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GetReal in mathematical modelling: a
review of studies predicting drug
effectiveness in the real world

Klea Panayidou,a Sandro Gsteiger,a Matthias Egger,a*
Gablu Kilcher,a Máximo Carreras,b Orestis Efthimiou,c

Thomas P. A. Debray,d,e Sven Trelle,a,f Noemi Hummela

on behalf of the GetReal methods review group†

The performance of a drug in a clinical trial setting often does not reflect its effect in daily clinical practice.
In this third of three reviews, we examine the applications that have been used in the literature to predict
real-world effectiveness from randomized controlled trial efficacy data. We searched MEDLINE, EMBASE
from inception to March 2014, the Cochrane Methodology Register, and websites of key journals and
organisations and reference lists. We extracted data on the type of model and predictions, data sources,
validation and sensitivity analyses, disease area and software. We identified 12 articles in which four
approaches were used: multi-state models, discrete event simulation models, physiology-based models
and survival and generalized linear models. Studies predicted outcomes over longer time periods in
different patient populations, including patients with lower levels of adherence or persistence to
treatment or examined doses not tested in trials. Eight studies included individual patient data. Seven
examined cardiovascular and metabolic diseases and three neurological conditions. Most studies included
sensitivity analyses, but external validation was performed in only three studies. We conclude that
mathematical modelling to predict real-world effectiveness of drug interventions is not widely used at present
and not well validated. © 2016 The Authors Research Synthesis Methods Published by JohnWiley & Sons Ltd.

Keywords: mathematical modelling; prediction; efficacy–effectiveness gap; health technology assessment;
comparative effectiveness research

1. Introduction

A mathematical model is a representation of a natural phenomenon or system using variables and mathematical
operators to represent components and their interrelationships, which is used to generate knowledge and insights
into the system (Eykhoff, 1974). Mathematicalmodels arewidely used to support decision-making at all stages of drug
development (Lalonde et al., 2007). Examples include physiology-based models on biological processes to define
starting doses in first-in-man trials (Agoram, 2009; Lowe et al., 2007), pharmacokinetic and pharmacodynamic
models to select doses for subsequent confirmatory studies (Tanigawa et al., 2013) or economic models to
predict the relative effectiveness and cost-effectiveness of alternative treatment options (Guo et al., 2009).
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Whether or not results observed in a randomized controlled trial (RCT) can be generalized to real-life settings is
a fundamental issue for drug development, regulators and health technology assessment (Cole and Stuart, 2010;
Drummond et al., 2008; Eichler et al., 2011). The potential difference between RCT outcomes and effects in real-life
settings has been called the ‘efficacy–effectiveness gap’ (Eichler et al., 2011). Approaches to bridge this gap and to
predict real-world effectiveness from RCT efficacy data include evidence synthesis models, which in turn can be
used to make predictions (Spiegelhalter et al., 2003) or to inform dedicated prediction models. Mathematical
models can emulate the course of disease for an individual or a group of patients under various interventions
and conditions. If important modifiers of relative treatment effects can be identified, for example, in individual
patient data (IPD) or network meta-analyses (Debray et al., 2015; Efthimiou et al., 2016), and if these variables
are well documented in real-world settings, then the efficacy–effectiveness gap may be bridged. The aim of this
review is to collect, present and discuss applications of predictive modelling in medical research that have been
used to predict real-world effectiveness from RCT efficacy data.

For this purpose, we use here the words ‘predictiveʼ and ‘mathematicalʼ interchangeably. Methods for network
meta-analysis and IPD meta-analysis, which will often be used to obtain parameters for the prediction models, are
reviewed elsewhere in the journal (Debray et al., 2015; Efthimiou et al., 2016). The three reviews are part of work
undertaken by GetReal: Incorporating real-life data into drug development, a project funded by the Innovative
Medicines Initiative – a European public–private initiative aiming to speed up the development of better and safer
medicines. The aim of GetReal is to explore how drug development can become more efficient by incorporating
evidence of relative effectiveness in the process, and to propose ways to enrich and inform decision-making by
regulatory authorities and Health Technology Assessment (HTA) agencies.

