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Abstract	

Out-of-field	effects	are	of	considerable	interest	in	radiotherapy.	The	mechanisms	are	

poorly	 understood	 but	 are	 thought	 to	 involve	 signalling	 processes,	 which	 induce	

responses	in	non-targeted	cells	and	tissues.	The	immune	response	is	thought	to	play	

a	role.	The	goal	of	this	research	was	to	study	the	induction	of	abscopal	effects	in	the	

bladders	of	NU-Foxn1nu	mice	after	irradiating	their	brains	using	pencil	Beam	(PB)	or	

microbeam	 (MRT)	 irradiation	 at	 the	 European	 Synchrotron	 Radiation	 Facility	

(ESRF)	 in	Grenoble	France.	Athymic	nude	mice	 injected	with	F98	glioma	cells	 into	

their	right	cerebral	hemisphere	7	days	earlier	were	treated	with	either	MRT	or	PB.	

After	 recovery	 times	 of	 2,	 12	 and	 48h,	 the	 urinary	 bladders	 were	 extracted	 and	

cultured	 as	 tissue	 explants	 for	 24h.	 The	 growth	medium	 containing	 the	 potential	

signalling	factors	was	harvested,	filtered	and	transferred	to	HaCaT	reporter	cells	to	

assess	their	clonogenic	survival	and	calcium	signalling	potential.	 	The	results	show	

that	 in	 the	 tumour	 free-mice	 both	 treatment	 modalities	 produce	 strong	

bystander/abscopal	 signals	 using	 the	 clonogenic	 reporter	 assay,	 however	 the	

calcium	data	do	not	support	a	calcium	channel	mediated	mechanism.	

The	presence	of	tumour	reduces	or	reverses	the	effect.	PB	produced	significantly	

stronger	effects	in	the	bladders	of	tumour	bearing	animals.	We	conclude	that	

immunocompromised	mice	produce	signals,	which	can	alter	the	response	of	

unirradiated	reporter	cells,	however	a	novel	mechanism	appears	to	be	involved.	
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Introduction	

Current	 research	 on	 bystander	 effects	 i.e.	 effects	 detected	 in	 unirradiated	 cells	

receiving	 signals	 from	 irradiated	 cells	 is	 mainly	 conducted	 in	 vitro	 using	 two	

different	methods;	the	microbeam	irradiation	of	part	of	a	cell	culture	or	by	allowing	

a	 non-irradiated	 culture	 to	 receive	 physical	 or	 medium	 borne	 signals	 from	 an	

irradiated	 culture	 (Mothersill	 and	 Seymour	 1997;	 Prise	 1998;	 Zhou	 et	 al.	 2000).	

Apart	from	the	important	mechanistic	questions	relating	to	how	these	effects	occur,	

the	 other	 key	 research	 area	 concerns	 potential	 impacts	 of	 these	 so-called	 non-

targeted	 effects	 in	 radiotherapy	 (Burdak-Rothkamm	 and	 Prise	 2009;	 Sun	 et	 al.	

2014).	 Efforts	 to	 study	 pure	 bystander	 effects	 in	 vivo	 are	 complicated	 because	

irradiation	 of	 a	 part	 of	 the	 body	 does	 not	 preclude	 blood,	 endocrine	 and	 neural	

systems	 which	 receive	 irradiation	 from	 causing	 systemic	 effects	 confounding	 the	

mechanisms	(Mancuso	et	al.	2008;	Koturbash	et	al.	2011).	There	 is	a	considerable	

old	 literature	 on	 abscopal	 or	 out-of-field	 effects	 in	 radiobiology	 and	 radiotherapy.	

