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Bound states and field-polarized Haldane modes in a quantum spin ladder
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1Laboratory for Neutron Scattering and Imaging,
Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

2London Centre for Nanotechnology and Department of Physics and Astronomy,
University College London, London WC1E 6BT, United Kingdom

3Department of Quantum Matter Physics, University of Geneva, CH-1211 Geneva, Switzerland
4Department of Medical Imaging and Information Sciences, Interventional Neuroradiology Unit,

University Hospitals of Geneva, CH-1211 Geneva, Switzerland
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The challenge of one-dimensional systems is to understand their physics beyond the level of known
elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material,
we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero
field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet
(transverse) excitations of the fully spin-polarized ladder, which have not been observed previously
and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modelling
of the dynamical response demonstrates our complete quantitative understanding of these states.

PACS numbers: 75.10.Jm, 75.40.Gb, 75.40.Mg, 78.70.Nx

Throughout physics, one-dimensional (1D) systems
show a range of intriguing and unconventional phenom-
ena. The dominance of quantum fluctuations in 1D mate-
rials makes them the ultimate form of quantum matter.
The physics of the ground states and elementary, low-
energy excitations of 1D systems are by now rather well
understood in theory [1] and have been realized in ex-
periment in a number of quite different fields, including
conducting wires [2], atomic chains [3], quantum magnets
[4], and ultracold atoms [5]. Looking forwards, the next
frontier is to understand and control the physics of these
systems on all energy scales, including their multiparticle
excitations and topological states.

Quantum magnets provide an excellent arena not only
for quantitative measurements of the strongly correlated
quantum wave function but also for its systematic con-
trol by applied external parameters [6–8]. Among the
systems whose elementary magnetic excitations are al-
ready well characterized, one key model is the S = 1/2
“ladder,” consisting of two coupled spin chains [9], with
detailed experimental studies performed on genuine lad-
der materials including La4Sr10Cu24O41 [10], BPCB [11–
17] and DIMPY [18–21]. The ladder has many paral-
lels to another cornerstone model, the Haldane (S = 1)
chain [22, 23], and significant progress has been made in
calculating their dynamical response [24]. However, gen-
uine Haldane materials with accessible energy scales have
proven difficult to find [25–27], and thus the response in
strong magnetic fields remains an open problem [28, 29].

In this Letter, we report on measurements of single-
and multi-magnon excitations in the spin ladder bis-
piperidinium copper tetrachloride (BPCC). By exploit-
ing the elegant parity selectivity of the ladder geome-
try, at zero field we demonstrate the presence of a strong
two-magnon bound-state triplet over half of the Brillouin
zone and quantify its spectral weight. At high fields, we
demonstrate the selection criteria for the singlet excita-
tion, or amplitude mode, of the fully field-polarized (FP)
phase, as well as for its triplet (transverse) mode. Both
are unknown in a conventional ferromagnet and have di-
rect analogs in the FP Haldane chain. By detailed ana-
lytical and numerical modelling, we describe our intensity
measurements with quantitative accuracy.

The spin ladder has two basic magnetic interactions,
the rung (Jr) and leg (Jl) couplings, and one ratio,
γ = Jl/Jr. BPCB (γ ' 0.26) and DIMPY (γ ' 1.7) ex-
emplify contrasting regimes of ladder behavior. The chlo-
ride analog of BPCB, (C5D12N)2CuCl4 (BPCC, Fig. S2)
crystallizes in the monoclinic space group P21/c. Two
halide bridges between pairs of Cu2+ ions form the rung
dimer (Jr). A further halide bridge between ions repeat-
ing periodically in â provides Jl. BPCC is an exceptional
realization of a very clean S = 1/2 spin ladder with, as we
will show, three attributes ideal for our studies. First, the
ladders are well separated by piperidinium groups, mak-
ing them effectively isolated. Second, the ratio γ ' 0.4
[30] is perfectly suited for observing bound states in the
two-magnon sector (whose weight scales with γ2), with-
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out strong interference from the scattering states. Third,
the low energy scales in BPCC [30, 31] allow one to work
well within the FP phase at laboratory magnetic fields.

High-quality deuterated single-crystal samples were
synthesized and five crystals of total mass 2.4 g were
coaligned on the MORPHEUS instrument at SINQ for
the collection of inelastic neutron scattering data on the
time-of-flight spectrometer LET at ISIS [32]. The sam-
ple was mounted inside a 9 T vertical cryomagnet, on a
dilution insert with a stable base temperature of 60 mK.
Frame-rate multiplication was used with a primary in-
coming neutron energy of 2.5 meV. Data at zero field
were collected at 104 sample rotation angles and pro-
cessed using the MANTID program [33]. The result-
ing datasets for the dynamical structure factor, S(Q, ω),
were analyzed with the HORACE software package [34].

In the two-leg ladder, the rung-singlet wave function is
antisymmetric whereas the triplets are symmetric (rep-
resented schematically in Fig. S1). The geometry there-
fore allows a full parity selection between odd (qy = π;
e.g. singlet-triplet) and even (qy = 0; e.g. triplet-triplet)
excitation processes [24, 35], where qy is the wave vec-
tor across the ladder unit. There is no mixing between
modes of opposite parity and S(Q, ω) separates com-
pletely into odd- and even-parity sectors, whose inten-
sity maxima occur in very different parts of the Brillouin
zone [Figs. 1(d) and 1(e)]. Although the crystallography
of BPCC dictates that there are two different ladder ori-
entations, this parity selection remains possible [24, 35],
as shown in Sec. S1 of the supplemental material (SM)
[36].

