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Bound States and Field-Polarized Haldane Modes in a Quantum Spin Ladder
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The challenge of one-dimensional systems is to understand their physics beyond the level of known
elementary excitations. By high-resolution neutron spectroscopy in a quantum spin-ladder material, we
probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By
applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse)
excitations of the fully spin-polarized ladder, which have not been observed previously and are close
analogs of the modes anticipated in a polarized Haldane chain. Theoretical modeling of the dynamical
response demonstrates our complete quantitative understanding of these states.
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Throughout physics, one-dimensional (1D) systems show
a range of intriguing and unconventional phenomena. The
dominance of quantum fluctuations in 1D materials makes
them the ultimate form of quantummatter. The physics of the
ground states and elementary, low-energy excitations of 1D
systems are by now rather well understood in theory [1] and
have been realized in experiment in a number of quite
different fields, including conductingwires [2], atomic chains
[3], quantum magnets [4], and ultracold atoms [5]. Looking
forward, the next frontier is to understand and control the
physics of these systems on all energy scales, including their
multiparticle excitations and topological states.
Quantum magnets provide an excellent arena not only

for quantitative measurements of the strongly correlated
quantum wave function but also for its systematic control
by applied external parameters [6–8]. Among the systems
whose elementary magnetic excitations are already well
characterized, one key model is the S ¼ 1=2 “ladder,”
consisting of two coupled spin chains [9], with detailed
experimental studies performed on genuine ladder materi-
als including La4Sr10Cu24O41 [10], ðC5H12NÞ2CuBr4
(BPCB) [11–17], and ðC7H10NÞ2CuBr4 (DIMPY) [18–21].
The ladder has many parallels to another cornerstone
model, the Haldane (S ¼ 1) chain [22,23], and signifi-
cant progress has been made in calculating the dynami-
cal response of both systems [24]. However, genuine
Haldane materials with accessible energy scales have

proven difficult to find [25–27], and thus the response
in strong magnetic fields remains an open problem
[28,29].
In this Letter, we report on measurements of single- and

multimagnon excitations in the spin ladder bis-piperidinium
copper tetrachloride (BPCC). By exploiting the elegant
parity selectivity of the ladder geometry, at zero field we
demonstrate the presence of a strong two-magnon bound-
state triplet over half of the Brillouin zone and quantify its
spectral weight. At high fields, we demonstrate the selection
criteria for the singlet excitation, or amplitude mode, of the
fully field-polarized (FP) phase, as well as for its triplet
(transverse) mode. Both are unknown in a conventional
ferromagnet and have direct analogs in the FPHaldane chain.
By detailed analytical and numerical modeling, we describe
our intensity measurements with quantitative accuracy.
The spin ladder has two basic magnetic interactions,

the rung (Jr) and leg (Jl) couplings, and one ratio,
γ ¼ Jl=Jr. BPCB (γ ≃ 0.26) and DIMPY (γ ≃ 1.7) exem-
plify contrasting regimes of ladder behavior. The deuterated
chloride analog of BPCB, ðC5D12NÞ2CuCl4 (BPCC) crys-
tallizes in the same monoclinic space group, P21=c, shown
in Fig. S1 of the Supplemental Material (SM) [30]. Two
halide bridges between pairs of Cu2þ ions form the rung
dimer (Jr). A further halide bridge between ions repeating
periodically in â provides Jl. BPCC is an exceptional
realization of a very clean S ¼ 1=2 spin ladder with three
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attributes ideal for our studies. First, the ladders are well
separated by piperidinium groups, making them effectively
isolated, as shown in Sec. S2 of the SM [30]. Second, the
ratio γ ≃ 0.4 [41] is perfectly suited for observing bound
states in the two-magnon sector (whose weight scales with
γ2), without strong interference from scattering states. Third,
the low energy scales in BPCC [41,42] allow one to work
well within the FP phase at laboratory magnetic fields.
High-quality deuterated single-crystal samples were

synthesized and five crystals of total mass 2.4 g were
coaligned on the MORPHEUS instrument at SINQ for the
collection of inelastic neutron scattering data on the time-
of-flight spectrometer LET at ISIS [43]. The sample was
mounted inside a 9 T vertical cryomagnet, on a dilution
insert with a stable base temperature of 60 mK. Frame-rate
multiplication was used with a primary incoming neutron
energy of 2.5 meV. Data at zero field were collected at 104
sample rotation angles and processed using the MANTID