These	date	back	to	the	early	20th	century	(Murphy	and	Morton	1915;	Mothersill	and	

Seymour	 2012)	 but	 were	 officially	 named	 by	 RH	 Mole	 who	 coined	 the	 term	

“abscopal”	in	1953	(Mole	1953).	In	recent	years	the	lines	between	in	vivo	bystander	

and	 abscopal	 effects	 have	 become	 blurred	 and	 the	 terms	 are	 often	 used	

interchangeably	 leading	 to	 assumptions	 that	 mechanisms	 identified	 in	 vitro	 may	

apply	in	vivo	(MotherSill	and	Seymour	2012).		A	key	system	which	is	considered	to	

be	 very	 relevant	 for	 such	 reactions	 is	 the	 immune	 system.	 This	 has	 been	

investigated	following	irradiation	in	partially	exposed	animals	 in	vivo	(Mancuso	et	

al.	2008;	Koturbash	et	al.	2008)	and	inflammatory	responses	in	distant	tissues	have	



been	 detected.	 It	 has	 also	 been	 investigated	 in	 mice,	 which	 received	 total	 body	

irradiation	to	ablate	the	bone	marrow	followed	by	injection	with	opposite	sex	bone	

marrow	stem	cells.	The	repopulating	cells	showed	high	levels	of	genomic	instability	

which	 could	 only	 have	 come	 from	 signals	 in	 the	 irradiated	 microenvironment	

(Watson	 et	 al.	 2000;	 Watson	 et	 al.	 2001).	 In	 vitro	 work	 on	 components	 of	 the	

immune	system	confirm	a	role	for	the	inflammatory	response	in	what	is	described	as	

a	 bystander	 effect,	 although	 it	 is	 not	 clear	 if	 signal	 production	 requires	 an	 intact	

immune	 response	 capability	 system	 (Holyoake	 et	 al.	 2001).	 Also	 the	 question	 of	

whether	 a	 functional	 immune	 system	 is	necessary	 to	produce	bystander/abscopal	

effects	 in	 vivo	 still	 requires	 clarification.	 To	 address	 some	 of	 these	 issues,	 we	

participated	 in	 experiments	 using	 athymic	 (Nude)	 mice	 at	 the	 European	

Synchrotron	 Research	 Facility	 (ESRF)	 microbeam	 facility	 in	 Grenoble	 in	 France.	

Synchrotron	 microbeam	 radiation	 has	 been	 employed	 in	 the	 development	 of	

innovative	 methods	 to	 treat	 brain	 cancer.	 Efforts	 are	 focused	 on	 improving	 the	

Microbeam	 Radiation	 Therapy	 (MRT)	 developed	 originally	 at	 the	 Brookhaven	

National	 Laboratory	 in	 New	 York.	 ESRF	 and	 other	 international	 facilities	 are	

focusing	on	this	task.	Teams	of	scientists	consistently	show	that	MRT	yields	a	higher	

therapeutic	 index	 when	 compared	 with	 broad	 beam	 irradiation	 when	 treating	

aggressive	 tumours	 such	 as	 the	 intracerebral	 rat	 F98	 glioma	 (Biston	 et	 al.	 2004,	

Schültke	et	al.	2008),		or	9L	gliosarcoma	(Laissue	et	al.	1998;	Dilmanian	et	al.	2002;	

Bouchet	et	al.	2013).	MRT	has	also	been	used	for	the	palliation	of	mice	bearing	the	

aggressive	 murine	 squamous	 cell	 carcinomas	 VII	 (Miura	 et	 al.	 2006)	 and	 the	

treatment	of	mammary	tumours	in	mice	(Crosbie	et	al	2010).	MRT	uses	an	array	of	



<100	 μm	 wide	 quasi-parallel	 rectangular	 beamlets,	 created	 by	 a	 high	 flux	 of	

synchrotron	 X-rays	 that	 are	 spatially	 fractionated	 by	 the	 insertion	 of	 a	 multislit	

collimator	(Slatkin	et	al.	1992).	This	configuration	exposes	the	tissue	to	either	peak-

doses	deposited	by	 the	photons	of	 the	microbeams	or	 valley-doses	 resulting	 from	

scattered	 photons	 that	 hit	 the	 tissue	 between	 the	 microbeams	 (Blattmann	 et	 al.	