The protocol of this review was registered in the PROSPERO register (number CRD42014014400). The paper is
organized as follows: Section 2 describes the search methods and search results. Section 3 presents the
approaches identified and their applications from examples of the selected articles. Section 4 discusses
conclusions, limitations and implications of this review.

2. Methods

2.1. Inclusion criteria and literature search

Articles were eligible if they use any mathematical modelling approach to make predictions about treatment
effects on aspects not directly studied by existing RCTs such as on different populations, settings, long term
outcomes or different doses. We excluded studies that did not explicitly address the step from efficacy to
effectiveness. Moreover, studies solely related to infectious diseases were excluded.

We searched the MEDLINE and EMBASE databases using the PubMed and Ovid platforms from inception to 11
March 2014. We also searched the Journal of the Royal Statistical Society Series A, B and C, a key journal in the
field, using the search facility on the journal’s website. We searched for grey literature in the Cochrane
Methodology Register, the National Institute for Health and Care Excellence guidance documents, the Cancer
Intervention and Surveillance Modelling Network, the Effective Health Care Program of the Agency for
Healthcare Research and Quality and in the International Society for Pharmacoeconomics and Outcomes
Research (see Appendix 2 in Supporting Information for the list of websites). The reference lists of eligible
and other relevant papers were also examined.

We developed search strategies for the two electronic databases. The initial search strategy included Medical
Subject Headings terms in MEDLINE and corresponding terms in EMBASE as well as free text words describing
mathematical modelling and comparative effectiveness. Searches involving free text words such as ‘predictʼ or
‘forecastʼ yielded an excessively large number of articles. The combination of MeSH terms related to mathematical
models and comparative effectiveness resulted in a more manageable number of relevant papers: 127 articles
were identified from MEDLINE and 104 articles from EMBASE. Some key papers were missed, and we therefore
expanded the MeSH terms and free text words to include ‘Computer Simulationʼ and ‘Monte Carlo Methodʼ.
The number of papers increased to 163 in MEDLINE and to 180 in EMBASE. Details about the electronic searches
of MEDLINE and EMBASE are available in Appendix 3 (Supporting Information). We identified 69 articles published
in the Journal of the Royal Statistical Society using the term ‘Comparative Effectiveness Researchʼ and considered
110 cited papers from Rutter et al. (2011), which is a landmark paper on the development and application of
models used to guide health policy decisions. Moreover, we included 44 articles identified in the search of
selected websites. Finally, correspondence with experts in the field yielded additional 36 articles.

2.2. Study selection and data extraction

A flow chart of the inclusion and exclusion of articles is shown in Figure 1. After removing duplicates, two authors
screened the titles and abstracts of 489 publications and excluded 438 papers that did not meet the eligibility
criteria. We examined the full text of the remaining 51 publications. We added another 19 potentially relevant
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papers identified in the reference lists of the 51 publications and 36 papers suggested by experts in the field. We
thus examined the full texts of 106 papers. An online Zotero database of reviewed and included articles can be
found at www.zotero.org/groups/wp4-mathematical_modelling.

A data extraction form was developed and piloted to extract information on type of intervention and
prediction (i.e. whether prediction was made over time or across population characteristics), model parameters
and validation. Validation is a vital part of modelling, and we examined several dimensions of validity (Eddy
et al., 2012; Kopec et al., 2010). Face validity of a model can be achieved by discussing the model with clinical
experts to ensure that it includes all important aspects of reality. Internal validation compares model outputs to
the data sources used for model building. External validation uses data that were not used during model
development. Sensitivity analysis investigates the impact of changing parameter values on model outputs and
conclusions.

Pairs of reviewers independently extracted information with discrepancies resolved through discussion in the
study team. The final version of the data extraction form is reproduced in Appendix 4 (Supporting Information).