program [44]. The resulting data sets for the dynamical
structure factor, SðQ;ωÞ, were analyzed with the HORACE

software package [45].
In the two-leg ladder, the rung-singlet wave function is

antisymmetric whereas the triplets are symmetric, as repre-
sented schematically in Figs. 1(g) and 1(i). This geometry
therefore allows a full parity selection between odd (qy ¼ π,
e.g., singlet-triplet) and even (qy ¼ 0, e.g. triplet-triplet)
excitation processes [24,46], where qy is the wave vector
across the ladder unit. There is no mixing between modes of
opposite parity and SðQ;ωÞ separates completely into odd-
and even-parity sectors, whose intensity maxima occur in
very different parts of the Brillouin zone, as shown in Fig. S2
of the SM [30]. Although the crystallography of BPCC
dictates that there are two different ladder orientations
(Fig. S1 of the SM [30]), this parity selection remains
possible [24,46] (Sec. S1 of the SM [30]).
We begin our presentation at zero applied field. We refer

to the elementary one-triplet excitation of the ladder as a
“magnon.” The one-magnon dispersion relation, ωðqÞ, is
clearly evident in Fig. 1(a), where the 4D intensity data set
is analyzed to select the qy ¼ π sector. Our data treatment is
discussed in Sec. S2 of the SM [30].We observe an excitation
with gap 0.2 meV, bandwidth 0.23 meV, and periodicity 2π,
suggesting that Jr is significantly stronger than Jl.
Several theoretical approaches give good descriptions of

the two-leg ladder in the strong-rung regime. From an
optimized fit of the one-magnon data to a third-order
strong-coupling expansion [47] [Eq. (S5) of Sec. S3 of the
SM [30]], we deduce the exchange parameters Jr ¼
0.295ð8Þ meV and Jl ¼ 0.116ð1Þ meV; the resulting
dispersion is shown as the red lines in Figs. 1(a) and 1(c).
The corresponding values from the bond-operator technique
[48] [Eq. (S6) of the SM [30]] are Jr ¼ 0.306ð8Þ meV
and Jl ¼ 0.113ð1Þ meV, and the dispersion is identical
within the error bars. Thus, the leg exchange in BPCC, with
γ ≃ 0.39, is more significant than in BPCB, which is the

FIG. 1. One- and two-magnon excitations in BPCC. (a) SðQ;ωÞ
measured in the qy ¼ π sector. The solid red line is the dispersion
obtained from strong-coupling [Eq. (S5) of the SM [30]] and bond-
operator treatments [Eq. (S6) of the SM[30]]. (b)SðQ;ωÞmeasured
for qy ¼ 0. The green line indicates the dispersion [Eq. (S8) of the
SM[30]] and range [Eq. (1)] overwhich the triplet component of the
two-magnonbound state is expected inBPCC.Thewhite linemarks
the boundary of the two-magnon continuum [Eq. (S9) of the SM
[30]]. (c) SðQ;ωÞ for qy ¼ π obtained by DMRG and SE
calculations, whose results are indistinguishable. (d) SðQ;ωÞ from
DMRG for qy ¼ 0. (e) IðQÞ obtained by integration over Qk

(denoted Q̄k) and over the energy range 0.19 ≤ ω ≤ 0.43 meV,
shown as red points and computed in the SMA (dashed black) and
by DMRG (solid red lines); the solid black line denotes the
background and Qlmax

is defined in Eq. (S4) of the SM [30].
(f) Bound-state (green) and continuum (gray) contributions to IðQÞ,
obtained by integrating over energy windows below and above the
two-magnon continuum edge; measured intensities (points) are
compared with DMRG (solid line) and SE (dashed line) calcu-
lations. The black line denotes the background andQlmin

is defined
in Eq. (S4) of the SM [30]. (g) Ground state of antisymmetric rung
singlets in the two-leg ladder. (h) Ground state of the Haldane chain
in the representation of auxiliary S ¼ 1=2 spin pairs; red boxes
represent the operator projecting the two spins at each site to a real
S ¼ 1 state. (i) One-magnon excited state, a single symmetric rung
triplet. (j) Two-magnon excited state, a triplet pair.