2005).	The	dose	variation	between	peaks	and	valleys	depends	on	the	configuration	

and	 size	 of	 the	 beam	 array	 but	 mostly	 range	 between	 2-10%	 of	 the	 peak	 dose	

(Bräuer-Krisch	 et	 al.	 2009).	 In	 terms	 of	 volume	 of	 tissue	 exposed,	 valley	 doses	

would	be	measured	in	between	4	to	8	fold	more	brain	tissue	than	peak	doses,	thus	

explaining	 the	 high	 normal	 tissue	 tolerance	 observed	 by	 this	 treatment.	 Tissue	

tolerance	 is	 also	 expressed	 by	 the	 ratio	 between	 peak-to-valley	 doses	 or	 (PVDR),	

which	 is	 a	 critical	 factor	 in	 decreasing	 the	 dose	 to	 sensible	 areas,	 such	 as	 the	

hippocampus	(Slatkin	et	al.	1992).			

The	 efficacy	 of	 MRT	 over	 broad	 beam	 has	 been	 attributed	 to	 the	 effects	 of	 high	

valley	doses	given	in	a	single	fraction	and	reinforced	by	the	peak	doses.	The	valley	

dose	-is	sufficiently	high	to	damage	the	tumour	microvasculature	but	low	enough	to	

avoid	great	deleterious	effects	in	the	normal	tissue	counterpart	(Bräuer-Krisch	et	al.	

2010)	.	Recently,	research	has	also	shown	that	MRT	seems	to	stimulate	the	immune	

system	 by	 regulating	 an	 early	 expression	 of	 a	 vast	 network	 of	mediators	 such	 as	

growth	 factors,	 cytokines	 and	 lymphokines	 (Bouchet	 et	 al.	 2013)	 .	 Furthermore,	 a	

comparison	between	MRT	and	broad	beam	revealed	different	molecular	pathways	

involving	 the	 recruiting	 of	 tumour-associated	 immune	 cells	 (Yang	 et	 al.	 2014).	

Dilmanian	et	al.	(2007)	have	suggested	that	6	hours	after	irradiation	dying	cells	at	



the	 beam’s	 edge	 seem	 to	 signal	 neighbouring	 cells	 and	 promote	 the	 fast	

disappearance	of	hit	cells	and	structural	damage.	Data	 from	our	 team	have	shown	

that	bystander	signals	seem	to	extend	the	area	where	development	of	γ-H2AX	foci	

can	be	seen	from	the	microbeam’s	edge	into	the	valley	dose	areas	after	peak	doses	

of	350Gy	(Fernandez-Palomo	et	al.	2015).	Also,	abscopal	or	radiation-induced	out-

of-field	 tissue/organ	 effects	 have	 been	 investigated	 by	 our	 group.	 For	 instance,	

proteomic	analysis	of	the	unirradiated	left	brain	hemisphere	in	normal	Wistar	rats	

suggests	 that	 the	 MRT-induced	 proteome	 may	 result	 in	 protective	 effects	 in	 the	

unirradiated	 brain	 (Smith	 et	 al.	 2013)	 and	 unirradiated	 brain	 tissue	 and	

unirradiated	 urinary	 bladder	 tissue	 explants	 originated	 from	 right	 brain	 MRT-

irradiated	animals,	 induced	bystander	effects	 in	our	well	 established	reported	cell	

system	(Fernandez-Palomo	et	al.	2013).		

While	 MRT	 research	 has	 so	 far	 been	 focused	 on	 the	 treatment	 of	 primary	 brain	

tumours,	research	led	by	Schültke	based	on	treatment	technique	called	pencilbeam	

therapy	(PB)	aims	also	to	treat	secondary	brain	malignancies	(Schültke	et	al.	2013)	.	

The	majority	 of	 the	 drugs	 typically	 used	 to	 treat	metastatic	 brain	 tumors	 are	 not	

able	to	cross	the	blood-brain	barrier	(Pardridge	2005).	Thus,	patients	with	multiple	

brain	metastases	 are	 often	 selected	 for	whole	 brain	 radiotherapy	 (WBRT)	 simply	

because	 it	 is	 the	 only	 option	 available.	 However,	 the	 most	 common	 problem	

reported	after	WBRT	are	chronic	changes	in	the	white	matter,	which	are	associated	

with	stroke-like	migraines	(Kerklaan	et	al.	2011;	Black	et	al.	2013;	Armstrong	et	al.	