Figure 1. Identification of eligible studies. JRSS, Journal of the Royal Statistical Society.
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3. Results

Twelve articles met eligibility criteria. Table 1 gives a summary of key aspects of the 12 articles, including
type of model and predictions, data sources, validation and sensitivity analyses, disease area and software.
Four broad modelling approaches were used: (1) multi-state models, (2) discrete event simulation (DES)
models, (3) physiology-based models and (4) survival and generalized linear models (GLM). Studies predicted
outcomes over longer time periods in different patient populations, including patients with lower levels of
adherence or persistence to treatment or estimated effects of drug doses not tested in clinical trials. In
addition to data from RCTs, observational studies and other data, for example published data on costs, were
included (Table 1). Eight of the twelve studies included IPD. Seven examined cardiovascular and metabolic
diseases and three neurological conditions. Most studies included sensitivity analyses, but external validation
was performed in only three studies. The software used was reported in five studies and made available in
two instances. In the following sections, we describe the various models and their use to predict relative
effectiveness.

3.1. Multi-state models

Multi-state models were used in four articles. These models are defined as time-dependent stochastic processes
with a discrete set of possible outcomes (the so-called states). The model describes the transition probabilities
from one state to another. We distinguish between population-level and individual-level multi-state models:
individual-level models are also called microsimulation models (MSMs) (Siebert et al., 2012). Both population-level
and MSMs often have the Markov property, that is, they assume that the probability of moving from one state to
another state is independent of the past, given the current state. Population-level multi-state Markov models are
also called Markov cohort models. In the statistical literature, the acronym MSM is used for multi-state models but
also for marginal structural models (and possibly others), which may be confusing. In this review, we use MSM to
denote microsimulation models.

3.1.1. Population level multi-state models. Population level multi-state models are well suited for modelling the
course of chronic diseases (Briggs and Sculpher, 1998). The clinical condition or the health status of the patient
is defined in terms of states. The states are mutually exclusive, meaning that a patient cannot be in more than
one state at the same time. A change of state is called transition. Models can be either discrete or continuous-time
models. In discrete-time models, transitions are possible only at certain time points. The interval from one time
point to the next is a cycle, and the probability of moving from one state to another during one cycle is termed
transition probability. In a model comprising n states, all possible transition probabilities can be encoded in a
(n× n) transition matrix. Some transitions may not be allowed, and these will have a zero entry in the matrix
reducing the number of probabilities that have to be estimated. For example, people in state ‘dead’ cannot make
further transitions.

In the first of two articles, the authors applied a Markov model to estimate the (relative) cost-effectiveness
of several interventions in type 2 diabetes (CDC Diabetes Cost-effectiveness Group, 2002). The authors
estimated the incremental cost-effectiveness of intensive glycaemic control, hypertension control and
cholesterol lowering compared with usual care. Patients progress through five different disease paths with
time-dependent transition probabilities. The probabilities were estimated from the United Kingdom
Prospective Diabetes Study (UKPDS) (Turner, 1998) and other studies. The model was used to simulate a
hypothetical cohort based on UKPDS data, and cost-effectiveness analyses were based on the effects of
interventions on intermediate to long-term or end-stage health outcomes. The authors changed assumptions
on treatment effects, costs and discount rate in a sensitivity analysis. Validation studies and software used
were not reported.

In the second study, Barnett et al. (2013) predicted the cost-effectiveness of treatment strategies for ovarian
cancer: (1) paclitaxel and carboplatin; (2) paclitaxel and carboplatin plus bevacizumab; (3) paclitaxel and
carboplatin plus bevacizumab for sub-optimally debulked stage III and stage IV disease; and (4) paclitaxel
and carboplatin plus bevacizumab based on a genetic test for response to bevacizumab. The states described
patients on active treatment, patients who completed treatment with no evidence of the disease or death. In
addition, from the active treatment state, patients could experience several adverse events. Survival outcomes
and adverse event rates were taken from publicly available trial data (International Collaboration on Ovarian
Neoplasms 7, ICON7). Survival outcomes for patients who carry the favourable allele, and are assumed to
benefit more from bevacizumab, were predicted using published hazard ratios. In a sensitivity analysis,
assumptions regarding key clinical estimates, such as survival estimates and costs, were varied. Monte Carlo
simulation was performed to account for uncertainty in key parameters. Validation studies and software were
not reported.
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3.1.2. Microsimulation models (MSM). MSMs have been applied to health policy questions such as cancer
screening or treatments of diabetes, cardiovascular disease, stroke, osteoporosis and liver disease (Rutter et al.,
2011; Tan et al., 2006). MSMs describe events and outcomes at the individual level and simulate one individual
at a time assuming independence between individuals. MSMs can be discrete or continuous-time models. MSMs
may be Markov models, but they are not restricted to this class. For example, some models may relax the Markov
assumption by carrying forward past information to the current state.

