
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
9
1
2
0
3

|

d
o
w
n
l
o
a
d
e
d
:

1
9
.
4
.
2
0
2
4

JSS

Journal of Statistical Software

November 2016, Volume 75, Issue 6. doi: 10.18637/jss.v075.i06

robustlmm: An R Package for Robust Estimation of
Linear Mixed-E�ects Models

Manuel Koller
University of Bern

Abstract
As any real-life data, data modeled by linear mixed-e�ects models often contain out-

liers or other contamination. Even little contamination can drive the classic estimates far

away from what they would be without the contamination. At the same time, datasets

that require mixed-e�ects modeling are often complex and large. This makes it di�-

cult to spot contamination. Robust estimation methods aim to solve both problems: to

provide estimates where contamination has only little influence and to detect and flag

contamination.

We introduce an R package, robustlmm, to robustly fit linear mixed-e�ects models.

The package’s functions and methods are designed to closely equal those o�ered by lme4,

the R package that implements classic linear mixed-e�ects model estimation in R. The

robust estimation method in robustlmm is based on the random e�ects contamination

model and the central contamination model. Contamination can be detected at all lev-

els of the data. The estimation method does not make any assumption on the data’s

grouping structure except that the model parameters are estimable. robustlmm supports

hierarchical and non-hierarchical (e.g., crossed) grouping structures. The robustness of the

estimates and their asymptotic e�ciency is fully controlled through the function interface.

Individual parts (e.g., fixed e�ects and variance components) can be tuned independently.

In this tutorial, we show how to fit robust linear mixed-e�ects models using robustlmm,

how to assess the model fit, how to detect outliers, and how to compare di�erent fits.

Keywords: robust statistics, mixed-e�ects model, hierarchical model, ANOVA, R, crossed,

random e�ect.

1. Introduction
Linear mixed-e�ects models are powerful tools to model data with multiple levels of ran-

dom variation, sometimes called variance components. Data with multiple levels of random

variation may have contamination or outliers on any of these levels. To detect and deal

http://dx.doi.org/10.18637/jss.v075.i06

2 robustlmm: Robust Linear Mixed-E�ects Models in R

with contamination, we developed a method that fits linear mixed-e�ects models robustly

(Koller and Stahel 2015; Koller 2013). We have implemented the methods in the R package

robustlmm (Koller 2016) that we introduce here.

The variability introduced at the random e�ects level generally a�ects multiple observations

simultaneously. In a one-way ANOVA dataset, for example, a group level random e�ect

influences the observed value of all the observations that belong to the corresponding group.

If this group level random e�ect were an outlier with respect to the other group levels, this

would lead to a whole group of outliers on the level of observations (see, e.g., plate g in

Figure 1). When using classic estimation methods, even one such outlier might inflate the

between-group variability estimate and distort the results (see example discussed in Section 4).

In such a case it would be natural to assume that the group’s random e�ect (or mean)

is an outlier rather than all observations are outliers in the same direction. This concept

of allowing potential contamination on di�erent sources of variability leads to the “random

e�ects contamination model”. With this model, we make the assumption of long-tailed or

“gross error” distributions for the random e�ects as well and not just for the random errors.

The e�ect of the contamination is then propagated via the design matrices to the actual

observations.

Levels of random variability can be hierarchical or crossed, or both, depending on the grouping

structure in the data. This implies that the e�ect of a single outlier on the random e�ects level

is not always as straight forward as in the above mentioned one-way ANOVA example. The

e�ect may be di�erent for each observation as the result of an outlier for a single observation

is combined with all the other random e�ects that a�ect this observation. This complex

relationship between the source of contamination and what is e�ectively realized in the data

can make it very hard or even impossible to spot contamination. This is where robust methods

step in and help clear the picture.

Basing the robust estimator on the “random e�ects contamination model” allows not only

multiple sources of contamination, it also avoids unnecessary assumptions about the data’s

grouping structure. The only assumption on the grouping structure, that is also required

for classic estimation, is that the model parameters are estimable. Other contamination

models usually assume that contamination is introduced and dealt with at the lowest level

only – the level of the observations. In mixed-e�ects models, observations generally correlate

with one another, and robust methods must respect these correlations. These dependencies

between observations require other contamination models to make strict assumptions about

the grouping structure. The random e�ects contamination model assumes that contamination

occurs directly at the source of random variability, before the grouping structure is introduced,

thus circumventing the complexity introduced by the data structure and avoids unnecessary

assumptions.

Classic estimation of linear mixed-e�ects models is mainly provided by two functions in R
(Table 1). The function lme in the R package nlme (Pinheiro, Bates, DebRoy, Sarkar, and R
Core Team 2016) supports a variety of random e�ects and error level covariance structures.

It is designed for hierarchical data structures, so incorporating crossed random e�ects is not

straightforward. The function lmer from the lme4 package (Bates, Mächler, Bolker, and

Walker 2015) is not limited in that respect: it supports arbitrary grouping structures and

e�ciently deals with large data by making heavy use of memory-saving sparse representations

of matrices. Special random e�ects and error level covariance structures like, e.g., compound

symmetry or AR(1) correlation models, are, however, not yet supported. Linear quantile

Journal of Statistical Software 3

R package Function Approach Details / Assumptions

nlme lme Classic Optimized for nested hierarchical

structures; allows special random ef-

fects covariance structures

lme4 lmer Classic No assumptions on grouping struc-

ture; correlated and uncorrelated ran-

dom e�ects within levels

lqmm lqmm Quantile-based Allows median-type estimates; one

grouping level with or without corre-

lation between random e�ects

heavy heavyLme t distributions One grouping level; correlated ran-

dom e�ects

— lmeRob Reformulation as mul-

tivariate problem, then

MM-estimation

Balanced nested hierarchical struc-

tures; uncorrelated random e�ects

within levels

rlme rlme Rank-based Unbalanced nested hierarchical struc-

tures (2 or 3 levels); random inter-

cepts only; does not support balanced

data

robustlmm rlmer Huberization of likeli-

hood and DAS-scale es-

timation

No assumptions on grouping struc-

ture; correlated and uncorrelated ran-

dom e�ects within levels

Table 1: Overview of classic and robust estimation methods available in R. See also the CRAN

Task View on robust statistical methods (Mächler 2016).

mixed e�ects estimation is implemented in the lqmm function from the lqmm package (Geraci

2014). This is not a robust method per se, but allows for median-based estimation. The

function supports only one grouping level but allows the correlation structure of the random

e�ects to be specified.

For robust estimation of linear mixed-e�ects models, there exists a variety of specialized

implementations in R, all using di�erent approaches to the robustness problem. Most of them

are available on the Comprehensive R Archive Network (CRAN) as R packages. Except the

method presented in this paper, all other methods are applicable only for certain grouping

structures, see Table 1 for an overview. The function heavyLme in the heavy package (Osorio

2016) implements mixed-e�ects models using t distributions. However, it allows for a single

grouping factor only, which limits the method to two-level data. As both, the residual errors

and the random e�ects are modeled with a t distribution, the method can capture outliers on

both the subject and the observational level. The degrees of freedom for the two t distributions

are fixed to be the same. Hence, it is not possible to have a di�ering treatment of outliers on

the two levels. Multiple random e�ects are fitted with a correlation parameter, uncorrelated

random e�ects are not supported. The function lmeRob implements the method by Copt and

Victoria-Feser (2006). It is not available on CRAN but from the authors upon request. They

reformulate the mixed-e�ects problem as multivariate problem and apply multivariate MM-

estimation. This approach requires the grouping structure to be nested and the data to be

balanced. Observations are down-weighted at the highest group level, so the high breakdown

4 robustlmm: Robust Linear Mixed-E�ects Models in R

point of 50% applies to the number of groups that can be contaminated, not to the number of

observations. The implementation only supports uncorrelated random e�ects within levels.