2014)	,	cognitive	deficits	(Shi	et	al.	2009;	Peiffer	et	al.	2014;	Forbes	et	al.	2014)	and	

dementia	 (DeAngelis	 et	 al.	 1989;	 D'Ambrosio	 et	 al.	 2007;	 Tallet	 et	 al.	 2012).	



Following	the	principle	of	MRT,	PB	delivers	extremely	high	doses	of	synchrotron	X-

rays	 along	 very	 narrow	 tracks	 to	 the	 tumour	 while	 sparing	 the	 normal	 tissue	

(Schültke	et	al.	2013).	Since	the	tissue	volume	receiving	peak	doses	is	even	smaller	

than	 with	 monoplanar	 MRT	 it	 is	 hoped	 that	 as	 a	 consequence	 the	 normal	 tissue	

tolerance	 is	 increased	 compared	 to	monoplanar	MRT.	 This	 could	 improve	 cancer	

therapy	 outcomes	 after	 whole	 brain	 exposure	 to	 PB.	 The	work	 by	 Schültke	 et	 al.	

tested	 for	 motor	 and	 memory	 function	 after	 delivering	 PB	 to	 normal	 C57	 BL/6J	

mice.	Animals	recovered	well	compared	to	controls	after	peak	doses	of	800	Gy	and	a	

peak	center-to-center	distance	of	400	μm	(Schültke	et	al.	2013).	Also,	 in-situ	brain	

studies	 using	 the	 γ-H2AX	 marker	 demonstrated	 that	 the	 geometry	 of	 PB	 was	

preserved	after	whole-brain	irradiation	and	that	DNA	damage	was	correlated	with	

the	 dose	 [Fernandez-Palomo	 et	 al,	 2013a].	 However,	more	 preclinical	 studies	 are	

still	 needed	 to	 gauge	 the	 therapeutic	 ratio	 of	 PB	 and,	 in	 particular,	 to	 investigate	

mechanisms	 and	 to	 access	 the	 role	 of	 bystander	 effects	 in	 the	 tissue	 sparing	 seen	

with	MRT	and	the	newer	PB.	

Previous	experiments	using	rats	(Fernandez-Palomo	et	al.	2013a,	2015b)	had	

shown	that	bystander	effects	could	be	detected	in	the	contralateral	brain	and	

bladder	of	rats	receiving	right	brain	irradiation	using	MRT.	It	was	also	shown	that	

the	presence	of	a	tumour	experimentally	introduced	into	the	brain	could	reduce	the	

strength	of	the	signals	measured	as	the	ability	of	culture	media	from	the	tissue	to	

reduce	the	cloning	efficiency	of	a	reporter	cell	line,	and	the	ability	to	cause	a	calcium	

flux	in	reporter	cells	–	both	well	established	assays	(Mothersill	and	Seymour	1998;	F	

M	Lyng,	Seymour,	and	Mothersill	2000).	In	the	current	experiments	we	measured	



signal	strength	from	the	bladder	as	a	distant	organ	exposed	to	truly	abscopal	effects	

in	nude	mice	receiving	whole	brain	exposure	to	either	MRT	or	PB	irradiation	from	

the	synchrotron.		

	

Materials	and	Methods	

Animal	Model:	

10	weeks	old	young-adult	male	athymic	nude	mice	(Crl:NU-Foxn1nu	Charles	River,	

Germany)	weighting	28-32	grams	on	arrival,	were	housed	and	cared	for	in	the	ESRF	

Animal	 Facility	 following	 a	 12h	 light/dark	 cycle	 in	 agreement	 with	 French	 and	

Canadian	 Animal	 Care	 Protocols.	 The	 mice	 are	 immunodeficient	 because	 the	

absence	of	 a	 thymus	makes	 them	poor	 in	T-cells	 [Ikehara	et	 al,	 1984].	This	 strain	

originated	 in	 1969,	 when	 Dr	 Rygaard	 paired	 the	 spontaneous	 hairless	 mutant	