We begin our presentation at zero applied field. We
refer to the elementary one-triplet excitation of the ladder
as a “magnon.” The one-magnon dispersion relation is
clearly evident in Fig. 1(a), where the four-dimensional
(4D) intensity dataset is analyzed to select the qy = π
sector. Our data treatment is discussed in Sec. S2 of
the SM. We observe an excitation with gap 0.2 meV,
bandwidth 0.23 meV, and periodicity 2π, suggesting that
Jr is significantly stronger than Jl.

Several theoretical approaches give good descriptions
of the two-leg ladder in the strong-rung regime. From
an optimized fit of the one-magnon data to a strong-
coupling expansion [37] [Eq. (S5) of Sec. S3], we deduce
the exchange parameters Jr = 0.295(8) meV and Jl =
0.116(1) meV; the resulting dispersion is shown as the
red lines in Figs. 1(a) and 1(b). The corresponding val-
ues from the bond-operator technique [38] [Eq. (S6)] are
Jr = 0.306(8) meV and Jl = 0.113(1) meV, and the dis-
persion is identical within the error bars. Thus the leg
exchange in BPCC, with γ ' 0.39, is more significant
than in BPCB, which is the key to our quantitative ob-
servations of bound states. We perform both DMRG
and systematic high-order series-expansion calculations
for S(Q, ω) (Sec. S3), which capture the contributions of
all excitation channels; with optimized parameters Jr =

(g)
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FIG. 1. One-magnon excitations in BPCC. (a) S(Q, ω)
measured in the qy = π sector. (b) S(Q, ω) obtained by
DMRG and series-expansion (SE) calculations, whose results
are indistinguishable. The solid red line is the dispersion
obtained from strong-coupling [Eq. (S5)] and bond-operator
treatments [Eq. (S6)]. (c) I(Q) obtained by integration over
Qk (denoted Qk) and over the energy range 0.19 ≤ ω ≤ 0.43
meV, shown as red points and computed in the SMA (dashed
black) and by DMRG (solid red lines); the solid black line
denotes the background and Qlmax is defined in Eq. (S4). (d)
Measured structure factor and (e) that calculated by DMRG;
Q vectors for the ladder direction in the qy = π and qy = 0
sectors are shown respectively as red and green solid lines,
with those transverse to the ladder at Qh = 0 and 0.5 shown
respectively in blue and orange; dashed lines mark the trans-
verse integration ranges. (f) S(Q, ω) as a function ofQl, taken
at Qh = 0 and cutting the qy = π [intensity maxima, red
dashed lines, panel (a)] and qy = 0 [minima, green, Fig. 2(a)]
sectors. The solid orange line is the one-magnon band max-
imum [Eq. (S5)]. (g) I(Q) (0.40 ≤ ω ≤ 0.43 meV, orange
points), compared with SMA (dashed black) and DMRG cal-
culations (solid orange lines). (h) S(Q, ω) measured for scat-
tering vectors [0.5 Qk Ql− 0.1563] at the band minimum. (i)
I(Q) (0.19 ≤ ω ≤ 0.23 meV, blue points), with corresponding
theoretical predictions.
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0.295 (0.294) meV and Jl = 0.115 (0.117) meV for DMRG
(series expansions), both yield excellent agreement with
the one-magnon measurements, as shown in Fig. 1(b).

For a quantitative discussion of the scattering intensity,
we integrate S(Q, ω) over specific energy ranges and con-
sider the resulting structure factor, I(Q). The quantity
I(Q) obtained by integrating over the full one-magnon
energy range (0.19≤ω≤0.43 meV) is shown in Fig. 1(c).
Our DMRG (solid line) and series-expansion calculations
reproduce not only the dispersion but also the spectral
weight to very high accuracy. To analyze the one-magnon
intensity, we exploit the dominance of this mode in the
spectrum to apply the single-mode approximation (SMA,
Sec. S3). With prior knowledge of Jr and Jl, the average
spin correlations, 〈S1 · S2〉, can be extracted separately
for the rung and leg bonds [38]. Here, however, the un-
known overall scale factor restricts us to deducing their
ratio [35], whose expected theoretical value (Sec. S3) is
0.26(1). From our data, we obtain a correlation ratio
of 0.22(1) and the fit to I(Q) shown by the dashed line
in Fig. 1(c). Thus our one-magnon intensity measure-
ments both quantify the correlations (entanglement) in
the quantum wave function and set the scale factor for
intensity calculations in all other scattering sectors.

The intensity distribution for wave vectors transverse
to the ladder direction, shown in Figs. 1(f) to 1(i),
probes the diagonal (Jd) and interladder (J ′) interac-
tions. We find that the one-magnon mode is completely
non-dispersive within the instrumental resolution, plac-
ing (Sec. S2) an upper bound of 0.006(1) meV on any
possible couplings of these types. While this is a maxi-
mum of 2% of Jr, in fact a far more stringent bound on
J ′ is provided by the absence of magnetic order down to
35 mK, making the ladders in BPCC at least as isolated
as those in BPCB, where J ′/Jr ≈ 0.2% [17].

Next we consider multi-magnon excitation processes,
whose intensity contributions we separate unambiguously
by exploiting the parity of the ladder structure (Sec. S1).
The symmetric (qy = 0) channel in Fig. 2 is the maxi-
mum of all excitation processes changing the triplet count
by an even number and is dominated by two-magnon ex-
citations into both continuum states and bound states.
The zero-field spectrum of DIMPY has been found to
exhibit both features [20]. However, in BPCC the con-
tinuum contributions are extremely weak, allowing the
dispersion, spectral weight, and termination of the two-
magnon bound state to be measured in a degree of detail
extremely difficult to achieve either in DIMPY or in the
dimerized-chain material Cu(NO3)2·2.5D2O [42].
S(Q, ω) measured with qy = 0 is shown in Fig. 2(a).

