Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco

Ramette, Alban Nicolas; Möenne-Loccoz, Yvan; Défago, Geneviève (2006). Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiology Ecology, 55(3), pp. 369-381. Blackwell Publishing Ltd 10.1111/j.1574-6941.2005.00052.x

[img] Text
55-3-369.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (257kB) | Request a copy
[img]
Preview
Text
55-3-369.pdf - Other
Available under License Publisher holds Copyright.

Download (257kB) | Preview

Pseudomonas populations producing the biocontrol compounds 2,4-diacetylphloroglucinol (Phl) and hydrogen cyanide (HCN) were found in the rhizosphere of tobacco both in Swiss soils suppressive to Thielaviopsis basicola and in their conducive counterparts. In this study, a collection of Phl+ HCN+Pseudomonas isolates from two suppressive and two conducive soils were used to assess whether suppressiveness could be linked to soil-specific properties of individual pseudomonads. The isolates were compared based on restriction analysis of the biocontrol genes phlD and hcnBC, enterobacterial repetitive intergenic consensus (ERIC)-PCR profiling and their biocontrol ability. Restriction analyses of phlD and hcnBC yielded very concordant relationships between the strains, and suggested significant population differentiation occurring at the soil level, regardless of soil suppressiveness status. This was corroborated by high strain diversity (ERIC-PCR) within each of the four soils and among isolates harboring the same phlD or hcnBC alleles. No correlation was found between the origin of the isolates and their biocontrol activity in vitro and in planta. Significant differences in T. basicola inhibition were however evidenced between the isolates when they were grouped according to their biocontrol alleles. Moreover, two main Pseudomonas lineages differing by the capacity to produce pyoluteorin were evidenced in the collection. Thus, Phl+ HCN+ pseudomonads from suppressive soils were not markedly different from those from nearby conducive soils. Therefore, as far as biocontrol pseudomonads are concerned, this work yields the hypothesis that the suppressiveness of Swiss soils may rely on the differential effects of environmental factors on the expression of key biocontrol genes in pseudomonads rather than differences in population structure of biocontrol Pseudomonas subcommunities or the biocontrol potential of individual Phl+ HCN+ pseudomonad strains.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Service Sector > Institute for Infectious Diseases
04 Faculty of Medicine > Pre-clinic Human Medicine > Institute of Social and Preventive Medicine (ISPM)

UniBE Contributor:

Ramette, Alban Nicolas

Subjects:

500 Science > 570 Life sciences; biology
300 Social sciences, sociology & anthropology > 360 Social problems & social services
600 Technology > 610 Medicine & health

ISSN:

0168-6496

Publisher:

Blackwell Publishing Ltd

Language:

English

Submitter:

Alban Nicolas Ramette

Date Deposited:

14 Feb 2017 09:27

Last Modified:

25 Oct 2019 10:52

Publisher DOI:

10.1111/j.1574-6941.2005.00052.x

PubMed ID:

16466376

BORIS DOI:

10.7892/boris.91430

URI:

https://boris.unibe.ch/id/eprint/91430

Actions (login required)

Edit item Edit item
Provide Feedback