PRL 118, 177202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

28 APRIL 2017

177202-2



key to our quantitative observations of bound states. We
performboth density-matrix renormalization-group (DMRG)
and systematic high-order series-expansion (SE) calcula-
tions for SðQ;ωÞ (Sec. S3 of the SM [30]), which
capture the contributions of all excitation channels; with
optimized parameters Jr ¼ 0.295ð0.294Þ meV and Jl ¼
0.115ð0.117Þ meV for DMRG (SE), both yield excellent
agreement with the one-magnon measurements, as shown
in Fig. 1(c). These slightly differing parameter values
converge as expected with the increasing sophistication
(decreasing bias) of the theoretical approach, namely bond-
operator, SE with increasing expansion orders, DMRG.
For a quantitative discussion of the scattering intensity,

we integrate SðQ;ωÞ over specific energy ranges and
consider the resulting structure factor, IðQÞ. The quantity
IðQÞ obtained by integrating over the full one-magnon
energy range (0.19 ≤ ω ≤ 0.43 meV) is shown in Fig. 1(e).
Our DMRG (solid line) and SE calculations reproduce not
only the dispersion but also the spectral weight to very high
accuracy. To analyze the one-magnon intensity, we exploit
the dominance of this mode in the spectrum to apply the
single-mode approximation (SMA) (Sec. S3 of the SM
[30]). With prior knowledge of Jr and Jl, the average spin
correlations, hS1 · S2i, can be extracted separately for the
rung and leg bonds [48]. Here, however, the unknown
overall scale factor restricts us to deducing their ratio [46],
whose expected theoretical value is 0.26(1). From our data,
we obtain a correlation ratio of 0.22(1) and the fit to IðQÞ
shown by the dashed line in Fig. 1(e). Thus, our one-
magnon intensity measurements both quantify the corre-
lations, and, hence, the entanglement, in the quantum wave
function (Sec. S3 of the SM [30]) and set the scale factor for
intensity calculations in all other scattering sectors.
Next we consider multimagnon excitations. The sym-

metric (qy ¼ 0) channel is the maximum of all processes
changing the triplet count by an even number and is
dominated by two-magnon excitations. We exploit the
parity of the ladder structure to separate their intensity
contributions unambiguously (Sec. S1 of the SM [30]) and
we show SðQ;ωÞ in Fig. 1(b). Two magnons whose wave
vectors, k and q − k, are in low-lying parts of the one-
magnon band may form a bound state, a dispersive
quasiparticle whose energy, ωBðqÞ, lies below all possible
states of two unbound magnons [ωðkÞ þ ωðq − kÞ] [49,50],
which form a scattering continuum. The zero-field spec-
trum of DIMPY has been found to exhibit both bound and
continuum features [20]. However, in BPCC the continuum
contributions are extremely weak, allowing the dispersion,
spectral weight, and termination of the two-magnon bound
state to be measured in a degree of detail extremely difficult
to achieve either in DIMPY or in the dimerized-chain
material CuðNO3Þ2 · 2.5D2O [51].
In Fig. 1(b) we observe a clear, discrete mode lying at an

energy of 0.58 meV at Qh ¼ 0.5, below the continuum
edge, and dispersing downwards before disappearing into

the continuum, whose contribution is indiscernible. From
the selection rules for neutron scattering, this mode is the
triplet branch (Stot ¼ 1) of the two-magnon bound state.
The singlet (Stot ¼ 0) branch is detectable by light scatter-
ing [52], and both singlet and quintet (Stot ¼ 2) branches by
neutron spectroscopy at higher temperatures [53]. We note
that one-magnon spectral weight is detectable in this sector
because the geometry of BPCC excludes perfect destructive
interference (Sec. S1 of the SM [30]). However, in contrast
to the discussion of magnon “termination” [54], here the
one- and two-magnon excitations are prevented by their
opposite parities from mixing where they overlap in energy
[as can be seen in Figs. 1(a) and 1(b)]. The primary
characteristics of both types of excitation are summarized
in the left-hand columns of Table I.
The bound state overlaps with the two-magnon con-

tinuum below a critical wave vector, Qc, and decays very
readily in this range [55]. It is therefore clearly visible only
when Qc < Qh < 1 −Qc, with