"nude”	mouse	(which	showed	absence	of	thymus)	with	the	NMRI	strain	(which	had	

high	viability	 and	 fertility)	 [Rygaard,	 1969].	This	 finally	 creating	 a	 suitable	mouse	

model	for	hosting	tumour	xenografts.		According	to	the	Charles	River	website	“This	

immunodeficient	nude	mouse	originated	from	NIH	and	was	originally	thought	to	be	

a	BALB/c	congenic.	It	was	later	determined	that	it	was	not	inbred	and	is	therefore	

maintained	as	an	outbred.	It	 is	not	associated	with	any	stock	or	strain.	The	animal	

lacks	a	thymus,	is	unable	to	produce	T	cells,	and	is	therefore	immunodeficient.”	

	

Tumour	Inoculation:		

The	 tumour	 cell	 line	 selected	 was	 the	 F98	 glioma,	 which	 shows	mutant	 p53	 and	

shares	 a	 wide	 range	 of	 characteristics	 with	 the	 glioblastoma	 multiforme	 (GBM)	



(Barth	and	Kaur,	2009)	.	The	F98	glioma	cells	have	an	infiltrative	pattern	of	growth	

in	 the	 brain	 and	 they	 are	weakly	 immunogenic	 (Tzeng	 et	 al.	 1969)	 .	 This	 tumour	

model	is	often	used	in	studies	involving	conventional	radiotherapy	and	synchrotron	

radiation	(Gil	et	al.	2011;	Desmarais	et	al.	2012,	2015].		

For	 these	 experiments,	 F98	 cells	were	 obtained	 from	ATCC	 and	 grown	 in	 75	 cm2	

flasks	 containing	 25	 ml	 of	 Dulbecco's	 Modified	 Eagle	 Medium	 (GIBCO,	 France),	

supplemented	 with	 10%	 foetal	 bovine	 serum	 and	 1%	 penicillin/streptomycin.	 A	

90%	confluent	flask	was	selected	and	cells	were	detached	by	incubation	with	20	ml	

of	 calcium	 and	 magnesium-free	 Hank's	 Balanced	 Salt	 Solution	 (Gibco,	 France),	

during	20	minutes	at	37°C	in	an	atmosphere	of	5%	CO2	in	air.	The	cell	suspension	is	

centrifuged	at	1000	rpm	for	5	min,	the	pellet	re-suspended	in	1ml	of	 fresh	culture	

medium	 and	 counted	 using	 a	 haemocytometer.	 Athymic	 mice	 are	 anaesthetized	

using	1.5%	 isofluorane	 in	2	L/min	compressed	air,	before	and	during	 the	 surgical	

procedure.	 A	 vertical	 incision	 of	 1.5	 to	 2	 cm	 is	 made	 on	 the	 skin	 following	 the	

sagittal	plane.	A	hole	is	then	drilled	in	the	skull	above	the	right	hemisphere	3	mm	to	

the	right	of	the	midline	and	3	mm	posterior	to	the	coronal	suture.	Then	a	volume	of	

2	μl	of	culture	medium	containing	10,000	F98	cells	 is	carefully	 inoculated	2.5	mm	

into	 the	 brain	 and	 the	 incision	 is	 closed	 2	minutes	 after	 inoculation.	 Animals	 are	

supervised	until	they	recovered	and	the	housed	for	seven	days	to	allow	for	tumour	

development.	

	

Irradiations:		



In	preparation	for	the	irradiations,	mice	were	deeply	anaesthetised	using	a	cocktail	

of	 Ketamine/Xylazine	 (1	ml	 of	 10%	 ketamine,	 0,5ml	 of	 2%	 xylazine,	 8.5	ml	 non-

saline	solution)	at	0.01	ml/g.	Each	irradiation	group	had	3	male	mice	and	1	female,	

which	were	 individually	 positioned	 on	 the	 goniometer	 and	 received	 the	 radiation	

dose	corresponding	to	its	group.	MRT	and	PB	were	delivered	laterally	to	the	whole	

brain	in	a	right	to	 left	direction.	Animals	were	allowed	to	recover	for	2,	12	and	48	

hours	after	 irradiation	and	the	urinary	bladder	was	used	for	the	study	of	abscopal	

effects	while	the	brains	served	as	material	for	other	studies	not	shown	in	this	paper.		