We identified two articles using MSM. Smolen et al. (2007) predicted the occurrence of stroke over a 5-year
period for a population of patients with asymptomatic carotid artery stenosis. The authors simulated discrete
states to model if and when a patient dies or has a stroke. Age, sex, systolic blood pressure, smoking, lipids, left
ventricular hypertrophy, diabetes, atrial fibrillation, previous myocardial infarction, haemoglobin and duration of
diabetes were used to predict each patient’s risk of stroke and death. For validation, the authors compared model
predictions with observed stroke-free survival and numbers of strokes in a comparable population.

Palmer et al. (2004a) used the Centre for Outcomes Research model to compare the effect of new and existing
interventions on clinical and cost outcomes in diabetes and its complications. The model is based on several
individual-level Markov sub-models that simulate complications of diabetes (cardiovascular disease, retinopathy,
hypoglycaemia, nephropathy, neuropathy, foot ulcer, amputation, stroke, ketoacidosis, lactic acidosis and
mortality). Sub-models were linked, allowing simulation of the relationship between incidence and progression
of multiple complications. In each sub-model, transition probabilities depend on patient characteristics and
treatments, and include estimates from the Framingham and UKPDS risk equation (Stevens et al., 2001) and other
published sources. In a separate paper (Palmer et al., 2004b), internal and external validation analyses were
performed against 11 published studies. The model was programmed in C++.

3.2. Discrete event simulation models

Discrete event simulation allows combinations of discrete and continuous outcomes (Banks et al., 1996; Caro,
2005). Events could, for example, be strokes, changes of blood pressure, new magnetic resonance imaging lesions
or progression on the expanded disability status scale. DES models may or may not have the Markov property.
DES models provide a framework for individual-level stochastic simulation: a virtual patient is generated, the time
of occurrence and type of the first event are simulated, the event rates and probabilities are updated in the light of
the event, the second event is simulated using the updated rates and probabilities and so on. This process is
repeated until a pre-defined stopping rule is met. For example, the virtual patient may reach the end of the
follow-up period. Events thus affect the variables that characterize the patient and his or her disease state. These
variables, in turn, influence the rates of future events. Through this process, a patient’s full trajectory over the
simulated time span is generated. This is repeated for many patients with the outcome data summarized at the
end. Individual-level RCT data are used to specify the attributes of each patient. Such data also serve to define
the rules that govern changes in patient characteristics. If suitable trial data are not available, parameters are
specified based on the relevant literature.

Discrete event simulation models have been used for many years in operations research (Guo et al., 2009), where
the allocation of limited resources is an important issue. Similar questions also arise in pharmacoeconomic evaluations.
Another application of DES is the simulation ofmissing treatment arms (Panitch et al., 2002). Such simulated treatment
comparisons may be an alternative to or complement network meta-analysis (Caro and Ishak, 2010).

Two articles were identified. Guo et al. (2009) developed a DES model for patients with relapsing-remitting
multiple sclerosis to extrapolate from RCTs with follow-up of about 64weeks to 4-year clinical outcomes. The
objective was to assess the clinical and economic consequences of long-term treatment with high-dose interferon
compared with standard low-dose treatment. The model combined competing risk approaches with resampling
methods to generate baseline patient characteristics and expanded disability status scale profiles during relapses.
Survival models were used to simulate event times. Whenever a relapse occurred, expanded disability status scale
profiles were generated via resampling from the IPD of the RCTs (Panitch et al., 2005, 2002) using the subset of
patients with disease and covariate characteristics matching those prior to the relapse. The face validity of the
model was discussed with multiple sclerosis experts. Model validation was performed by comparing predictions
over 64weeks, the same time-period as the RCT. Results were similar to those of the trial. External validation using
data from a study with longer follow-up was not performed. The model was implemented in the ARENA® software
(Kelton et al., 2007).

