nervous system; D1 and D2, dopamine receptor 1 and 2; SCN, suprachiasmatic nucleus.
related to neurodegeneration in these brainstem nuclei [2,3,84,119]. Recently, De Natale et al. [120] showed that abnormalities in brainstem reflexes (vestibular-evoked myogenic potential) were more severe in patients with advanced Parkinson’s disease compared with patients in the early phase and were significantly correlated with high scores on RBD Screening Questionnaire, an indicator for RBD severity. Similarly, dysfunction in brainstem ventilatory control mechanisms may be the link for the involvement of Parkinson’s disease in the pathogenesis of SDB [93,94]. In contrast, Qamhawi et al. [121] using 123I-FP-CIT single photon emission computed tomography showed that tremor but not SWD, including fatigue, EDS, and RBD is associated with dopamine and serotonin transporter availability in raphe nuclei in early Parkinson’s disease.

Apart from the brainstem, other brain regions involving nondopaminergic pathways have been linked to SWD in early Parkinson’s disease. Recently, Tessitore et al. [98] using resting-state functional MRI showed that patients with Parkinson’s disease and fatigue exhibited altered connectivity in the supplementary motor area as well as in the prefrontal and posterior cingulate cortices, suggesting alterations in the sensorimotor and the default mode network respectively. Wen et al. [122] confirmed previous reports that EDS in drug-naïve patients with Parkinson’s disease is related to altered neural activity in fronto-temporal and limbic areas, probably reflecting a dysfunction of the arousal system. Similarly, the slow-to-fast power ratio in resting-state waking EEG was significantly higher in frontal, central, parietal, temporal, and occipital regions in patients with iRBD who developed a synucleinopathy compared to those who did not [44]. Finally, the presence of RBD in drug-naïve de-novo patients with Parkinson’s disease was associated with brain glucose hypometabolism in posterior cortical regions [123].

CONCLUSION

SWD are prevalent in Parkinson’s disease. Although the frequency and often the severity of SWD increase with advancing Parkinson’s disease, they occur in all stages of the disease. An increasing number of observational studies provide evidence regarding the prevalence of SWD in the prodromal phase and supported their role as risk factors but probably also as driving force of year-long degenerative processes that leads to the full Parkinson’s disease phenotype. As our understanding of sleep–wake neurobiology increases, several hypotheses are emerging concerning the pathophysiology of SWD in premotor and early Parkinson’s disease. Taking into account the knowledge on SWD when considering the diagnosis of Parkinson’s disease may facilitate the identification of individuals at high risk of developing Parkinson’s disease. Future disease-modifying therapies will probably be at their most effective in patients in the earliest stage of the disease, before neurodegeneration leads to significant neuronal loss.

Acknowledgements

We would like to thank Alexios Bargiotas for his assistance in developing the graphics of the study.

Financial support and sponsorship

None.

Conflicts of interest

Panagiotis Bargiotas is currently receiving a grant from the University Hospital Bern, Inselspital (Insel-Grant), Bern, Switzerland. Michael Schuepbach reports receiving consulting fees from Medtronic, Boston Scientific and Aleva, and lecture honoraria from Zambon, Merz Pharma, as well as grant support from Medtronic, Boston Scientific, Ipsen, Actelion. Furthermore, he received congress fees and travel reimbursements from Boston Scientific and Zambon. Claudio Bassetti has received honoraria for consultancy, lectures, and board memberships from the following institutions/companies: Jazz, Servier, UCB, Zambon. His research is currently supported by grants of the following institutions/companies: Swiss National Science Foundation (SNF), ResMed, Respironics, Vifor Pharma, UCB Pharma, Schweizerische Herzstiftung, Tropos Stiftung, Parkinson Schweiz.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

Degenerative and cognitive diseases

In this study authors investigate several NMS in the context of early Parkinson’s disease. Sleep-related disturbances are frequent in the early stages of Parkinson’s disease and their frequencies increase with disease progression. The study shows also the different sleep–wake profile of several Parkinson’s disease phenotypes.

In the present study, authors assess the prevalence and the time of onset of a variety of NMS in a group of newly diagnosed, untreated patients with Parkinson’s disease and a group of age-matched and gender-matched control subjects. The study also explores possible clusters of NMS and their association with the predominant motor phenotype.

This is a large population-based study examining the association between several prediagnostic features, including RBD, and a subsequent diagnosis of Parkinson’s disease. Individuals later diagnosed with Parkinson’s disease had, years before Parkinson’s disease diagnosis, a higher incidence of RBD and insomnia.

This is a sleep EEG study of sleep microstructure in newly diagnosed drug-naïve patients with Parkinson’s disease. Authors reported increased scalp EEG alpha and sigma activity during non-REM sleep compared to healthy controls.