The function rlme in the rlme R package implements nested hierarchical mixed-e�ects models

using a rank-based approach (Bilgic, Susmann, and McKean 2014). The function supports

only simple random intercepts, and solutions might not be unique.

This article is a tutorial for robustlmm, an implementation of a robust method to fit mixed-

e�ects models for the statistical computing environment R (R Core Team 2016). The R pack-

age robustlmm is available on CRAN at https://CRAN.R-project.org/package=robustlmm
under the GPL-2 license.

In the next section we provide background on robustlmm’s underlying estimating equations

and algorithms. In Section 3, we describe how robustlmm is implemented. In Section 4, we

work an example and demonstrate how to do a full statistical analysis. Pointers to further

information are given in Section 5. Details, tables of tuning parameters and formulas are

contained in the appendix.

2. Background

2.1. Model equations and assumptions
We work with the general linear mixed-e�ects model in matrix form and, following Bates

(2010), with spherical random e�ects. The spherical random e�ects are obtained from the

regular random e�ects by a transformation such that they have a covariance matrix that equals

a scaled identity matrix. This transformation enables variance components to be estimated

as exactly zero. The model equations are:

y = X— + ZU
b

(◊)bú + U
e

Áú
,

bú ≥ N
1
0, ‡

2I
q

2
, Áú ≥ N

1
0, ‡

2I
n

2
, bú ‹ Áú

,

(1)

where y is the response vector of length n, — is the fixed e�ects vector of length p with

design matrix X, and bú
is the spherical random e�ects vector of length q with design matrix

Z. The relation between the regular and the spherical random e�ects is b = U
b

(◊)bú
. The

lower triangular matrix U
b

(◊) is parameterized by the vector ◊. The covariance matrix of

the random e�ects is V
b

(◊) = U
b

(◊)U
b

(◊)€
. The matrix U

e

is assumed to be a diagonal

matrix of known weights.

As mentioned in the introduction, we do not assume anything about the structure of the

data (i.e., the design matrices X and Z), though we do make the usual assumption that the

model parameters are estimable. We do assume the covariance matrix of the random e�ects

V
b

(◊) to be block-diagonal. This assumption excludes problems that cannot be written in

block-diagonal form, like geostatistical problems with spatial dependence encoded in V
b

(◊)
(see the georob package, Papritz 2016, for robust methods to deal with this special case).

To reduce the complexity of the algorithms, our implementation makes additional assumptions

about the covariance matrices of the random e�ects and the residual errors that are not

required by the theory per se. Blocks of V
b

(◊) of size 2 ◊ 2 and larger are assumed to

be unstructured, i.e., unconstrained covariance matrices (other structures such as compound
symmetry are not supported). In the remainder of the text, we will call blocks of size 1 ◊ 1

https://CRAN.R-project.org/package=robustlmm

Journal of Statistical Software 5

diagonal and larger blocks unstructured. Finally, the residual error covariance matrix is

assumed to be a diagonal matrix with only one unknown scaling parameter.

2.2. Robustness approach
Robustness is achieved by robustification of the scoring equations. The scoring equations are

the derivatives of the log-likelihood. To fit the model (1), either the log-likelihood can be

maximized, or the roots of the scoring equations can be found. Robust estimating equations

are derived from the scoring equations by replacing the residuals and predicted spherical

random e�ects with bounded functions. These bounded functions ensure that a single term

(error or random e�ect) only has bounded influence on the estimating equations. To get robust

and e�cient estimating equations of ‡ and ◊, we apply the design adaptive scale approach by

Koller and Stahel (2011). The robust estimating equations are provided in Appendix B. A

detailed derivation and evaluation of the robust method is given in Koller (2013) and Koller

and Stahel (2015).

The robustified estimating equations no longer correspond to any likelihood or pseudo-likelihood.

Thus, information criteria like AIC and tests based on the log-likelihood statistic are unavail-

able for the robust method we present here.

2.3. Weighting functions, robustness weights and tuning
Tuning (adjusting robustness properties of the resulting estimates) is done by adjusting pa-

rameters that control the form of the bounded functions in the robust estimating equations.

In M-estimation terminology, these bounded functions are called Â-functions. They are the

derivatives of a fl-function (see Maronna, Martin, and Yohai 2006 for exact definitions). The

Huber function, a function that is quadratic around zero and linear for values outside ±k, is

a fl-function (the corresponding Â-function is shown in Figure 3). The parameter k is called

the tuning parameter. Larger values yield more e�cient, but less robust estimates (for k = Œ
one recovers the REML-estimates), whereas smaller values yield more robust but less e�cient

estimates. A popular choice is to fix the asymptotic e�ciency at 95% of the classic estimates

(k = 1.345 for the Huber function).

Replacing terms by bounded functions thereof down-weights terms with a large absolute

value. In the robustness literature, these weights are called robustness weights. Observations

or random e�ects with low robustness weights are classified as outliers by the robust method.

For a given Â-function, the robustness weights are defined as

w

.

(v) =
I

Â

.

(v)/x if x ”= 0 ,

1 if x = 0 .

(2)

where we replace the . in w

.

and Â

.

by e or b to specify the terms to which the functions are

applied (e for errors/residuals; b for random e�ects). To gain robustness for all estimates,

estimating equations for covariance parameters have to be treated di�erently from fixed and

random e�ects, although the weighting functions for similar terms are related. We therefore

distinguish the weighting functions used for estimating ‡ and ◊ with a superscript

(‡)
in

equations. (In robustlmm, the functions are objects of class psi_func. The arguments are

called rho.e, rho.b, rho.sigma.e and rho.sigma.b.)

The robustness weights defined in (2) yield robust estimates of the fixed e�ects and predicted

values for the random e�ects for all fl-functions with a bounded derivative, and also for convex

6 robustlmm: Robust Linear Mixed-E�ects Models in R

fl-functions like the Huber function. For estimates of scaling factors (‡ and ◊ for diagonal-only

blocks of V
b

(◊)), the requirements to get robust estimates are more strict. These are not

robust when convex fl-functions are used. To get robust estimates for scaling factors, we need

to use fl-functions so that w

(‡)
.

(v)v2
is bounded for v æ ±Œ. When convex fl-functions are

used to estimate the fixed and random e�ects, a natural choice for a fl-function to estimate

the scaling factors is the one that corresponds to the squared robustness weights, i.e.,

w

(‡)
.

(v) = w

.

(v)2
. (3)

Note the similarity to Huber’s Proposal 2. (The function psi2propII can be used to transform

a fl-function to the corresponding fl-function that yields squared robustness weights.)

Squared robustness weights are not required for block-diagonal parts of V
b

(◊). Instead of

M-scale type estimating equations, the unstructured blocks require methods similar to mul-

tivariate M-estimators for estimating covariance matrices. Multivariate M-estimators, as in-

troduced by Stahel (1987), use a derived set of Â-functions that also yield bounded influence

estimates for convex fl-functions. (This derivation is handled internally in robustlmm.)