We observe a clear, discrete mode lying at an energy of
0.58 meV at Qh = 0.5, below the continuum edge, and
dispersing downwards before disappearing into the con-
tinuum, whose contribution is indiscernible in Fig. 2(a).
From the selection rules for neutron scattering, this mode
is the triplet branch (Stot = 1) of the two-magnon bound

(a) BPCC
T = 60 mK, qy = 0
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FIG. 2. Two-magnon excitations in BPCC. (a) S(Q, ω)
measured for qy = 0. The green line indicates the dispersion
[Eq. (S8)] and range [Eq. (1)] over which the triplet compo-
nent of the two-magnon bound state is expected in BPCC.
The white line marks the boundary of the two-magnon con-
tinuum [Eq. (S9)]. (b) Corresponding DMRG calculations.
(c) Bound-state (green) and continuum (grey) contributions
to I(Q), obtained by integrating over energy windows below
and above the two-magnon continuum edge; measured intensi-
ties (points) are compared with DMRG (solid line) and series-
expansion (dashed line) calculations. The black line denotes
the background and Qlmin is defined in Eq. (S4). Measured
(d) and calculated (e) structure factors for the qy = 0 sector
in the (Qh, Qk, Ql) plane; red and green lines as in Fig. 1.

state; the singlet (Stot = 0) branch is detectable by light
scattering [43], and both singlet and quintet (Stot = 2)
branches by neutron spectroscopy at higher temperatures
[44]. We note that one-magnon spectral weight is de-
tectable in this sector because the geometry of BPCC
excludes perfect destructive interference (Sec. S1). How-
ever, in contrast to the discussion of magnon “termina-
tion” [39], here the one- and two-magnon excitations are
prevented by their opposite parities from mixing where
they overlap in energy [as can be seen in Fig. 1(a)].

The bound state overlaps with the two-magnon con-
tinuum below a critical wave vector, Qc, and decays very
readily in this range [40]. It is therefore clearly visible
only when Qc < Qh < 1−Qc, with

Qc = 1
3 − 5

4
√
3π
γ − 109

96
√
3π
γ2 +O(γ3) (1)

in a strong-coupling expansion (Sec. S3). For BPCC,
Eq. (1) with γ = 0.39 leads to Qc = 0.212. However, this
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value of γ lies well in the regime where high orders are
required for an accurate description. A range of 0.235 ≤
Qh ≤ 0.765 is computed in Ref. [40] by working to 12th
order in γ, and in Fig. 2(b) we require the 10th-order
dispersion of the two-magnon bound state [41] and the
continuum edge. From our DMRG and series-expansion
calculations, we find that both the dispersion [Figs. 2(b)
and S3] and the scattered intensity [Figs. 2(c), 2(d), and
2(e)] of both the bound-state mode and the two-triplet
continuum agree exceptionally well with the data. Thus
our results also quantify the termination of the bound
state [Fig. 2(c), Sec. S3].

We turn now to the excitation spectrum at high mag-
netic fields. Quantum magnets with low exchange en-
ergies exhibit field-induced critical points marking tran-
sitions between several types of exotic quantum phase
in materials including Cs2CuCl4 [45], CuSO4·5D2O [46],
and BPCB [13, 14, 16]. For two-leg ladders, the physics
of the intermediate-field, “Luttinger-liquid” (LL) regime
[Fig. 3(c)], which possesses a continuum of gapless, frac-
tional spin excitations, has been studied in depth in
BPCB and we do not repeat this analysis for BPCC here.

However, in all ladder materials studied to date, the
dynamical properties have been measured only below
(DIMPY, Hs ' 29 T, [20, 21]) or at the saturation field
(BPCB, Hs = 14 T [16]). The exchange parameters of
BPCC place full saturation well within our instrumen-
tal capabilities. Here we present previously unavailable
measurements of the spectrum of the FP ladder.

Figure 3 shows the dynamical structure factor of FP
BPCC. Parity remains a good quantum number at high
fields and in each sector we find one mode. At Hs ' H1

= 4.067 T, in the qy = 0 sector we observe [Fig. 3(a)]
a mode with a purely sinusoidal dispersion and a gap of
0.3 meV (Jr). On increasing the field to H2 = 6.141 T
[Fig. 3(b)], this gap increases linearly with H; at H2 with
qy = π, we observe a mode with identical dispersion but
a gap smaller by precisely Jr [Fig. 3(d)].

The FP ground state is one of “up-up” triplets, |t+〉 =
| ↑↑〉, on every ladder rung. Parity selection separates
triplet-singlet (qy = π) from triplet-triplet excitations
(qy = 0). The excitations of the FP phase are quite
unlike the modes of a ferromagnet, with or without an
applied field, not least in that the band minimum remains
at qh = π. Although all FP excitations are ∆Sz = −1,
this can be achieved with ∆Stot = 0 or ∆Stot = −1. The
ladder provides a transparent situation where the latter
is simply the singlet excitation of a rung [Fig. S5(a)] and
the former the t0 triplet [Fig. S5(b)]. The bond-operator
method is exact at H ≥ Hs, where quantum fluctuations
are completely quenched, giving (Sec. S3)

ωs(q) = gµB(H −Hs) + Jl(1 + cos q),

ω0(q) = gµB(H −Hs) + Jr + Jl(1 + cos q),
(2)

with Hs = (Jr + 2Jl)/gµB . The upper triplet mode, t−,
is invisible to neutron scattering and has no dispersion.