Qc ¼
1

3
−

5

4
ffiffiffi

3
p

π
γ −

109

96
ffiffiffi

3
p

π
γ2 þOðγ3Þ; ð1Þ

in a strong-coupling expansion (Sec. S3 of the SM [30]).
For BPCC, Eq. (1) with γ ¼ 0.39 leads to Qc ¼ 0.212.
However, this value of γ lies well in the regime where high
orders are required for an accurate description. A range of
0.235 ≤ Qh ≤ 0.765 is computed in Ref. [55] by working
to 12th order in γ, and in Fig. 1(d) we require the tenth-
order dispersion of the two-magnon bound state [56] and
the continuum edge. From our DMRG and SE calculations,
we find that both the dispersion [Fig. 1(d) and Figs. S3(a)
and S3(c) of the SM [30]] and the scattered intensity
[Fig. 1(f) and Figs. S3(b) and S3(d) of the SM [30]] agree
exceptionally well with the data. Thus, our results also

TABLE I. Summary of characteristics of the spin excitations
measured in the two-leg ladder at zero field (left-hand columns)
and in the FP regime (right). s, symmetric; a, antisymmetric; l,
longitudinal; t, transverse. n is the number of excited magnons,
Stot the total spin, and Sz the spin component along the z axis,
which corresponds to the applied field direction. N represents
the total number of sites in the ladder. Italic quantum numbers for
the two-magnon excitation indicate physical processes not
observable by neutron scattering.

H ¼ 0 H > Hs

Parity qy ¼ π qy ¼ 0 qy ¼ π qy ¼ 0

Symmetry a s a s
Polarization l t
n 1 2 −1 0
Stot 0 → 1 0 → 0; 1; 2 N

2
→N

2
−1 N

2
→N

2

ΔStot 1 0, 1, 2 −1 0
Sz 0→0;�1 0→0;�1;�2 N

2
→N

2
−1 N

2
→N

2
−1

ΔSz 0;�1 0;�1;�2 −1 −1
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quantify the termination of the bound state [Fig. 1(f) and
Sec. S3 of the SM [30]].
We turn now to the excitation spectrum at high magnetic

fields. Quantum magnets with low exchange energies
exhibit field-induced critical points marking transitions
between several types of exotic quantum phase in materials
including Cs2CuCl4 [57], CuSO4 · 5D2O [58], and BPCB
[13,14,16]. For two-leg ladders, the physics of the inter-
mediate-field, “Luttinger-liquid” (LL) regime [Fig. 2(a)],
which possesses a continuum of gapless, fractional spin
excitations, has been studied in depth in BPCB, and we do
not repeat this analysis for BPCC here.
However, in all ladder materials studied to date, the

dynamical properties have been measured only below
(DIMPY, Hs ≃ 29 T [20,21]) or at the saturation field
(BPCB, Hs ¼ 14 T [16]). The exchange parameters of

BPCC place full saturation well within our instrumental
capabilities. Here we present previously unavailable mea-
surements of the spectrum of the FP ladder.
Figure 2 shows the dynamical structure factor of FP

BPCC. Parity remains a good quantum number at high
fields, and in each sector we find one mode. At Hs ≃H1 ¼
4.067 T, in the qy ¼ 0 sector we observe [Fig. 2(b)] a
mode with a purely sinusoidal dispersion and a gap of
0.3 meV (Jr). On increasing the field to H2 ¼ 6.141 T
[Fig. 2(d)], this gap increases linearly with H. At H2 with
qy ¼ π, we observe a mode with identical dispersion but a
gap smaller by precisely Jr [Fig. 2(c)].
The FP ground state is one of “up-up” triplets,

jtþi ¼ j↑↑i, on every ladder rung. Parity selection separates
triplet-singlet (qy ¼ π) from triplet-triplet excitations
(qy ¼ 0). The excitations of the FP phase are quite unlike
the modes of a ferromagnet, with or without an applied field,
not least in that the band minimum remains at qh ¼ π.
Although all FP excitations are ΔSz ¼ −1, this can be
achieved withΔStot ¼ 0 orΔStot ¼ −1. The ladder provides
a transparent situation where the latter is simply the singlet
excitation of a rung [Fig. 2(e)] and the former the t0 triplet
[Fig. 2(f)]. The nature and quantum numbers of these modes
are summarized in the right-hand columns of Table I.
The bond-operator method is exact at H ≥ Hs, where

quantum fluctuations are completely quenched, giving the
excitations (Sec. S3 of the SM [30])