The use of di�erent fl-functions in the estimating equations for ‡ and ◊ ensures the resulting

estimates to be robust, but lowers the e�ciency of the estimates

‚
‡ and

‚◊. This might be

acceptable for problems in which the scale parameter ‡ is considered a nuisance parameter,

but in mixed-e�ects modeling one is usually interested in estimating the variance components

and does not regard them as nuisance terms. If desired, the e�ciency of the estimates of ‡

and ◊ can be increased by increasing the tuning parameters of Â

(‡)
e

and Â

(‡)
b

. Tables of tuning

parameters for popular Â-functions are provided in the appendix.

2.4. Estimation algorithms
The models are fit with a nested iterative reweighting algorithm. If there are no initial

estimates, then the classic estimates are used as initial estimates. The outer loop is updating‚◊ until it converges. For each new value of

‚◊, we update

‚— and

‚b*
and then

‚
‡. This algorithm

converges to a local solution of the estimating equations. For convex fl-functions and squared

robustness weights, the solution can be expected to be unique aside from pathological, easily

discarded solutions. A detailed description of the algorithm is given in Appendix C.

3. Implementation
The robustlmm package is built upon the lme4 package, more specifically the lmer function.

The structure of the objects and the methods are implemented to be as similar as possible

to the ones of lme4 with robustness specific extensions where needed. The object returned

by rlmer is of class rlmerMod. Even though this class is close to the corresponding class

lmerMod returned by lmer, rlmerMod does not extend lmerMod. This is for two reasons.

First, methods for classic estimates are in general not applicable to robust estimates without

changes. Second, class inheritance would require a lot of maintenance when the corresponding

code in lme4 is changed. While computational methods of the lme4 package are implemented

in C++, the robustlmm package is implemented in pure R.

The main function of the package is rlmer, its name hinting at the fact that it is a robust

version of the lmer function. Besides additional arguments to control the robustness of

Journal of Statistical Software 7

the fit, the usage of rlmer is identical to lmer. Most of the functions available for objects

returned by lmer are also available for objects returned by rlmer, e.g., predict or getME.

The getME function is a universal accessor function for quantities derived from the fitted

object (see help("getME")). The function anova requires the log-likelihood statistic and

is therefore unavailable. The simulation functions simulate and bootMer have not yet been

implemented. The functions to create diagnostic plots, dotplot, plot and qqmath for objects

returned by ranef, as well as dotplot and plot for objects returned by coef, are available

and identical to the those from lme4. In addition to the mentioned plot methods, we have

added a plot method plot.rlmerMod for objects returned by rlmer and lmer. It creates a

Tukey-Anscombe plot, a QQ plot of the residuals and the random e�ects as well as scatterplots

of the random e�ects.

4. Usage

4.1. The Penicillin data
We illustrate the use of the robustlmm package on a dataset originally published by Davies

and Goldsmith (1972) and later used by Bates (2010). Davies and Goldsmith (1972) describe

it as data coming from an investigation to. . .

. . . assess the variability between samples of penicillin by the B. subtilis method. In

this test method a bulk-inoculated nutrient agar medium is poured into a Petri dish

of approximately 90 mm. diameter, known as a plate. When the medium has set, six

small hollow cylinders or pots (about 4 mm. in diameter) are cemented onto the surface

at equally spaced intervals. A few drops of the penicillin solutions to be compared are

placed in the respective cylinders, and the whole plate is placed in an incubator for a

given time. Penicillin di�uses from the pots into the agar, and this produces a clear

circular zone of inhibition of growth of the organisms, which can be readily measured.

The diameter of the zone is related in a known way to the concentration of penicillin in

the solution.

The description implies that it is a balanced two-way ANOVA dataset with two types of

random e�ects: sample with six levels and plate with 24 levels. The random e�ects are

completely crossed. The dataset is distributed as the Penicillin dataset in lme4.

To emphasize the e�ect of the robust method, we modified the dataset slightly (as we did in

Koller and Stahel 2015). We scaled down the first plate’s observation values, and we moved

one observation in plate f down to the lowest original observation. The modified dataset is

shown in Figure 1.

4.2. Fitting the model and assessing the model fit
We start by loading the R package and the modified Penicillin dataset.

R> require("robustlmm")

R> source(system.file("doc/Penicillin.R", package = "robustlmm"))

The contaminated dataset is now available in the data.frame PenicillinC. The dataset con-

sists of four columns: the response diameter; two factors plate and sample that describe the

8 robustlmm: Robust Linear Mixed-E�ects Models in R

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

15

20

25

g s x u i j w f q r v e p c d l n a b h k o t m
Plate

D
ia

m
et

er
 g

ro
w

th
 in

hi
bi

tio
n

zo
ne

 (m
m

)

Sample ● ● ● ● ● ●A B C D E F ●changed original

Figure 1: Diameters of growth inhibition zones of 6 samples applied to each of 24 agar plates

to assess penicillin concentration. The lines join the observations of the same sample. The

plates have been reordered by their diameter values. The observations marked by ◊ have

been modified to introduce some contamination.

origin of the observations and contaminated, which indicates whether or not an observation

has been modified.

R> str(PenicillinC)

�data.frame�: 144 obs. of 4 variables:
$ diameter : num 27 23 26 23 ...
$ plate : Factor w/ 24 levels "g","s","x","u",..: 18 18 18 18 ...
$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 ...
$ contaminated: Factor w/ 2 levels "changed","original": 2 2 2 2 ...

We fit the model using the function rlmer. The specification of models is the same as for

the lmer function. In a single formula, we specify the fixed and random terms of the model.

Fixed terms are added in the usual R formula notation, and random terms are specified in

parentheses. Random e�ects are defined in conjunction with a grouping factor. The grouping

factor is separated from the random e�ect by a pipe symbol “|”. We now fit the classic and

robust models:

R> fm <- lmer(diameter ~ (1 | plate) + (1 | sample), PenicillinC)

R> rfm <- rlmer(diameter ~ (1 | plate) + (1 | sample), PenicillinC)

As usual, we get information about the fit using the summary function:

Journal of Statistical Software 9

R> summary(rfm)

Robust linear mixed model fit by DAStau
Formula: diameter ~ (1 | plate) + (1 | sample)

Data: PenicillinC

Scaled residuals:
Min 1Q Median 3Q Max

-4.7967 -0.6191 0.0812 0.5773 3.2039

Random effects:
Groups Name Variance Std.Dev.
plate (Intercept) 0.9225 0.9605
sample (Intercept) 4.5370 2.1300
Residual 0.3319 0.5761

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 22.9948 0.9156 25.11

Robustness weights for the residuals:
124 weights are ~= 1. The remaining 20 ones are summarized as

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.280 0.697 0.866 0.791 0.916 0.997

Robustness weights for the random effects:
25 weights are ~= 1. The remaining 5 ones are

1 2 3 24 30
0.227 0.920 0.994 0.870 0.919

Rho functions used for fitting:
Residuals:

eff: smoothed Huber (k = 1.345, s = 10)
sig: smoothed Huber, Proposal II (k = 1.345, s = 10)

Random Effects, variance component 1 (plate):
eff: smoothed Huber (k = 1.345, s = 10)
vcp: smoothed Huber, Proposal II (k = 1.345, s = 10)

Random Effects, variance component 2 (sample):
eff: smoothed Huber (k = 1.345, s = 10)
vcp: smoothed Huber, Proposal II (k = 1.345, s = 10)

The output is close to the output from lmer. The first part of the summary provides informa-

tion about the model fit; the estimates of V
b

(◊) and ‡; followed by the estimated fixed e�ects

and derived statistics and (if applicable) the correlation of the fixed e�ects. The second part

gives information about the robustness weights and a list of the fl-functions employed.