FIG. 3. Excitations in FP BPCC. (a) S(Q, ω) measured
at H1 = 4.067 T ' Hs and (b) H2 = 6.141 T, both in the
qy = 0 sector. (c) Magnetization of BPCC (from DMRG) su-
perimposed on the field-induced phase diagram; QD denotes
the quantum disordered phase. (d) S(Q, ω) measured at H2

in the qy = π sector. Green and red solid lines are respectively
fits to the triplet (qy = 0) and singlet (qy = π) modes using
Eq. (2). The dashed line in panel (d) indicates the position
of the singlet at Hs (not measured), where the spectrum is
dominated at low energies by incoherent elastic scattering.

The singlet excitation is a longitudinal, or amplitude,
mode of the field-enforced order, and is gapless at Hs but
has a gap of H−Hs above this field; being antisymmetric,
it is found with qy = π, as in Fig. 3(d). This mode is also
expected in the Haldane chain, albeit in the adapted form
of leg singlets formed from the auxiliary S = 1/2 spins of
the AKLT [23] description [Fig. S5(c)]. The ∆S = 0 ex-
citation is the gapped triplet, t0, a transverse spin mode
also exactly analogous to the t0 excitation of the FP Hal-
dane chain [Fig. S5(d)]. By its symmetric nature, it is
the mode observed in Figs. 3(a) and 3(b), lying higher
than the singlet by energy Jr [Eq. (2)]. This t0 mode
has not been observed in any other ladder or Haldane
system; it is also expected in FP alternating-chain ma-
terials, such as Cu(NO3)2·2.5D2O [47], although its in-
terpretation is more complicated in the absence of parity
selection. By simultaneous fits to Eq. (2) at H1 and H2,
we find that exchange parameters Jr = 0.294(1) meV and
Jl = 0.120(1) meV, combined with a g value of 2.26(1),
provide an extremely accurate account of the data.

We have measured the magnetic excitations of the
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two-leg ladder BPCC at all wave vectors and magnetic
fields. At zero field, we exploit the parity-selectivity of
the ladder to achieve a total separation of the one- and
two-triplet excitation sectors, finding the clearest known
example of the two-magnon bound state. In the fully
spin-polarized regime, we select the gapped singlet (am-
plitude) and triplet (phase) modes of the ladder. Thus
we provide a systematic understanding of the magnetic
excitations in a broad family of gapped 1D quantum
magnets, including ladder, alternating-chain, and Hal-
dane systems. For BPCC, we demonstrate that the mag-
netic response can be modelled with complete quantita-
tive accuracy, in both dispersion and intensity, by modern
DMRG and series-expansion techniques.
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ence Foundation, the German Research Society (DFG),
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formed at the Swiss spallation neutron source SINQ at
the Paul Scherrer Institute and at the UK spallation neu-
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[43] M. Windt, M. Grüninger, T. Nunner, C. Knetter, K. P.
Schmidt, G. S. Uhrig, T. Kopp, A. Freimuth, U. Ammer-
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S1. Neutron Scattering in a Two-Leg Spin Ladder

Parity Selection

A fundamental consequence of the two-leg geometry is
that all excitations of the spin ladder have an exact even
or odd parity. Excitations between singlet and triplet
states have odd parity (qy = π sector) and may there-
fore be separated systematically from excitations of inter-
triplet (or inter-singlet) character, which have even parity
(qy = 0 sector); this situation is represented schemat-
ically in Fig. S1. Most important for the present pur-
poses is that one-magnon excitations are odd whereas
two-magnon excitations are even; these opposite parities
result in opposite phases for constructive or destructive
interference, and hence in a complete separation of the
maximal intensities of the two sectors in reciprocal space.
A further consequence is that excitations of opposite pari-
ties do not mix, excluding the possibility of “quasiparticle
breakdown” where they overlap.

Crystal Structure of BPCC

The structure of BPCC has the monoclinic space group
P21/c, with lattice parameters determined by neutron
diffraction at 1.6 K as a = 8.08657(5) Å, b = 16.57703(9)
Å, c = 12.14457(7) Å, and β = 102.2395(4)◦ [S1]. The
unit cell contains four Cu2+ atoms (S = 1/2), which form
two spin dimers constituting the ladder rungs, as shown
in Fig. S2(a). These rung dimer units repeat periodi-
cally along the â direction, with an exchange interaction
that forms the ladder legs [Fig. S2(a)]. Ladders neighbor-

ing in the b̂ direction are related by a 21 screw axis and
hence there are two types of spin ladder, identical (by

symmetry) in their exchange interactions but different in
orientation [Fig. S2(b)]. The inequivalent rung vectors
are given by

r1,2 = [0.3822 ± 0.173 0.4866]; (S1)

in the same units, the leg vector is [1 0 0]. Despite this
inequivalence, parity remains a good quantum number:
excitations in the 0 and π sectors are associated with
geometrical phase factors expressing their constructive
or destructive interference, which determine the precise
locations of maximal and minimal scattering intensity
throughout the Brillouin zone for each sector. Because
of the monoclinic structure of BPCC, these maxima and
minima are determined not solely by the reciprocal-space
component, Qh, for the ladder direction, but are found
respectively at [Qh 0 Qlmax

] and [Qh 0 Qlmin
], where

Qlmax
and Qlmin

depend on Qh, as we discuss below.