Getsios et al. (2010) built a DES model to predict outcomes and costs over 10 years of donepezil treatment
compared with placebo in Alzheimer’s Disease. The model was built on a disease progression model. At baseline,
patients are sampled from IPD of donepezil RCTs to obtain covariates and disease characteristics. Sampling
weights derived from UK registry data ensure the sampled population reflects the target population. Disease
progression is characterized by rate of change in cognition, in behaviour and in activities of daily living. Treatment
effects and disease progression are estimated by piecewise linear mixed-effects models from donepezil RCT data
and IPD from the Consortium to Establish a Registry for Alzheimer’s Disease registry (Mendiondo et al., 2000). The
authors carried out one-way and probabilistic sensitivity analyses showing dominance of donepezil versus
placebo in most of the analyses. The model was internally validated, but results were not reported in detail.
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3.3. Physiology-based models

Physiology-based models allow for time-continuous modelling of mechanisms in a human being that are relevant
for the progression of a disease. The Archimedes Model (Eddy and Schlessinger, 2003a, 2003b; Schlessinger and
Eddy, 2002) is an example of a physiology-based model that uses algebraic and ordinary differential equations
to describe essential aspects of human physiology, pathology and the response to medical treatments. The
biological variables and their interactions are described by continuous functions that can take different values
at different times, rather than by a number of fixed states or discrete events (Schlessinger and Eddy, 2002). Each
patient is described by biomarker levels, for example, blood pressure, cholesterol, bone mineral density, patency
of coronary arteries, contractility of the myocardium and cardiac output that can change over time. Each
biomarker is represented by a time-dependent function with patient-specific parameters. The distributions (and
joint distributions if there are interdependencies) that determine the stochastic process and the occurrence of
outcomes are derived from clinical trial data. Effects of interventions can be modelled as a change in the value
of a biomarker, the rate of change or a combination of the two. Model configuration is dictated by the biology
of the disease, the mechanism of action of the intervention and the available data.

Currently, Archimedes covers indications such as coronary artery disease, diabetes and its complications,
congestive heart failure, stroke and hypertension (Schuetz et al., 2012). It can, for example, be used to compare
treatments, guidelines or disease management programmes, taking into account comorbidities to predict long-
term outcomes or outcomes in different populations (Schlessinger and Eddy, 2002; Schuetz et al., 2012). Long-term
health outcomes can be calculated from short-term biological outcomes or to different populations (e.g. patients
with more severe diseases or with different combinations of risk factors). Validation was carried out by comparing
model outcomes with data from major clinical trials (Eddy and Schlessinger, 2003b; Schuetz et al., 2012).

The Archimedes Model (Schuetz et al., 2012) was used to predict the effects of different doses and types of
statins (rosuvastatin 20mg vs. atorvastatin 40mg and rosuvastatin 40mg vs. atorvastatin 80mg) on the incidence
of first major cardiovascular events in patients with diabetes. Populations of simulated patients were created based
on individuals randomly drawn from the US National Health and Nutrition Examination Survey 1999–2006
(CDC, 2012). Modelled effects of statins matched those observed in published trials (Colhoun et al., 2004;
LaRosa et al., 2005; Ridker et al., 2008). The effects of untested statin doses on major cardiovascular events
were then derived by interpolation and linear regression analyses. The model was internally validated, and a
sensitivity analysis showed that it was insensitive to key assumptions. No external validation was performed.

3.4. Survival and generalized linear models

3.4.1. Survival models. Models that predict the survival of individuals over a longer time horizon, beyond the
follow-up available from RCTs, are useful to inform decisions on drugs and other medical interventions (Latimer,
2013). Survival analysis uses nonparametric (e.g. Kaplan–Meier), semi-parametric (e.g. Cox regression) or parametric
(e.g. models based on the exponential, the Weibull, the Gompertz or other survival distributions) approaches.