10 robustlmm: Robust Linear Mixed-E�ects Models in R

As we can read o� the summary, the default fl-function is the smoothed Huber fl-function,

which is a smoothed variant of the regular Huber function (the exact definition is given in the

appendix). The functions for estimating ‡ and ◊ are su�xed by “Proposal II”, indicating that

squared robustness weights, with a high robustness but a low e�ciency, are used by default

(diagonal blocks only, for unstructured blocks the regular fl-function is used by default).

The summary also tells us that the lowest robustness weights for both the observations and

the groups are about 0.2. We can get a full named list of the robustness weights by using

the calls getME(rfm, "w_e") and getME(rfm, "w_b") for the observations and the groups,

respectively.

With the call plot(rfm), we can create simple residual analysis plots including normal QQ

plots of the predicted random e�ects. The resulting plots are shown in Figure 2. The darker

color indicates observations with a low robustness weight w

.

. From the plot as well as from

the summary shown above, we can see that the observations that were changed have been

detected by the method, i.e., they have received a low robustness weight. There are also

other observations that were assigned a rather low robustness weight and we would do good

to investigate them.

4.3. Tuning the fit
As already mentioned in Section 2.3, the estimates of ‡ and ◊ have a low e�ciency if the

same tuning parameters are used as for estimating the fixed and random e�ects. To get a

higher e�ciency, we have to increase the tuning parameter of fl

(‡)
e

and fl

(‡)
b

. Tables of tuning

parameters are provided in the appendix. We can change the default tuning parameter of

objects of class psi_func with the function chgDefaults. The smoothed Huber function

is a convex fl-function. Hence, we need to use squared robustness weights to get robust

estimates of the residual error scale and the variance components (see Section 2.3). We can

convert any fl-function to the corresponding one with squared robustness weights using the

function psi2propII. The latter function also allows the tuning parameters to be changed

simultaneously, so that a second call to chgDefaults can be saved. We use the update
function to fit a model with a higher e�ciency for the estimates of ‡ and ◊:

R> rfm2 <- update(rfm, rho.sigma.e = psi2propII(smoothPsi, k = 2.28),

+ rho.sigma.b = psi2propII(smoothPsi, k = 2.28))

Note that the update function both uses the call information from the given object rfm, and,

if applicable, also uses estimates from the object as initial values for the fitting procedure.

To specify di�erent fl-functions for di�erent random e�ects, the arguments rho.b and

rho.sigma.b accept as input a list of fl-functions. The order in the list of the random

e�ects must be the same as the order listed in the output of summary. To fit only the element

of ◊ that corresponds to the “sample” random e�ect with higher e�ciency, we use

R> rsb <- list(psi2propII(smoothPsi), psi2propII(smoothPsi, k = 2.28))

R> rfm3 <- update(rfm2, rho.sigma.b = rsb)

Note the missing second argument k when generating the first element of the list rsb. In that

case, the default tuning parameter k = 1.345 is used.

Journal of Statistical Software 11

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●●●●

●
●

●

●

●●

●

●
●●

●●

●
●

●

●

●

●

●

●

●●●●

●
●

●●●

●

●
●

●

●

●●

●
●

●●●

●

●
●

●●●

●
●

●

●●

●●

●
●

●

●●●

●
●

●

●●

●

●
●

●●●●
●

●
●

●●●

●
●

●

●●

●

●
●

●●●

●

●
●

●●●●

●

●
●●●

●

●
●

●

●●

●

●
●

●●

●

●

●
●

●●

●●

−2

−1

0

1

2

16 20 24
fitted

re
si

d
Fitted Values vs. Residuals

●

●
●

●●●
●●
●●●●●●

●●●●●●●
●●
●●●●●●●

●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●●●●●
●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●
●●●●●●●

●●●●
●
●●●

●
●
●●● ●

●

−2

−1

0

1

2

−2 −1 0 1 2
theoretical

sa
m

pl
e

Normal Q−Q vs. Residuals

●

●
●

● ● ● ●

●
● ● ●

●●
●

●
● ●

● ● ● ● ● ●

●

●

●

● ●

●
●

plate sample

−6

−4

−2

0

2

−2 −1 0 1 2 −2 −1 0 1 2
theoretical

sa
m

pl
e

0.4 0.6 0.8 1.0
weights

Normal Q−Q vs. Random Effects

Figure 2: Residual analysis plots for robust fit rfm. The coloring of the points gives informa-

tion about the corresponding robustness weights.

To compare the estimates of the various fits we did so far, we can use the function compare. We

set the argument show.rho.functions to FALSE to avoid a lengthy display of the fl-functions

here. To enhance the comparison, we also fit the model to the original, uncontaminated data

with the classic, non-robust, method.

R> fmUncontam <- update(fm, data = Penicillin)

R> compare(fmUncontam, fm, rfm, rfm2, rfm3, show.rho.functions = FALSE)

fmUncontam fm rfm rfm2 rfm3
Coef
(Intercept) 23 (0.809) 22.8 (0.85) 23 (0.916) 23 (0.851) 23 (0.852)

VarComp

12 robustlmm: Robust Linear Mixed-E�ects Models in R

(Intercept) | plate 0.847 1.409 0.960 0.941 0.961
(Intercept) | sample 1.932 1.955 2.130 1.974 1.974

sigma 0.55 0.609 0.576 0.569 0.569

REML 331 377

The resulting table gives the estimates and standard errors in parentheses. The REML row gives

the restricted maximum likelihood statistic. As mentioned earlier, this statistic is unavailable

for robust fits. The output of the compare function can also be passed to xtable from the

xtable package (Dahl 2016) to create L

A
T

E

X or HTML tables.

How to choose tuning parameters

When choosing tuning parameters for rlmer, one has to balance robustness and e�ciency. In

the examples discussed above, this means that by setting the tuning parameters too high, the

estimates might break down and the resulting estimates are misleading. On the other hand,

it is not good practice to set the tuning parameters very low as this will produce ine�cient,

i.e., imprecise, estimates. An approach as outlined above, fitting the model with low as well

as with high e�ciency, is better. In general, parameters that are not considered nuisance

parameters should be estimated with high e�ciency if possible.

When comparing fits with low to fits with high e�ciency and robust to classic fits, one

should first compare the parameter estimates (keeping in mind their precision or confidence

intervals). If there are any relevant di�erences, then a study of the robustness weights should

give insight as to which observations cause the di�erence. It is important not to just remove

and, thus, ignore outliers. Whenever possible, the reason why an outlier is far from the bulk

of observations should be determined. Outliers that are not merely due to recording errors

usually carry information that can help to improve the model.

Applying this method to the example shown above, we can see that the one contaminated

plate clearly inflates the classic, non-robust estimates for the standard deviation of the “plate”

random e�ect. The robust method can detect this contamination and reduce its e�ect, leading

to an estimate that is only slightly inflated. The comparison of the robust fits with lower and

higher e�ciency shows that the contamination is not strong enough to cause a breakdown of

the fit with higher e�ciency but lower robustness. Also, the higher e�ciency for the estimate

of the standard deviation of the “sample” random e�ect leads to a better estimate that is

closer to the classic fits. Finally, the robust estimates of the standard deviation of the random

errors are closer to the original classic fit of the uncontaminated data.

4.4. Controlling the fitting procedure

To diagnose problems with the fitting procedure, use the argument verbose. The argument

takes values from 1 to 5, and gives more verbose output for higher values. If the method is

not converging, increasing the maximum number of allowed iterations (argument max.it) or

the tolerance (rel.tol) below which convergence is declared can help to achieve convergence.