Scattering Cross-Section

The complete separation of excitations into even (0)
and odd (π) parity sectors means that the neutron scat-
tering cross section may also be decomposed into two sep-
arate types of contribution, Sαβ0 and Sαβπ [S3]. Although
α and β denote general spin indices, for pure Heisenberg
interactions one has Sxx = Syy = Szz = S+− = S−+.
When the two inequivalent wave vectors for the ladder
rungs are taken into account, the total neutron scatter-
ing cross-section can be written as

d2σ

dΩdE′
∝ 4

(
1−Q

2
z

Q2

)
[c(Q)Szz0 +s(Q)Szzπ ] (S2)

+

(
1+

Q2
z

Q2

)
[c(Q)(S+−

0 +S−+
0 )+s(Q)(S+−

π +S−+
π )],
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FIG. S1. Schematic representation of rung states and their
symmetries in spin-ladder and Haldane-chain systems at zero
field. (a) Ground state of antisymmetric rung singlets in the
two-leg ladder. (b) One-magnon (symmetric, triplet) excited
state. (c) Two-magnon excited state; the triplet pair may be
in a net singlet, triplet, or quintet (Stot = 0, 1, or 2) state but
its parity is equal to that of the ground state and opposite to
that of the one-magnon excitation. (d) Ground state of the
Haldane chain in the AKLT representation [S2] of auxiliary
S = 1/2 spin pairs at each site; the red boxes represent the
operator projecting these spins to a real S = 1 state.

where s(Q) =
∑
i=1,2 sin2(Q·ri/2) and c(Q) =∑

i=1,2 cos2(Q·ri/2) are phase factors and Qz is the out-
of-plane wave-vector component. In practice, we focus
directly on the dynamical structure factor, S(Q, ω), ex-
tracted from d2σ/dΩdE′.

Equation (S2) may be used to quantify the statements
made in the preceding subsections. The maximum in the
structure factor contributed by one-magnon excitations
is found by selecting the wave vectors Q maximizing 1−
cos(Q · r), where r = r1 − r2 is the difference between
the inequivalent rung vectors, i.e. Q must satisfy

2π(Q · r) = (2n+ 1)π, (S3)

where n is an integer. Conversely, the minimum in the
one-magnon structure factor, which coincides with the
maximum in the two-magnon (even-parity) channel, is
found when n takes a half-integer value. One may then
deduce that

Ql = [n+ 1/2− 0.3822Qh]/0.4866, (S4)

with n an integer for Qlmax
and n half-integral for Qlmin

.

FIG. S2. Representation of the crystal structure of BPCC,
highlighting (a) the positions of Cu and Cl atoms in a sin-
gle ladder unit and (b) the relative positions of the different
ladder units, which have two different orientations; the piperi-
dinium cations between the ladders are omitted for clarity.

This information is represented in Fig. S3, which shows
the simulated structure factor of the one-magnon excita-
tion, i.e. the quantity S(Q, ω(Q)). The calculation of
the dispersion relation, ω(Q), and of the corresponding
intensity is deferred to Sec. S3. The red and green solid
lines mark respectively the lines of maxima and minima
of the one-magnon excitations of the spin ladder, whose
dynamical structure factor [S(Q, ω)] is shown in Fig. 1(a)
of the main text. As noted above, the one-magnon mini-
mum is the two-magnon maximum, for which S(Q, ω) is
shown in Fig. 2(a). Blue solid lines mark the maxima of
the one-magnon excitations transverse to the ladder (Ql),
which are obtained at the zone boundary in Qh and the
spin-gap energy in ω, and are studied in Fig. 1(h); or-
ange lines mark the minima, which are found at the zone
center and the band maximum [Fig. 1(f)].

S2. Neutron Scattering Intensity Analysis

Experiments were performed on the time-of-flight spec-
trometer LET, with the BPCC sample mounted in the
(horizontal) ac scattering plane. Data at zero applied
magnetic field were collected for 104 rotation angles, cor-
rected for detector efficiency and scattered-to-incident
wave-vector ratio, kf/ki, using the MANTID program
[S4], and combined into a “four-dimensional” (4D, mean-
ing three spatial dimensions and one energy) dataset us-
ing the Matlab-based HORACE analysis code [S5]. The
extent of the resulting dataset in reciprocal-space di-
mensions Qh and Ql is represented by the white line in
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FIG. S3. False-color representation of the simulated struc-
ture factor, S(Q, ω), of the one-magnon excitation in BPCC,
calculated in a strong-coupling analysis and using the single-
mode approximation (Sec. S3). The scattered intensity is
shown in the horizontal scattering plane, (Qh, 0, Ql), for the
energy value ω = ω(Q) of the one-magnon dispersion and for
Qk = 0. The white line marks the full extent of the available
data in Qh and Ql, which is determined by the detector cov-
erage at the energy of the one-magnon mode. At the (higher)
energy of the two-magnon continuum, the detector coverage
has shrunk and is shown in yellow. The other lines are de-
scribed in the text.

Fig. S3. For all of the results presented in the main text,
the data were integrated over the Qk direction, repre-
senting out-of-plane scattering, where all modes are en-
tirely non-dispersive; we refer to the results of this in-
tegration as a 3D dataset and denote this treatment of
the Qk direction by Qk. Further integration over direc-
tions along or across the ladder was performed to obtain
the final datasets; the dashed lines in Fig. S3 mark these
transverse integration ranges. In all cases, the integration
range was ±0.125 r.l.u., a value achieving an acceptable
signal-to-noise ratio while preserving mode coherence and
sector separation.