ωsðqÞ ¼ gμBðH −HsÞ þ Jlð1þ cos qÞ;
ω0ðqÞ ¼ gμBðH −HsÞ þ Jr þ Jlð1þ cos qÞ; ð2Þ

with Hs ¼ ðJr þ 2JlÞ=gμB. The upper triplet mode, t−, is
invisible to neutron scattering and has no dispersion. The
singlet branch is a longitudinal, or amplitude, mode of the
field-enforced order, and is gapless at Hs but has a gap of
H −Hs above this field; being antisymmetric, it is found
with qy ¼ π, as in Fig. 2(c). The ΔStot ¼ 0 excitation is the
gapped triplet, t0, a transverse spin mode, which by its
symmetric nature is observed in Figs. 2(b) and 2(d), lying
higher than the singlet by energy Jr [Eq. (2)]. By simulta-
neous fits to Eq. (2) at H1 and H2, we find that exchange
parameters Jr ¼ 0.294ð1Þ meV and Jl ¼ 0.120ð1Þ meV,
combined with a g value of 2.26(1), provide an extremely
accurate account of the data.
We comment that excitations directly analogous to the

singlet and t0 triplet should also be expected in the S ¼ 1
chain at H > Hs. The mathematical Affleck-Kennedy-
Lieb-Tasaki (AKLT) description [23] of the Haldane chain
in terms of leg singlets formed from auxiliary S ¼ 1=2
spins, depicted in Fig. 1(h), was famously demonstrated
to have real experimental meaning [59,60]. Figures 2(g)
and 2(h) represent the singlet and t0 excitation of leg triplets
formed from these S ¼ 1=2 entities in the FP Haldane
chain. While the lowest (singlet) mode has been measured

FIG. 2. Excitations in fully polarized BPCC. (a) Magnetization
of BPCC (from DMRG) superimposed on the field-induced
phase diagram; LL denotes the Luttinger-liquid and QD the
quantum disordered phase. (b) SðQ;ωÞ measured at H1 ¼ 4.067
T≃Hs and (d) H2 ¼ 6.141 T, both in the qy ¼ 0 sector.
(c) SðQ;ωÞ measured at H2 in the qy ¼ π sector. Green and
red solid lines are, respectively, fits to the triplet (qy ¼ 0) and
singlet (qy ¼ π) modes using Eq. (2). The dashed line in panel
(c) indicates the position of the singlet atHs (not measured due to
dominant nuclear incoherent scattering at low energies). (e) Sche-
matic representation of a FP two-leg ladder with one rung-singlet
excitation. (f) FP ladder with one rung-triplet (t0) excitation.
(g) FP Haldane chain in the auxiliary-spin representation con-
taining one leg-singlet and (h) one leg-triplet excitation.
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in FP BPCB [16], the t0 mode has not been observed in any
other ladder or Haldane system; it is also expected in FP
alternating-chain materials, such as CuðNO3Þ2 · 2.5D2O
[61], although its interpretation is more complicated in
the absence of parity selection.
In summary, we have measured the magnetic excitations

of the two-leg ladder BPCCat all wave vectors andmagnetic
fields. At zero field, we exploit the parity selectivity of the
ladder to achieve a total separation of the one- and two-triplet
excitation sectors, finding the clearest known example of the
two-magnon bound state. In the fully spin-polarized regime,
we select the gapped singlet (amplitude) and triplet (phase)
modes of the ladder. Thus, we provide a systematic under-
standing of the magnetic excitations in a broad family of
gapped 1D quantum magnets, including ladder, alternating-
chain, andHaldane systems. ForBPCC,we demonstrate that
the magnetic response can be modeled with complete
quantitative accuracy, in both dispersion and intensity, by
modern DMRG and series-expansion techniques.
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