To specify starting values for the fitting procedure, use the init argument. The init argu-

ment expects a list with four items: fixef, the fixed e�ects, u, the spherical random e�ects,

Journal of Statistical Software 13

sigma, the error scale ‡, and theta, the vector ◊ parameterizing the random e�ects covariance

matrix V
b

(◊).

To shorten fitting times at the beginning of an analysis, use the argument method = "DASvar".

This method is faster as it uses simple direct approximations instead of numerical integrals to

compute the scale and covariance parameters using the design adaptive scale approach (see

Koller and Stahel (2011) and Appendix B). The DASvar method yields approximate results

only. For covariance matrices of the random e�ects V
b

(◊) with unstructured blocks of size

three and larger, the method DASvar is the only method currently available.

5. Further information
Detailed information on the properties of the robust method and validation using simulation

studies can be found in compact form in Koller and Stahel (2015) and more detailed in Koller

(2013). Bates (2010) is a general introduction to mixed modeling using the R package lme4

(Bates et al. 2015). Because lme4 and robustlmm are similar, this is also a good starting

point for using robustlmm.

We avoided the topic of robust testing for linear mixed-e�ects models in this tutorial. The

usual caveats of testing in mixed models apply for the methods presented here. The wiki

at http://glmm.wikidot.org is a good resource. Bootstrap presents itself as a simple (but

data structure dependent) way to get p values. One has to be careful, though, since the

ordinary bootstrap quantiles are not robust (Salibián-Barrera, Van Aelst, and Willems 2008;

Singh 1998).

Development of robustlmm is hosted on GitHub at http://www.github.com/kollerma/
robustlmm. Any issues with the package can also be reported there.

Acknowledgments
The author would like to thank Kali Tal for providing editorial help with the manuscript.

The author would also like to thank two anonymous reviewers for their helpful comments

and suggestions on how to improve the paper. Finally, the author would like to thank Niels

Hagenbuch for his comments and proof-reading.

References

Bates DM (2010). “lme4: Mixed-E�ects Modeling with R.” https://lme4.R-Forge.
R-project.org/book/.

Bates DM, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-E�ects Models

Using lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Bilgic Y, Susmann H, McKean J (2014). rlme: Rank-Based Estimation and Prediction in
Random E�ects Nested Models. R package version 0.4, URL https://CRAN.R-project.
org/package=rlme.

http://glmm.wikidot.org
http://www.github.com/kollerma/robustlmm
http://www.github.com/kollerma/robustlmm
https://lme4.R-Forge.R-project.org/book/
https://lme4.R-Forge.R-project.org/book/
http://dx.doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=rlme
https://CRAN.R-project.org/package=rlme

14 robustlmm: Robust Linear Mixed-E�ects Models in R

Chervoneva I, Vishnyakov M (2011). “Constrained S-Estimators for Linear Mixed E�ects

Models with Covariance Components.” Statistics in Medicine, 30(14), 1735–1750. doi:
10.1002/sim.4169.

Copt S, Victoria-Feser MP (2006). “High-Breakdown Inference for Mixed Linear Mod-

els.” Journal of the American Statistical Association, 101(473), 292–300. doi:10.1198/
016214505000000772.

Dahl DB (2016). xtable: Export Tables to LATEX or HTML. R package version 1.8-2, URL

https://CRAN.R-project.org/package=xtable.

Davies OL, Goldsmith PL (eds.) (1972). Statistical Methods in Research and Production. 4th

edition. Hafner.

Demidenko E (2004). Mixed Models: Theory and Applications. John Wiley & Sons. doi:
10.1002/0471728438.

Geraci M (2014). “Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile

Regression.” Journal of Statistical Software, 57(13), 1–29. doi:10.18637/jss.v057.i13.

Hampel F, Ronchetti E, Rousseeuw P, Stahel W (1986). Robust Statistics: The Approach
Based on Influence Functions. John Wiley & Sons.

Koller M (2013). Robust Estimation of Linear Mixed Models. Ph.D. thesis, ETH Zürich.

Dissertation Nr. 20997, 2013, URL http://e-collection.library.ethz.ch/eserv/eth:
6670/eth-6670-02.pdf?pid=eth:6670&dsID=eth-6670-02.pdf.

Koller M (2016). robustlmm: Robust Linear Mixed E�ects Models. R package version 1.8,

URL https://CRAN.R-project.org/package=robustlmm.

Koller M, Stahel WA (2011). “Sharpening Wald-Type Inference in Robust Regression for

Small Samples.” Computational Statistics & Data Analysis, 55(8), 2504–2515. doi:10.
1016/j.csda.2011.02.014.

Koller M, Stahel WA (2015). “Robust Estimation of General Mixed E�ects Models.” To be

submitted.

Mächler M (2016). “CRAN Task View: Robust Statistical Methods.” Version 2016-08-29,

URL https://CRAN.R-project.org/view=Robust.

Maronna RA, Martin RD, Yohai VJ (2006). Robust Statistics, Theory and Methods. John

Wiley & Sons. doi:10.1002/0470010940.

Osorio F (2016). heavy: Robust Estimation Using Heavy-Tailed Distributions. R package

version 0.38, URL https://CRAN.R-project.org/package=heavy.

Papritz A (2016). georob: Robust Geostatistical Analysis of Spatial Data. R package ver-

sion 0.3-1, URL https://CRAN.R-project.org/package=georob.

Pinheiro JC, Bates DM, DebRoy S, Sarkar D, R Core Team (2016). nlme: Linear and Non-
linear Mixed E�ects Models. R package version 3.1-128, URL https://CRAN.R-project.
org/package=nlme.

http://dx.doi.org/10.1002/sim.4169
http://dx.doi.org/10.1002/sim.4169
http://dx.doi.org/10.1198/016214505000000772
http://dx.doi.org/10.1198/016214505000000772
https://CRAN.R-project.org/package=xtable
http://dx.doi.org/10.1002/0471728438
http://dx.doi.org/10.1002/0471728438
http://dx.doi.org/10.18637/jss.v057.i13
http://e-collection.library.ethz.ch/eserv/eth:6670/eth-6670-02.pdf?pid=eth:6670&dsID=eth-6670-02.pdf
http://e-collection.library.ethz.ch/eserv/eth:6670/eth-6670-02.pdf?pid=eth:6670&dsID=eth-6670-02.pdf
https://CRAN.R-project.org/package=robustlmm
http://dx.doi.org/10.1016/j.csda.2011.02.014
http://dx.doi.org/10.1016/j.csda.2011.02.014
https://CRAN.R-project.org/view=Robust
http://dx.doi.org/10.1002/0470010940
https://CRAN.R-project.org/package=heavy
https://CRAN.R-project.org/package=georob
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme

Journal of Statistical Software 15

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Salibián-Barrera M, Van Aelst S, Willems G (2008). “Fast and Robust Bootstrap.” Statistical
Methods & Applications, 17(1), 41–71. doi:10.1007/s10260-007-0048-6.

Singh K (1998). “Breakdown Theory for Bootstrap Quantiles.” The Annals of Statistics,
26(5), 1719–1732. doi:10.1214/aos/1024691354.