For all quantitative analyses of the scattered intensity,
we integrate S(Q, ω) over a chosen window of energy to
obtain the structure factor, I(Q). In addition to im-
proving very significantly the signal-to-noise ratio, this
procedure also allows us to select the energy range in
such a way as to remove as much as possible of the con-
tamination due to elastic and multiple scattering events.
This last includes scattering from the cryomagnet, which
is responsible for the parabolic intensity visible at low en-
ergies in Figs. 1(a) and 2(a). The remaining background,
due to detector noise and incoherent phonon scattering,
is marked by the solid black lines in Figs. 1(c) and 2(c)
of the main text. Fits to the models and numerical cal-
culations were optimized by a least-squares approach.

Diagonal and Interladder Interactions

Exchange interactions between sites in neighboring
spin ladders are reflected in the dispersion of the one-
magnon mode for Q vectors transverse to the ladder
axis. Any asymmetric exchange interactions within the
ladder plaquettes, to which we refer here as “diagonal,”
would also be manifest as a periodic modulation of the
intensity distribution for the same Q vectors. Figure 1(f)
shows S(Q, ω) along [0 0 Ql], where the mode is clearly
non-dispersive to within the resolution of our measure-
ments. The red line is a theoretical result (Sec. S3) with
an interladder coupling of zero, and in fact the fitting
process places an upper bound on interladder exchange
of 0.006(1) meV. The corresponding structure factor,
Fig. 1(g), is very well reproduced by calculations per-
formed in the SMA and with DMRG. For transverse wave
vectors chosen at the one-magnon gap, the dispersion is
again completely flat [Fig. 1(h)] and the structure factor
is described perfectly by a system of pure and isolated
ladders [Fig. 1(i)]. Again there is no discernible period-
icity, in dispersion or intensity, within the instrumental
resolution, placing the same limit, 0.006(1) meV, on any
possible diagonal or interladder interactions.

S3. Theoretical Analysis of Strong-Rung Ladders

One-Magnon Dispersion

Several theoretical approaches are known to give good
descriptions of the two-leg ladder in the strong-rung
regime, including a direct perturbative expansion [S6]
and the bond-operator formalism [S7]. Numerically, both
exact diagonalization (ED) and DMRG work well be-
cause of the short correlation length of the well-gapped
system [S8]. In terms of the parameter γ = Jl/Jr, to
third order in a perturbative expansion one obtains the
dispersion relation [S6]

ω(q)

Jr
= 1 +

3

4
γ2 +

3

8
γ3 +

(
γ − 1

4
γ3

)
cos q

−1

4

(
γ2 + γ3

)
cos 2q +

1

8
γ3 cos 3q (S5)

for the elementary triplet (one-magnon) excitation,
where we have defined q = 2πQh. In the bond-operator
description, the dispersion is given by

ω(q) =
√

( 1
4Jr − µ)( 1

4Jr − µ+ 2Jls
2 cos q), (S6)

where the µ is the chemical potential for the triplet ex-
citations, which are hard-core bosons, and s expresses
the extent to which the ground state is one of pure rung
singlets [S7].
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Single-Mode Approximation

While Eq. (S2) is an expression for the total neutron
scattering cross-section, in many gapped quantum mag-
nets the overwhelming majority of the scattered intensity
can be found in the one-magnon branch of the excita-
tion spectrum. In this situation, a meaningful analysis
of the spectral weight is obtained within the single-mode
approximation (SMA) [S9]. Quite generally, the first-
moment sum rule relates the integrated spectral weight
of a spin ladder to the equal-time correlation functions
in the form
∫
dω ~ωS(Q, ω) = − 2

3 (Jr〈Smi · Sni 〉[1− cos(Q· d)] (S7)

+Jl(〈Smi · Smi+1〉+ 〈Sni · Sni+1〉)[1− cos(Q· rl)]),
where m and n denote the two chains of the ladder,
d = rm − rn is the dimer (rung) bond vector and
rl = rm,i+1 − rm,i is the leg bond vector. In the SMA,
the integral over ω includes a δ-function, δ(ω − ω(Q)),
which transforms the left-hand side into a simple product
of ω(Q) and the structure factor, I(Q). The right-hand
side is a set of “bond energies,” weighted by cosine factors
determined from the geometry of the system. These bond
energies are the product of the exchange interactions for
each bond with the average bond spin correlations.

As noted in the main text, Jr and Jl for BPCC can
be established independently by using the one-magnon
dispersion, and therefore one would wish to determine
the average spin correlations on the rung and leg bonds
directly from the experimental dataset. For guidance,
by performing ED calculations on ladders of coupling ra-
tio γ = 0.39 and up to 2 × 12 spins using the ALPS
package [S10], we determine the average rung spin cor-
relations, 〈Smi · Sni 〉 = −0.6740, and leg correlations,
〈Smi · Smi+1〉 = 〈Sni · Sni+1〉 = −0.1816. However, because
of an unknown intensity scale factor, only the ratio of
these correlations can be extracted from the measured
integrated intensities. From the reduced dataset, we de-
duce the ratio 〈Smi · Smi+1〉/〈Smi · Sni 〉 = 0.22(1), which
compares favorably with the ratios 0.2586, given within
the bond-operator formalism [S7], and 0.2694 obtained
from ED. The structure factors obtained in the SMA by
using these average bond correlation values are entirely
consistent with the measured intensities, as shown by the
black, dashed lines in Figs. 1(c), 1(g), and 1(i).