We identified two studies using survival models to predict relative effectiveness. Clarke et al. (2004) estimated
the occurrence of major diabetes-related complications and death using simulations based on several survival
models. The interventions were regimens of intensive and conventional blood glucose control. The model
predicted outcomes over the lifetimes of the patients randomized to conventional or intensive blood glucose
control in the UKPDS study (UKPDS Group, 1991). The authors used proportional hazards Weibull regression to
model diabetes-related complications and logistic and Gompertz regression to model diabetes-related mortality
(Clarke et al., 2004). They compared the predicted cumulative incidence of different complications and death with
the observed cumulative incidence, calculated using non-parametric (life table) methods. The software is available
from the Diabetes Trials Unit of the University of Oxford.

Levy et al. (2006) used a multivariate Cox model to predict survival over 1, 2 and 3 years in patients with left
ventricular systolic heart failure. The model allows survival prediction across different clinical, pharmacological,
device and laboratory characteristics. The interventions were angiotensin-converting enzyme inhibitors, β-
blockers, angiotensin receptor blockers, potassium sparing diuretics and statins. For validation, the authors
compared predicted and observed survival in several RCT patient populations.

3.4.2. Generalized linear models. The classic setting of linear models assumes that the response variable is
continuous with a normal distribution. GLM extend linear models to accommodate responses that follow
non-normal distributions. The studies that we identified predict outcomes by extrapolating to longer time
periods than those considered in the RCTs.

We identified three studies using GLM to predict real-world effectiveness. Small et al. (2005) used GLM to
predict long-term outcomes in patients with probable Alzheimer’s Disease based on a disease progression model
developed with data from the Consortium to Establish a Registry for Alzheimer’s Disease registry (Mendiondo
et al., 2000). The authors used IPD from the open-label extension phase of several RCTs and predicted the
counterfactual outcomes had the patients received placebo instead of rivastigmine, to estimate the long-term
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effectiveness of rivastigmine (the RCTs provided comparative data only up to 26weeks). No model validation,
sensitivity analysis or software was described.

Lowy et al. (2011) predicted changes in systolic blood pressure over a range of levels of adherence to
antihypertensive drugs. The aim was to model the impact of adherence on systolic blood pressure and the risk
of cardiovascular disease. The baseline characteristics of patients with hypertension were taken from National
Health and Nutrition Examination Survey data. The distribution of length of drug non-adherence periods was
estimated from an RCT (Vrijens et al., 2008), and the proportion of doses taken were estimated from medication
possession ratios (percentage of time a patient had access to medication). The authors assumed that the blood
pressure lowering effect decays at a constant rate during treatment interruptions, and that the effect returns at
the same rate until the full effect is reached when the antihypertensive treatment is restarted. The resulting
piece-wise linear trajectories of systolic blood pressure reduction were averaged over subjects and time, yielding
a mean systolic blood pressure reduction over the modelled dosing period. The impact of mean systolic blood
pressure reduction on cardiovascular disease risk was then determined using the Framingham risk equation.
Sensitivity analysis was performed on various input parameters.

Hughes and Dubois (2004) used a GLM to predict effectiveness and costs over time for treatments of overactive
bladder and urge urinary incontinence. Oxybutynin extended-release and tolterodine extended-release were
compared with tolterodine immediate-release, oxybutynin immediate-release and placebo. The number of
incontinent episodes per week was estimated with a negative binomial distribution function, based on IPD from
several RCTs (median duration of treatment 4–5weeks) and extrapolated to 1 year. Persistence, quantified as the
proportion of patients who remained on their initially prescribed drug, was estimated with a bi-exponential
function using a general practitioner’s database. In the base-case scenario, persistence was linked to treatment
effect by assuming that those stopping treatment because of an adverse event, adopt baseline-disease
characteristics. Adverse event information was retrieved from RCT data. Several sensitivity analyses were
performed. For internal validation, predicted values were compared with the observed data. No external
validation was performed.