Stahel WA (1987). “Estimation of a Covariance Matrix with Location: Asymptotic Formulas

and Optimal B-Robust Estimators.” Journal of Multivariate Analysis, 22(2), 296–312.

doi:10.1016/0047-259x(87)90092-3.

https://www.R-project.org/
http://dx.doi.org/10.1007/s10260-007-0048-6
http://dx.doi.org/10.1214/aos/1024691354
http://dx.doi.org/10.1016/0047-259x(87)90092-3

16 robustlmm: Robust Linear Mixed-E�ects Models in R

A. Smoothed Huber function and tables of tuning constants
The smoothed Huber Â-function is defined as

Â(x, k, s) =
I

x |x| Æ c

sign(x)
1
k ≠ 1

(|x|≠d)s

2
otherwise

, (4)

where c = k ≠s

≠s
s+1

and d = c≠s

1
s+1

. We recommend using a value of s = 10. The asymptotic

properties of the regular Huber function and the smoothed Huber function are almost identical

when this value is used. We can therefore safely use the same tuning parameter k for both

Â-functions. The two Â-functions are compared in Figure 3. Tuning constants for this and

the lqq Â-function (Koller and Stahel 2011) are shown in Tables 2 to 5.

B. Robust estimating equations
This appendix summarizes the more extensive derivation of the robust estimating equations

found in Koller (2013).

B.1. Fixed and random e�ects

Let k(j) be a function that maps random e�ect j to the corresponding block k, then the

squared Mahalanobis distances of the estimated random e�ects are

d =
1
d

1
bú

k(j)/‡

22
j=1,...,q

, where d(bú
k

) = bú€
k

bú
k

.

We may then define the robustness weight for the j-th random e�ect as w

b

(d
j

). We use

0.0

0.5

1.0

0 1 2 3
x

ψ
(x
)

ψ−function Huber Smoothed

Figure 3: Comparison of the Huber and the smoothed Huber Â-function for k = 1.345 and

s = 10.

Journal of Statistical Software 17

E�ciency k for µ̂ k for ‡̂ k for ‡̂, Prop. II

0.80 0.53 0.50 1.49

0.85 0.73 0.71 1.69

0.90 0.98 1.08 1.94

0.95 1.345 1.66 2.28

Table 2: Tuning parameters k for scale estimates such that they reach the same asymptotic

e�ciency as the location estimate. For the Huber Â-function.

Dimension s

2 3 4 5 6 7

b÷ 5.66 6.41 7.14 7.87 8.58 9.28

b· 5.15 5.55 5.91 6.25 6.55 6.84

bµ 1.5 1.63 1.73 1.81 1.87 1.9

Table 3: Tuning parameters for the optimal B-estimator to yield 95% e�ciency, non-diagonal

case. For the Huber Â-function.

E�ciency cc for µ̂ cc for ‡̂

0.80 (0.946, 0.631) (1.414, 0.942)

0.85 (1.058, 0.705) (1.57, 1.05)

0.90 (1.214, 0.809) (1.79, 1.19)

0.95 (1.474, 0.982) (2.19, 1.46)

Table 4: Tuning parameters for lqq Â-function for the location and scale estimates such that

they reach the given asymptotic e�ciency. The third parameter is always taken to be 1.5.

Dimension s

2 3 4 5 6

cc÷ (6.44, 4.29) (7.23, 4.82) (8.01, 5.34) (8.77, 5.85) (9.52, 6.35)

cc· (5.95, 3.97) (6.41, 4.27) (6.82, 4.55) (7.2, 4.8) (7.55, 5.03)

ccµ (1.63, 1.09) (1.77, 1.18) (1.88, 1.26) (1.99, 1.32) (2.08, 1.39)

Table 5: Tuning parameters for the lqq weight function to yield 95% e�ciency, non-diagonal

case. The third parameter is always taken to be 1.5.

18 robustlmm: Robust Linear Mixed-E�ects Models in R

standard (location and linear regression) robustness weights:

w

b

(d) =
I

Â

b

1Ô
d

2
/

Ô
d if d ”= 0 ,

Â

Õ
b

(0) if d = 0 .

It is convenient to represent the robustness weights as (diagonal) weighting matrix,

W
b

(d) = Diag
1
w

b

1
d

k(j)
22

j=1,...,q

.

The robust estimating equations are then

X€U≠€
e

Â
e

(‚Á*
/‡) = 0 ,

U€
b

Z€U≠€
e

Â
e

(‚Á*
/‡) ≠ �

b

W
b

1‚d2‚b*
/‡ = 0 ,

(5)

where �
b

= Diag(⁄
e

/⁄

b,j

)
j=1,...,q

is a diagonal matrix with elements depending on the block

size s

k(j) , ⁄

e

= E0[ÂÕ
e

(Áú)] and ⁄

b,j

= Â
⁄

1
s

k(j)
2

,

Â
⁄(s) = E0

5
ˆ

ˆb

ú
1

1
w

b

1
bú€bú

2
bú

1
26

, bú ≥ N(0, I
s

) .

B.2. Scale
We apply the design adaptive scale approach following Koller and Stahel (2011). We get

nÿ
i=1

·

2
e,i

w

(‡)
e

A ‚
Á

ú
i

·

e,i

‚
‡

BSUA ‚
Á

ú
i

·

e,i

‚
‡

B2
≠ Ÿ

(‡)
e

TV = 0 , (6)

where the superscript ·(‡)
is used to distinguish the weighting functions used for the scale and

covariance parameters from the ones used for the fixed e�ects. Just as in the linear regression

case, we define ·

e,i

as the value that zeroes the expectation of the i-th summand in (6). The

expectation is

E

SU
w

(‡)
e

A ‚
Á

ú
i

·

e,i

‚
‡

BA ‚
Á

ú
i

·

e,i

‚
‡

B2
≠ Ÿ

(‡)
e

w

(‡)
e

A ‚
Á

ú
i

·

e,i

‚
‡

BTV = 0 , (7)

where the distribution of the residuals is approximated using a linear expansion of

‚— and

‚b*

around their true values (Koller 2013, Appendix C), and Ÿ

(‡)
e

is

Ÿ

(‡)
e

= E0

Ë
w

(‡)
e

(Á)Á

2
ÈO

E0

Ë
w

(‡)
e

(Á)
È

.

The weighting functions used for the scale estimates are the squared robustness weights used to

estimate the fixed and random e�ects, w

(‡)
e

(x) = (Â(‡)
e

(x)/x)2
, w

(‡)
e

(0) = Â

(‡)
e

Õ(0), for convex

fl-functions. For redescending fl-functions, it is unnecessary to use the squared robustness

weights. Using the same weights as for the fixed and random e�ects still gives robust estimates

(assuming Â(x)x is bounded). When the squared weights are used, a di�erent set of tuning

parameters must be used to estimate the scale and covariance parameters. Tables of tuning

parameters can be found in Appendix A.

Journal of Statistical Software 19

B.3. Covariance parameters
For the covariance parameters, we have to treat the diagonal and the block-diagonal case of

U
b

separately.

Diagonal case
In the case of diagonal U

b

(◊), estimating

‚◊ is essentially a scale estimation problem on

‚b*
. It

can be robustified just like the estimating equation for ‡̂, see Equation 6. For a model with

only one random e�ects term, the robust estimating equations are

qÿ
j=1

·

2
b,j

w

(‡)
b

A ‚
b

ú
j

·

b,j

‚
‡

BSUA ‚
b

ú
j

·

b,j

‚
‡

B2

≠ Ÿ

(‡)
b

TV = 0 , (8)

with ·

b,j

such that

E

SU
w

(‡)
b

A ‚
b

ú
j

·

b,j

‚
‡

BSUA ‚
b

ú
j

·

b,j

‚
‡

B2

≠ Ÿ

(‡)
b

TVTV = 0 ,

and normalizing constant

Ÿ

(‡)
b

= E0

Ë
w

(‡)
b

(bú)b

ú2
ÈO

E0

Ë
w

(‡)
b

(bú)
È

.