Animals	were	 exposed	 to	 valley	 doses	 of	 0.5	 Gy	 and	 2.5	 Gy	 in	 a	 single	 treatment	

session.	Peak	entry	doses	were	adjusted	accordingly	to	achieve	the	valley	doses.	The	

array	size	of	8	mm	high	and	20	mm	wide	remained	constant	at	all	 times.	 	Animals	

irradiated	with	MRT	were	exposed	to	22	Gy	or	110	Gy	skin-entry	doses,	while	the	

animals	 receiving	PB	were	 exposed	 to	200Gy	 and	1000Gy	 respectively.	 The	beam	

was	set	in	a	lateral	view	by	locating	its	right	side	4mm	toward	the	nose	from	the	eye,	

and	from	that	point	it	extended	20	mm	to	the	left	(Figure	1).	The	peak	entry	doses	

correspond	 to	 the	 dose	 at	 3	 mm	 depth.	 They	 were	 calculated	 prior	 to	 the	

experiments	 using	 a	 solid	water	 phantom	 (Gammex)	 and	 a	 pinpoint	 ion-chamber	

(PRW	31014).	The	peak	entry	and	valley	doses	are	then	converted	with	Monte	Carlo	

pre-calculated	 output	 factors	 into	 the	 desired	 beam	 size.	 Valley	 doses	 are	 also	

calculated	using	a	Treatment	Planning	System	based	on	CT	data	from	previous	the	

experiments	 on	 rats.	 Although	 benchmarking	 of	 the	 estimated	 doses	 is	 still	 in	

progress,	Gafchromic	 film	dosimetry	agrees	within	10%	with	 the	 computed	valley	

doses	(Bartzsch	and	Tag,	2014)	.		



The	array	of	multichromatic	pencil	beams	was	generated	by	a	multislit	 collimator	

with	 a	mean	energy	of	 105	keV	 (Bräuer-Krisch	 et	 al.	 2009).	The	 typical	 dose	 rate	

during	these	experiments	was	~14,000	Gy/sec.	MRT	was	composed	by	rectangular	

quasi-parallel	50	μm	wide	microbeams	with	intermediate	gaps	of	400	μm	on	center.	

The	PB	array	was	formed	by	square	quasi-parallel	50x50	μm	microbeams,	with	400	

μm	 of	 intermediate	 distance	 on	 center.	 Untreated	 controls	 for	 both	 normal	 and	

tumour-bearing	animals	were	 included.	HD-610	and	MD-55	Gafchromic	Films	(ISP	

Advanced	 Materials)	 were	 used	 to	 verify	 all	 irradiation	 doses	 and	 modalities	

applied.	 After	 irradiation,	 mice	 were	 taken	 back	 to	 the	 ESRF	 animal	 facility	 for	

recovery	in	their	correspondent	treatment	groups.	

	

Previous	 studies	 indicated	 that	 scatter	 radiation	 does	 not	 play	 a	 role	 in	 the	

induction	of	abscopal	and	bystander	effect	after	Synchrotron	irradiation.	However,	

we	decided	to	control	for	scatter	because	this	is	the	first	time	that	bystander	effects	

have	 been	 studied	 after	 PB.	 The	 scatter	 dose	 was	 measured	 at	 the	 level	 of	 the	

urinary	bladder	after	200Gy	MRT,	which	 is	equivalent	 to	1000	Gy	PB.	The	dose	at	

the	site	was	1.36	mGy.	Thus,	an	X-ray	generator	was	used	to	deliver	a	whole-body	

dose	of	1.36	mGy	after	adequate	adjustment	of	the	dose	rate.	All	mice	were	moved	

back	to	the	ESRF	animal	facility	after	irradiation.	Untreated	controls	remained	in	the	

ESRF	animal	facility	and	never	left	the	cage.		