This is a cross-sectional study of a cohort of patients with Parkinson’s disease (PD). The authors assessed the prevalence of REM sleep behavior disorder (RBD) in a large PD cohort and found that RBD was more common in patients with PD compared to control subjects.

This observational study confirms the progressive nature of RBD in early Parkinson’s disease. Sleep EEG shows a significant increase in the frequency of polysomnographic confirmed RBD in the 2-year follow-up.

This study investigated the role of sleep spindles in memory consolidation and found that sleep spindles are important for the consolidation of declarative memory.

This review article highlights the potential role of the circadian system as a novel therapeutic target in Parkinson’s disease.

This observational study found that sleep spindles are associated with better cognitive performance in healthy children.

This study investigated the role of sleep spindles in memory consolidation and found that sleep spindles are important for the consolidation of declarative memory.

This is a sleep EEG study of sleep microstructure in newly diagnosed drug-naïve patients with Parkinson’s disease. Authors reported increased scalp EEG alpha and sigma activity during non-REM sleep compared to healthy controls.

This observational study confirmed the progressive nature of RBD in early Parkinson’s disease. Sleep EEG shows a significant increase in the frequency of polysomnographic confirmed RBD in the 2-year follow-up.

This is a cross-sectional study of a cohort of patients with Parkinson’s disease (PD). The authors assessed the prevalence of REM sleep behavior disorder (RBD) in a large PD cohort and found that RBD was more common in patients with PD compared to control subjects.

This observational study confirms the progressive nature of RBD in early Parkinson’s disease. Sleep EEG shows a significant increase in the frequency of polysomnographic confirmed RBD in the 2-year follow-up.

This study investigated the role of sleep spindles in memory consolidation and found that sleep spindles are important for the consolidation of declarative memory.

This review article highlights the potential role of the circadian system as a novel therapeutic target in Parkinson’s disease.

This observational study found that sleep spindles are associated with better cognitive performance in healthy children.

This study investigated the role of sleep spindles in memory consolidation and found that sleep spindles are important for the consolidation of declarative memory.

This is a sleep EEG study of sleep microstructure in newly diagnosed drug-naïve patients with Parkinson’s disease. Authors reported increased scalp EEG alpha and sigma activity during non-REM sleep compared to healthy controls.

This observational study confirmed the progressive nature of RBD in early Parkinson’s disease. Sleep EEG shows a significant increase in the frequency of polysomnographic confirmed RBD in the 2-year follow-up.

This is a cross-sectional study of a cohort of patients with Parkinson’s disease (PD). The authors assessed the prevalence of REM sleep behavior disorder (RBD) in a large PD cohort and found that RBD was more common in patients with PD compared to control subjects.

This observational study confirms the progressive nature of RBD in early Parkinson’s disease. Sleep EEG shows a significant increase in the frequency of polysomnographic confirmed RBD in the 2-year follow-up.

This study investigated the role of sleep spindles in memory consolidation and found that sleep spindles are important for the consolidation of declarative memory.

This review article highlights the potential role of the circadian system as a novel therapeutic target in Parkinson’s disease.

This observational study found that sleep spindles are associated with better cognitive performance in healthy children.

This study investigated the role of sleep spindles in memory consolidation and found that sleep spindles are important for the consolidation of declarative memory.

This is a sleep EEG study of sleep microstructure in newly diagnosed drug-naïve patients with Parkinson’s disease. Authors reported increased scalp EEG alpha and sigma activity during non-REM sleep compared to healthy controls.

Sleep-wake disturbances in the premotor and early stage of Parkinson's disease Bargiota et al.

72. This longitudinal study explores the incidence of EDS at the time of Parkinson's disease diagnosis and over the course of the disease. Risk and associated factors for this increase are examined.

76. This study explores sleepiness (measured by ESS) in the context of idiopathic RBD. Patients with idiopathic RBD are sleepier than controls and high ESS scores at time of RBD diagnosis predicts more rapid conversion of idiopathic RBD to parkinsonism and dementia.

This is a large neuroimaging study examining possible association of the raphe nuclei with motor and nonmotor symptoms in early drug-naive Parkinson’s disease. Authors suggest that raphe serotonin transporter availability is related to motor symptoms but not to SWD, including fatigue, EDS, and RBD.

This is a resting-state functional MRI imaging study of the neural basis of EDS in Parkinson’s diseases, reporting functional abnormalities in frontal and cerebellar areas in sleepy drug-naive patients with Parkinson’s disease.

This study explores the functional neuroimaging phenotype of early patients with Parkinson’s disease with and without probable RBD, using 123I-FP-CIT-SPECT and 18F-FDG-PET. Patients with RBD had a higher prevalence of MCI, obstipation and olfaction and exhibited more severe nigro-striatal dopaminergic impairment and an altered brain glucose metabolism, mainly in posterior cortical regions.