Generalization to multiple random e�ects terms is straightforward. We get one such equation

for each of the random e�ects terms.

Block-diagonal case
For block-diagonal U

b

(◊) we have to take care of the block structure. The normalizing

constant ·

2
b,j

must be replaced by a matrix T
b,k

defined for each block k. Analogous to the

estimator for the covariance matrix and location problem, we must use two di�erent weight

functions: one for the size of the matrix w

(·)
b

and another one for the shape w

(÷)
b

. For details,

we refer to Stahel (1987) and Hampel, Ronchetti, Rousseeuw, and Stahel (1986, Chapter 5).

As in the cited references, we introduce a third weight function w

(”)
b

to simplify notation. For

block types with dimension s > 1, let

w

(”)
b

(d) =
1
dw

(÷)
b

(d) ≠
1
d ≠ sŸ

(·)
b

2
w

(·)
b

1
d ≠ sŸ

(·)
b

22O
s ,

where Ÿ

(·)
b

is defined such that

E
Ë1

u ≠ sŸ

(·)
b

2
w

(·)
b

1
u ≠ sŸ

(·)
b

2È
= 0 for u ≥ ‰

2
s

.

Remark. The optimal B-robust estimator derived in Stahel (1987) is given by w

(·)
b (d) = min(1/b· , 1/d)

and w

(÷)
b (d) = min(1/b÷, 1/d). Other weight functions may be chosen, as long as Â(d) = dw(d) is a

Â-function. For w

(·)
b and w

(÷)
b given above, this would be the Huber Â-function. For low dimensions

s, one may choose w

(·)
b = w

(÷)
b . In higher dimensions, the e�ciency loss for the estimated size is

negligible. Hence, a smaller tuning parameter may be chosen for w

(÷)
b . For s = 2 and Huber or

smoothed Huber Â-functions (see Appendix A), the squared tuning parameter of fl

(‡)
e for w

(·)
b may be

used to get approximately the same e�ciency for

‚◊ as for ‚‡. Tables of tuning parameters for higher

dimensions for the Huber and the lqq Â-functions can be found in Appendix A.

20 robustlmm: Robust Linear Mixed-E�ects Models in R

Before we can state the robust estimating equation for the block-diagonal case, we need one

more definition. Let

Q
¸

(◊) = U
b

(◊)≠1 ˆU
b

(◊)
ˆ◊

l

.

The robust estimating equation in the block-diagonal case can then be defined as follows. For

l = 1, . . . , r,

Kÿ
k=1

5
w

(÷)
b

1
d

1
T ≠1/2

b,k

‚b*
k

/

‚
‡

22‚bú€
k

Q
¸,k

(‚◊)‚b*
k

/

‚
‡

2

≠w

(”)
b

1
d

1
T ≠1/2

b,k

‚b*
k

/

‚
‡

22
tr

1
T

b,k

Q
¸,k

(‚◊)
26

= 0 ,

(9)

where Q
¸,k

(‚◊) is the s ◊ s submatrix of Q
¸

(‚◊) which acts on block k and T ≠1/2
b,k

is the inverse

of any square root of the s ◊ s matrix T
b,k

. As in the diagonal case, we define the matrix T
b,k

such that each summand has expectation zero. For l = 1, . . . , r,

E
5
w

(÷)
b

1
d

1
T ≠1/2

b,k

‚b*
k

/‡

22‚bú€
k

Q
¸,k

(‚◊)‚b*
k

/‡

2

≠w

(”)
b

1
d

1
T ≠1/2

b,k

‚b*
k

/‡

22
tr

1
T

b,k

Q
¸,k

(‚◊)
26

= 0 .

Remarks. The symmetric matrix Tb,k is fully defined for unstructured covariance matrices only, where

r = s(s+1)/2. For other covariance matrix structures we can replace Tb,k by the variance of the linear

approximation of bú
.

Since in the classic case, the linear approximations for

‚b*
and

‚Á*
are exact, the estimating equation (9)

reduces to the REML estimating equations. A similar argument is valid for the estimating equation

(6) for ‡̂.

C. Estimation algorithm
The algorithm for finding the simultaneous roots of the estimating equations (5), (6) and (8)

(and/or (9)) can be split into four general steps. They are:

1. Compute initial estimates.

2. For given

‚◊,

‚
‡, find

‚— and

‚b*
that solve (5).

3. Keeping the intermediate solutions

‚— and

‚b*
fixed, find

‚
‡ such that (6) is fulfilled.

4. Check the estimating equations for

‚◊, (8) and/or (9), for convergence. If they are not

fulfilled, update

‚◊ in some way and go back to step 2.

The algorithms for the four steps can be chosen independently from each other. We discuss

the four steps below.

When this algorithm stops, it has found a simultaneous solution of all the estimating equa-

tions, except in the block-diagonal case where some, but not all, components corresponding to

a block might lie on the border of the parameter space. For those parameters, the estimating

equations won’t be satisfied. To avoid incorrect solutions, it is crucial that the estimates for

Journal of Statistical Software 21

-0.5

0.0

0.5

1.0

0 1 2 3�†
�̂

�

va
lu

e

Sum of Squares realized expected difference

Figure 4: Sum of squares of the spherical random e�ects for a balanced one-way ANOVA.

The smoothed Huber function was used for both fl

e

and fl

b

. The estimating equations (8)

are solved at the points where the two curves cross. The solutions are highlighted by black

dashed lines, ◊̂ is the correct solution, ◊

†
the wrong one.

‚— and

‚b*
are updated for each new candidate of

‚◊ and that the initial estimate for ◊ is large

enough. Otherwise, the algorithm might wrongly set all components of ◊ corresponding to

one block to zero or close to zero.

This is illustrated for a simple one-way ANOVA in Figure 4. The expected sum of squares

vanishes for

‚◊ = 0 in the classic case. In the robust case, the expectation does not vanish,

but there is a solution close to zero. This is an artifact of the linear approximation used to

compute the expectation. As long as convex fl-functions are used, the classic estimates are

generally a good choice of initial estimates. Zero components of the initial

‚◊ should be set to

one at the start of the algorithm.

C.1. Step 1: Initial estimates

The methods described here work for convex fl-functions as well as for redescender fl-functions.

If redescender fl-functions are used, the algorithm as defined here converges to a local solution.

It is up to the initial estimator to provide starting values that ensure the algorithm converges

to the right local solution, whatever the right solution is. In case of MM-estimates for the

fixed e�ects model, the initial S-estimate makes sure that the final estimate has the desired

high breakdown point. The same would certainly also be desirable in case of mixed-e�ects

models. However, to the best of our knowledge, there exists currently no such estimator. The

S-estimators by Copt and Victoria-Feser (2006) and Chervoneva and Vishnyakov (2011) do

not seem suitable, since they are based on a di�erent contamination model and are not as

general as the method proposed here.

If convex fl-functions are used, this di�culty does not exist. Apart from the artificial solution

22 robustlmm: Robust Linear Mixed-E�ects Models in R

‚◊ close to zero (see Figure 4) which is easily distinguishable from the true solution, we

conjecture that the solutions are unique as they are for the Proposal II case in the location-

scale problem (Koller 2013). We therefore consider it safe to use the classic solutions as initial

estimates when convex fl-functions are used.

Redescender fl-functions have the advantage that they can assign a weight of zero to some

observations or random e�ects levels. This makes it possible that such observations have no

influence on the estimates. When convex fl-functions are used, an observation practically

always has an influence on the estimates, since a weight of zero is only reached in the limit,

when the residual or the random e�ect level approaches plus or minus infinity. If one is

interested in eliminating the influence of observations, then one might consider the following.