	

Sampling,	explant	tissue	culture	and	culture	medium	harvest:		



All	 animals	 received	 anaesthesia	 before	 euthanasia.	 Urinary	 bladders	 were	

extracted	2,	12	and	48	hours	after	irradiation.		Immediately	they	were	single-placed	

in	 5	 ml	 sterile	 tubes	 containing	 1mL	 of	 Roswell	 Park	 Memorial	 Institute	 growth	

medium	 (RPMI	 1640,	 Gibco,	 Canada).	 	 Supplemented	 with	 10%	 FBS,	 5ml	 of	

Penicillin-Streptomycin	 (Gibco,	 Canada),	 5ml	 of	 L-glutamine	 (Gibco,	 Canada),	 0.5	

mg/ml	of	Hydrocortisone	(Sigma-Aldrich,	Canada),	and	12.5	ml	of	1M	HEPES	buffer	

solution	 (Gibco,	 Canada).	 Tissue	 samples	 were	 put	 on	 ice	 and	 immediately	

transported	to	the	biosafety	level	2	laboratory	of	the	ESRF	biomedical	beamline.		

Urinary	 bladders	 were	 cut	 into	 3	 equal-size	 pieces	 of	 approximately	 2	 mm3	 in	 a	

biosafety	 cabinet.	 The	 pieces	 were	 individually	 placed	 in	 the	 centre	 of	 a	 25	 cm2	

growth	 area	 flask	 (Falcon),	 containing	 2	 ml	 of	 the	 complete	 growth	 medium	

previously	described.	Flasks	were	then	placed	in	an	incubator	set	at	37°C,	5%	CO2	in	

air	and	left	undisturbed	during	24h	to	allow	for	the	release	of	bystander	signals.	The	

irradiated-tissue	 conditioned	medium	 (ITCM)	was	 harvested	 at	 24	 hours,	 filtered	

using	 a	 sterile	 0.22	μm	 filter	 (Acrodisc	 Syringe	Filter	with	HT	Tuffryn	Membrane,	

Pall	Life	Sciences),	and	placed	in	a	sterile	7mL	tube.	The	collected	media	was	kept	at	

4ºC	 in	 the	 dark	 and	 then	 transported	 to	 McMaster	 University	 for	 clonogenic	

reporter	bioassays.		

	

Clonogenic	Reporter	Cell	Line:		

The	 cell	 line	 selected	 as	 the	 reporter	was	 the	 human	 epithelial	HaCaT,	which	 has	

been	used	by	our	group	at	McMaster	University	 for	several	years	due	 to	 the	 line’s	

reliable	 and	 stable	 response	 to	 bystander	 signals	 (Mothersill	 and	 Seymour	 1997).	



The	 cell	 line	 was	 originally	 derived	 by	 Dr	 Petra	 Boukamp	 in	 Germany	 and	 was	

kindly	given	to	us.	The	line	was	developed	from	normal	human	skin	that	surrounded	

a	melanoma	and	became	immortal	spontaneously	(Boukamp	et	al,	1999)	.	Although	

HaCaT	cells	have	3	p53	point	mutations	 (Lehman	et	al.	1993),	data	 show	 that	 the	

line	remains	 functional	with	respect	 to	 inducing	apoptosis	and	reproductive	death	

and	behaves	as	 though	wild-type	p53	were	present	 (Henseleit	 et	 al.	1997).	 In	our	

laboratory	HaCaTs	also	behave	like	wild-type	cells	in	terms	of	the	bystander	effect	

response.	The	HaCaT	cells	were	maintained	 in	a	75	cm2	grown	area	 flask	(Falcon)	

with	RPMI	1640	 supplemented	 as	 previously	 indicated.	 Cells	 95%	 confluent	were	

detached	using	1:1	(v:v)	solution	of	0.02	%	Trypsin/EDTA	(1mM)	(Gibco,	Canada)	

and	Dulbecco's	 Phosphate-Buffered	 Solution	 (1x)	 (Gibco,	 Canada).	 The	 number	 of	

cells	was	measured	using	an	automatic	cell	counter	(Beckman	Coulter).	

	

Clonogenic	reporter	bioassay:		

Flasks	containing	90-95%	confluent	HaCaT	cells	were	selected	for	the	experiments.	