Density-Matrix Renormalization Group

DMRG calculations of the dynamical structure factor
of an ideal spin ladder were performed in both the qy = 0
and π sectors using the optimized exchange interaction
parameters Jr = 0.295 meV and Jl = 0.115 meV. The cal-
culations used the time-dependent DMRG method [S11–
S14] to determine the spatial spin correlation functions

at zero temperature in real-time for a ladder of 200 rungs.
They employed a fixed maximal number of a few hundred
states and a maximal simulation time of 200 ~/Jr, with a
time-step typically taken as δt = 0.2~/Jr. These choices
ensured that the remaining errors were sufficiently small
as to have no discernible effect on the primary spectral
structures. The dynamical spin correlations in momen-
tum space were obtained by Fourier transformation of
the spin correlation functions. More details of the calcu-
lational procedure are described in Refs. [S15, S16].

The spectra obtained in this way were convolved with a
Gaussian function representing the instrumental resolu-
tion, combined using Eq. (S2), weighted by the magnetic
form factor of Cu2+, and added to a constant background
value extracted from the experimental dataset. By this
process we formed a DMRG dataset for S(Q, ω) com-
pletely equivalent to the experimental one. This DMRG
dataset was cut, integrated in Q, and integrated in ω
using precisely the same techniques as described above.
The results are displayed both as the color contours in
Figs. 1(b) and 2(b) of the main text [for S(Q, ω)] and as
the solid lines in Figs. 1(c), 1(g), 1(i), and 2(c) [for I(Q)].

High-Order Series Expansions

The systematic extension of the strong-coupling ap-
proximation is the high-order series-expansion method,
which has been applied previously for the calculation
of bound states and dynamical correlation functions in
quantum spin ladders [S17, S18]. Here we have used per-
turbative continuous unitary transformations (pCUTs)
[S18, S19] to map the spin ladder order by order in γ
to an effective Hamiltonian, Heff , which conserves the
number of elementary S = 1 excitations. Physically, the
γ = 0 ground state is the product state of rung singlets
and the elementary excitation is a rung triplet; at finite
γ, these triplets become dressed by their mutual interac-
tions to yield the elementary magnon excitations.

Because Heff conserves the magnon number, each (in-
teracting) few-magnon problem can be addressed sepa-
rately. Here we have determined the one-magnon hop-
ping amplitudes up to order 11 in γ, the two-magnon
interaction amplitudes with Stot = 1 up to order 10, and
the matrix elements in the one- and two-magnon chan-
nels relevant for S(Q, ω) also to 10th order. All series are
essentially converged for γ = 0.39 and no extrapolations
are required. The one-magnon sector is readily diagonal-
ized by Fourier transformation to give the one-magnon
dispersion and spectral weight directly.

In the two-magnon channel, it is necessary to solve a
two-body problem to obtain S(Q, ω) [S20], which we ex-
ecute by Lanczos tridiagonalization of the two-magnon
Heff for fixed total momentum Q. The only remain-
ing degree of freedom is the separation, d, of the two
magnons, and by allowing a maximal d = 4000 all finite-
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FIG. S4. Dynamical structure factor, S(Q, ω), in the sym-
metric (qy = 0) sector, calculated by series-expansion (SE)
methods up to 10th order, showing the triplet component of
the two-magnon bound state and the absence of visible inten-
sity from the two-magnon continuum. The red line marks the
one-magnon dispersion and the white line the lower boundary
of the two-magnon continuum.

size effects are essentially eliminated from the calculation.
From the Lanczos tridiagonalization, we extract [S20] the
complete two-magnon contribution to S(Q, ω), the dis-
persion and the intensity of the two-magnon bound state
as a function of Q, and the corresponding intensity of the
two-magnon continuum. We note that the two-magnon
structure factor, I(Q), corresponds to the sum of bound-
state and continuum contributions and is obtained di-
rectly from the matrix elements.

As for our DMRG calculations, to obtain a dataset
comparable with experiment we scale and smooth our
series-expansion data for S(Q, ω) and integrate them in
the same manner. Focusing on the results for the two-
magnon triplet bound state, in Fig. S4 we show S(Q, ω)
calculated in the qy = 0 sector and in Fig. 2(c) of the
main text the corresponding I(Q) for comparison with
the results from experimental measurements and DMRG
calculations.

Two-Magnon Bound States

For an accurate description of the two-magnon bound
state we employ the strong-coupling series expansion
[S17, S18]. For illustration, the energy of the triplet com-
ponent of the bound state is given to third order by

ωB(q)

Jr
= 2− 3

2
γ+

11

8
γ2+

17

16
γ3−

(
γ+

1

4
γ2 − 9

16
γ3

)
cos q

−1

2
(γ2 + γ3) cos 2q − 5

16
γ3 cos 3q. (S8)

In the same approximation, the lower edge of the two-
magnon continuum is located at the energy

ω2m(q)

Jr
= 2+

3

2
γ2+

3

4
γ3− 2

(
γ− 1

4
γ3

)
cos 1

2q

−1

2
(γ2 + γ3) cos q − 1

4
γ3 cos 3

2q. (S9)

One observes that the triplet bound states are cut off by
the presence of the continuum, but exist over a range of
wave vectors qc ≤ q ≤ 2π − qc around the edges of the
Brillouin zone, where qc = 2πQc is given in Eq. (1) of the
main text. For ladders with stronger rung-to-leg coupling
ratio (weaker γ), qc ' 2π/3 and the bound state is re-
stricted to the outer 1/3 of the 1D Brillouin zone. For
larger γ values, the range over which the bound-state
mode exists (1) becomes slightly larger [S17] and so does
its separation in energy from the continuum edge. How-
ever, the primary factor affecting its visibility is the in-
tensity of the two-magnon continuum, which rises signif-
icantly more strongly than the energetic separation. The
very weak two-magnon continuum [Figs. S4 and 2(c)] is
therefore the reason why the bound state is so much more
clearly visible in BPCC than in any other systems studied
previously.