First, compute the fit using a convex fl-function. Then use the results as starting value

for fitting using a redescender fl-function in a second step. In the absence of good initial

estimators for redescender fl-functions, this approach might be used to get at least some of

the desirable properties of redescender fl-functions.

C.2. Step 2: Fixed and random e�ects
For given ◊ and ‡, the estimation of the fixed and random e�ects can be done using iteratively

reweighted least squares.

Let W
e

be defined analogously to W
b

, i.e.,

W
e

= Diag(w
e

(Áú
i

/‡))
i=1,...,n

,

where

w

e

(Áú) =
I

Â

e

(Áú)/Á

ú
if Á

ú ”= 0 ,

Â

Õ
e

(0) if Á

ú = 0 .

Then insert these weights into (5) and expand

‚Á*
to get the following linear system of equa-

tions, C
X€U≠€

e

W
e

U≠1
e

X X€U≠€
e

W
e

U≠1
e

ZU
b

U€
b

Z€U≠€
e

W
e

U≠1
e

X U€
b

Z€U≠€
e

W
e

U≠1
e

ZU
b

+ �
b

W
b

DC ‚—‚b*

D

=
C

X€U≠€
e

W
e

y
U€

b

Z€U≠€
e

W
e

y

D
.

By alternating between computing

‚— and

‚b*
for a given set of weights and updating the

weights for a given set of estimates, we get a simple and e�cient algorithm for computing the

fixed and random e�ects.

We start the algorithm with either a predefined set of weights or set all the weights to one.

When the relative change of the estimates is small enough, the algorithm can stop.

C.3. Step 3: Variance parameter
Equation 6 can be written as

‚
‡

2 =

q
n

i=1 w

(‡)
e

3 ‚Áú
i

·e,i‚‡
4‚

Á

ú
i

2

Ÿ

(‡)
e

q
n

i=1 ·

2
e,i

w

(‡)
e

3 ‚Áú
i

·e,i‚‡
4

.

Journal of Statistical Software 23

This suggests a simple two-step algorithm, namely alternating between computing

‚
‡ using

the above formula and updating the weights given

‚
‡. This algorithm is quick and reliable,

especially if the overall algorithm has almost converged and

‚
‡ only changes little between

iterations of

‚◊.

A similar procedure can also be derived for the computation of ·

e,i

. Solving (7) for ·

e,i

yields

·

2
e,i

= E
C
w

(‡)
e

A ‚
Á

ú
i

·

e,i

‚
‡

B3 ‚
Á

ú
i‚

‡

42D?
E

C
Ÿ

(‡)
e

w

(‡)
e

A ‚
Á

ú
i

·

e,i

‚
‡

BD
,

which again suggests to use the same two-step procedure as lined out above. The values

·

e,i

have to be recomputed for every new value of

‚◊, preferably using the values of the last

candidate

‚◊ as starting values.

C.4. Step 4: Covariance parameters
In the following, we will assume that we have only one block type. The algorithms men-

tioned below can be easily generalized to multiple block types. One iteration then consists of

computing the updates for every block type separately before applying all of them together.

In case of diagonal U
b

(◊),

‚◊ may be computed using the analogue of the algorithm for Step 3.

This has proven to be much more e�cient and robust compared to using a generic root solving

procedure.

The same is true in the non-diagonal case. Nevertheless, if we assume a special covariance

structure, the only options are generic root solving procedures such as Newton-Raphson. The

Newton-Raphson algorithm, however, can be quite unstable and often does not converge for

problems with many parameters.

In the case of unstructured covariance matrices, there exists a better algorithm of EM-type.

Let the function L(A) return the lower triangular Cholesky factor of A, and L≠1
return the

inverse of the factor. Then, for unstructured covariance matrices and in terms of the first

block U
b,1 of U

b

, the update is

U
b,1

3‚◊[it]
4

= U
b,1

3‚◊[it≠1]
4 1

‡

L
A

Kÿ
k=1

‚
w

(÷)
b,k

‚b*
k

‚bú€
k

B
L≠1

A
Kÿ

k=1
‚
w

(”)
b,k

T
b,k

B
, (10)

where the superscript in square brackets denotes the iteration. The right-hand side is com-

puted using

‚◊[it≠1]
, the value from the last iteration, and

‚
w

(.)
b,k

is the corresponding k-th

robustness weight.

Remark. To see that (10) is indeed a sensible update, we have to first rewrite the r scalar valued

estimating equations into one matrix valued estimating equation. We may write (8) as

Kÿ
k=1

Ë
tr

11 ‚w(÷)
b,k

‚b*
k
‚bú€

k /‚‡2 ≠ ‚w(”)
b,kTb,k

2
Q¸,k(‚◊)

2È
= 0 for l = 1, . . . , r .

When assuming an unstructured covariance matrix for the random e�ects, Q¸,k has only one non-zero

value and does not depend on k. (For other block types, Q¸,k vanishes, thus decoupling the problem

for di�erent block types.) Since r = s(s + 1)/2, we may thus write the estimating equation as

Kÿ
k=1

Ë ‚w(÷)
b,k

‚b*
k
‚bú€

k ≠ ‚‡2 ‚w(”)
b,kTb,k

È
= 0 .

24 robustlmm: Robust Linear Mixed-E�ects Models in R

The dependence of the robustness weights on

‚◊ will be neglected from now on, thereby reducing the

problem to solving a system of linear equations. In terms of the actual random e�ects, the estimating

equation in iteration [it] reads

Kÿ
k=1

5 ‚w(÷)
b,k U≠1

b,1

3‚◊[it≠1]
4‚bk

‚b€
k U≠€

b,1

3‚◊[it≠1]
4

≠ ‚‡2 ‚w(”)
b,kTb,k

6
= 0 .

As long as the algorithm has not converged, the estimating equation is not fulfilled for

‚◊[it≠1]
, but

there exists a

‚◊[it]
, such that it is. For

Ub,1

3‚◊[it]
4

= Ub,1

3‚◊[it≠1]
4

�U [it]
b ,

where �U [it]
b is a lower triangular matrix, we have after multiplying the equation by �U [it]

b from the

left and by �U [it]€
b from the right,

Kÿ
k=1

Ë ‚w(÷)
b,k

‚b*
k
‚bú€

k ≠ ‚‡2 ‚w(”)
b,k�U [it]

b Tb,k �U [it]€
b

È
= 0 .

By splitting the left-hand side into two sums, moving the second sum to the right-hand side, and

replacing both sides by the corresponding lower-triangular Cholesky factor, we get an equation that

can be solved for �U [it]
b and thus an expression for Ub,1

3‚◊[it]
4

, which is exactly update (10) mentioned

above.

The resulting algorithm, considering steps 2 to 4 together, is then of EM-type. It converges

fairly quickly, except when the solution is zero, i.e., some variance components are dropped.

An illustration of the problem and potential improvements to the algorithm can be found in

Demidenko (2004, Section 2.12).

A�liation:
Manuel Koller

Institute for Social and Preventive Medicine

Universität Bern

3012 Bern, Switzerland

E-mail: koller.manuel@gmail.com
URL: http://www.ispm.unibe.ch/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
November 2016, Volume 75, Issue 6 Submitted: 2014-04-09

doi:10.18637/jss.v075.i06 Accepted: 2015-10-11

mailto:koller.manuel@gmail.com
http://www.ispm.unibe.ch/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v075.i06

	1