4. Discussion

This review identified only few studies that used mathematical modelling to predict the real-world effectiveness of
drugs using RCT data. Two studies each used Markov transition models, MSM and DES modelling, one study was
based on a physiology-based model, two studies on survival models and three studies used generalized linear
models. The majority of studies were on cardiovascular disease, which is not surprising considering that there is
a long history of modelling studies in cardiovascular medicine (Makroglou et al., 2006; Uttamsingh et al., 1985).
The natural history and risk factors are well understood, and a wide range of drug therapies is available.

4.1. Limitations of studies

All of the studies had some limitations. The most important limitation is the lack of validation of the predictive
performance of the models used. Out of the 12 models, only three carried out external validation using other data
than those used for developing the model. Suitable data for external validation may have been unavailable or
difficult to obtain. Nevertheless, the lack of external validation is a serious limitation (Altman and Royston, 2000;
Kopec et al., 2010). Decisions should not be based on predictions from poorly validated models.

Another limitation relates to the Markov assumption. Many of the models relied on the Markov property. This
was the case even for models based on microsimulation or DES that do not require this assumption. Disease
progression is complex, and dependence structures that use past information will often be necessary to build
realistic simulation models. A potential way to address this issue might be the use of random effects (Karnon
et al., 2012). Models can be specified such that the Markov assumption holds conditional on a set of (unobserved)
random effects. Progression then depends on the full history and not only on the present state (Mandel and
Betensky, 2008).

4.2. Strengths and weaknesses of the review

The strength of this review is the identification of applications of mathematical models that explicitly predict the
real-world effectiveness of drug interventions studied in RCTs either in a different population or for different time
periods. This review thus expands the scope of previous reviews of mathematical modelling in health research,
which focused on cost-effectiveness issues or on resource allocation in health care (Brailsford et al., 2009; Rutter
et al., 2011). Our review is the last of a series of three reviews of approaches to bridging the efficacy–effectiveness
gap. The other two reviews focussed on IPD and network meta-analyses (Debray et al., 2015; Efthimiou et al.,
2016), which will often inform subsequent modelling studies.

Our literature search might have missed some relevant papers. The focus of this review, however, was on
presenting the models that are frequently applied in order to predict drug efficacy. Completeness is less of an

K. PANAYIDOU ET AL.

© 2016 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 264–277

273



issue because a comprehensive set of papers is likely to be sufficient to assess the models of interest. A more
extensive search might identify additional examples and applications, but is unlikely to provide new predictive
modelling approaches. In other words, we are confident that our search reached the stage of theoretical
saturation (Lilford et al., 2001).

4.3. Guidance on mathematical modelling

Guidelines for good modelling practices have been developed by a task force of the International Society for
Pharmacoeconomics and Outcomes Research (ISPOR) together with the Society for Medical Decision Making in
2011 (Briggs et al., 2012; Caro et al., 2012; Eddy et al., 2012; Karnon et al., 2012; Pitman et al., 2012; Roberts
et al., 2012; Siebert et al., 2012). These documents provide guidance on the estimation of model parameters,
handling of uncertainty, the validation of models and transparent reporting. They specifically address state-
transition models and DES models, which were represented in this review. Guidelines on modelling in specific
disease areas, for example, diabetes and its complications or Alzheimer’s Disease, are summarized by Asche
et al. (2014) and Green et al. (2011), respectively. Interestingly, some researchers tested and compared their
models by simulating outcomes for patients included in recently published clinical trials within the framework
of the Mount Hood Challenge Meetings (Palmer, 2013; Palmer et al., 2007).

4.4. Conclusions

We identified relatively few examples of studies that bridged the gap between efficacy data of RCTs and real-
world effectiveness using mathematical models. Our review of relevant models and applications should
nevertheless be useful to readers wishing to develop a broader understanding and awareness of the current
use of mathematical modelling to predict the relative effectiveness of drug interventions in comparative
effectiveness research. Many of the examples were Markov multi-state models. Physiology-based models can, in
principle, also be used. However, building such models requires a substantial amount of information and effort.
Such highly complex structures may be suitable only in cases where large amounts of data and biological
knowledge are available. We expect that predictive modelling in comparative effectiveness research will grow
substantially in the near future, both in terms of applications and methodological developments.
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