Quantitatively, as discussed in the main text we find
that, even for a coupling ratio as apparently modest as
γ ' 0.4, a 10th-order expansion is required for an accu-
rate account of the relative positions of the bound state
and the continuum edge for a pair of magnons. In our
analysis of the scattering intensities in Fig. 2(c), we com-
pute the structure factor by integrating over an energy
window up to the two-magnon continuum boundary and
attribute these contributions to the bound state. The en-
ergy window above the continuum edge is attributed to
two-magnon scattering states. It is clear that applying
the same process to our S(Q, ω) data, calculated both
by DMRG and by series expansions, gives an excellent
quantitative account of the measured intensities.

We remark here that one of the open questions under
these circumstances concerns the “termination” of the
bound-state mode where it meets the continuum at the
cut-off wave vector, qc. As noted in the main text, the
termination of the one-magnon mode in the two-magnon
continuum, as discussed in Ref. [S21], is precluded in
BPCC by their opposite parities. However, both bound
and scattering states of two magnons appear in the same
parity sector (qy = 0), and thus there is no parity pro-
tection for the bound state in this situation. To under-
stand whether the bound state ceases to exist as a well-
defined excitation of the system at qc, before it, or per-
sists in some form into the two-magnon continuum, it is
necessary to analyze the line width of this spectral fea-
ture; a structure-factor analysis of the type performed in
Fig. 2(c) does not address the origin of the intensity con-
tributions. Unfortunately, the data quality of our exper-
imental measurements is not sufficient for a quantitative



6

FIG. S5. Schematic representation of the rung states
and their symmetries in fully field-polarized spin-ladder and
Haldane-chain systems. (a) Polarized two-leg ladder with one
rung-singlet excitation. (b) Polarized ladder with one rung-
triplet (t0) excitation. Polarized Haldane chain in the AKLT
representation containing (c) one bond-singlet excitation and
(d) one t0 bond-triplet excitation.

discussion of this issue. Numerically, both our DMRG
and series-expansion calculations may be used to investi-
gate the nature of this termination, which, however, lies
beyond the scope of the present analysis.

Field-Polarized Phase

The most straightforward description of the fully po-
larized (FP) phase is obtained by using the bond-
operator description. For magnetic fields beyond the
saturation field, hs = gµBHs, there are one singlet and
two triplet excitations, while the third triplet, t+, is the
ground state and therefore is treated as fully condensed,
i.e. 〈t+〉 = t is a constant. From the Hamiltonian,

H =
∑

i

[
(− 3

4Jr − µ)s†isi + ( 1
4Jr − µ+ h)t†+it+i (S10)

+ (1
4Jr − µ)t†0it0i + ( 1

4Jr − µ− h)t
2

+ µ+ 1
2Jlt

4
]

+ 1
2Jl
∑

i

[
t
2
(s†isi+1 + t†0it0i+1 + H.c.)− 2t

2
t†−it−i

]
,

one may extract the mean-field equations

∂H

∂µ
= 0 = 1− t2, (S11)

∂H

∂t
2 = 0 = 1

4Jr − µ− h+ Jlt
2
, (S12)

and hence conclude that t = 1 exactly, which is the bond-
operator expression of the fact that quantum fluctuations
are completely suppressed in the saturated regime. This
has the important consequence that the elementary exci-
tations are truly non-interacting and hence the exchange
parameters deduced from their dispersion may be used
as a benchmark for cases where interaction effects are
unknown [S22].

Further, the chemical potential, µ = 1
4Jr + Jl − h, is

governed only by the applied field, h (contributions from
the sinusoidal excitation bands sum to zero). Thus the
dispersion relations are

ωs(q) = − 3
4Jr − µ+ Jlt

2
cos k = h− Jr − Jl(1−cos q),

ω0(q) = 1
4Jr − µ+ Jlt

2
cos k = h− Jl(1− cos q), (S13)

ω−(q) = 1
4Jr − µ+ h− Jlt2 = 2h− 2Jl.

The rung-singlet excitation, ωs(q), is represented
schematically in real space in Fig. S5(a) and the low-
est rung-triplet mode, ω0(q), in Fig. S5(b). The upper
mode, ω−, is completely non-dispersive (the band nar-
rows to zero as h increases to hs). The lower mode sat-
isfies ωs(q) = 0 at the band minimum at the saturation
field, defining hs = Jr + 2Jl, as expected from simple
considerations of saturating all the bonds at a single site
(no quantum fluctuations and thus no correlation effects).
These expressions allow a very accurate fit of the ex-
change parameters in the FP regime, as reported in the
main text, with no requirement for any extra terms in the
magnetic Hamiltonian beyond those of the pure Heisen-
berg spin ladder. The small deviations of the high-field
Jr and Jl parameters from their zero-field values are mag-
netostriction effects, which as in BPCB are weak [S23].
Figures S5(c) and S5(d) illustrate the close similarity of
the FP-phase excitations of the Haldane chain to those
of the two-leg ladder.
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Uhrig, Phys. Rev. Lett. 87, 167204 (2001).
[S19] C. Knetter and G. S. Uhrig, Eur. Phys. J. B 13, 209

(2000).
[S20] C. Knetter, K. P. Schmidt, and G. S. Uhrig, Eur. Phys.

J. B 36, 525 (2004).
[S21] M. B. Stone, I. A. Zaliznyak, T. Hong, C. L. Broholm,

and D. H. Reich, Nature 440, 187 (2006).
[S22] R. Coldea, D. A. Tennant, K. Habicht, P. Smeibidl, C.

Wolters, and Z. Tylczynski, Phys. Rev. Lett. 88, 137203
(2002).
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