Reporter	 flasks	of	25	cm2	growth	area	were	seeded	with	500	cells	6	hours	before	

the	 medium	 transfer.	 Then	 the	 conditioned	 medium	 harvested	 in	 France	 was	

transferred	into	the	reporter	flasks.	Plating	efficiency	and	medium	transfer	controls	

were	 also	 set	 up.	 All	 flasks	 were	 then	 transferred	 into	 an	 incubator	 and	 left	

undisturbed	for	about	10-12	days	to	allow	for	colony	formation	using	the	technique	

developed	by	Puck	and	Marcus	(1956)	.	Colonies	were	then	stained	using	a	1:4	(v/v)	

solution	of	Carbol	Fuchsin	(Ricca	Chemical	Company)	in	water.	Colonies	with	more	

than	50	cells	were	scored	as	survivors	and	the	survival	fraction	was	calculated	using	



the	 plating	 efficiency	 (PE)	 of	 the	 reporter	 cells	 as	 described	 in	 previous	 research	

(Fernandez-Palomo	et	al.	2011,	2015).	

	 		

	

Ratiometric	calcium	measurements	

The	 following	 protocol	 was	 initially	 developed	 by	 Dr.	 Fiona	 Lyng,	 DIT,	 Dublin,	

Ireland	(2000).	100,000	HaCaT	cells	were	seeded	 in	Glass	Bottom	Dishes	(MatTek	

Corporation)	 containing	 2	 ml	 of	 cell	 culture	 media	 RPMI-1640	 (Gibco,	 Oakville,	

Canada)	 supplemented	 with	 10%	 FBS,	 and	 placed	 in	 a	 incubator	 at	 37°	 C	 in	 an	

atmosphere	of,	5%	CO2	in	air	 for	24	hours.	For	calcium	measurements,	 the	culture	

medium	was	discarded	and	 the	 cells	were	washed	gently	 three	 times	with	Hank's	

Balanced	 Salt	 Solution	 (HBSS)	 with	 calcium	 and	 magnesium	 (Cat#:	 14025-092,	

Gibco,	 Oakville,	 Canada),	 supplemented	 with	 25	 mM	 of	 HEPES	 (Gibco,	 Oakville,	

Canada).	The	HBSS	was	discarded	and	cells	were	 loaded	with	200	µl	 of	8.4	µM	of	

Fura-2/AM	(Sigma-Aldrich,	Milwaukee,	USA),	for	1	hour	at	room	temperature	in	the	

dark.	This	protocol	avoided	the	compartmentalization	of	the	dye	within	the	cellular	

organelles,	which	was	a	problem	if	cells	were	placed	in	an	incubator	at	37°	C.	At	the	

end	of	the	loading	time,	the	Fura-2/AM	was	discarded,	the	cells	were	washed	three	

times	with	HBSS,	and	300	µl	of	 the	same	buffer	was	added	 to	 the	dish.	Cells	were	

observed	with	a	 x40	oil	 objective	on	an	Olympus	 inverted	 fluorescent	microscope	

(Olympus	 Canada,	 Richmond	Hill,	 Canada)	 and	 images	were	 captured	with	 a	 CCD	

Cool-Snap	HQ	camera	(Photometrics,	Tucson,	Arizona).	For	the	measurements,	100	



µl	of	conditioned	medium	(or	test	medium)	is	added	onto	the	cells	90	seconds	after	

acquisition	starts. Fura	2/AM	emits	light	at	510	nm	when	is	excited	at	380	nm	and	

340	 nm.	 The	 ratio	 of	 emissions	 between	 those	 wavelengths	 correlates	 with	 the	

calcium	flux	through	the	cellular	membrane	which	we	have	shown	to	be	the	earliest	

measurable	response	to	the	presence	of	bystander	signal	in	the	test	medium	(Lyng	

et	al,	2000).	After	obtaining	the	calcium	concentrations	plotted	as	a	function	of	time	

post	addition	of	the	test	medium,	,	the	data	from	each	of	ten	randomly	selected	cells	

were	analyzed	and	the	area	under	the	curve	was	calculated	for	each	cell	and	meaned	

to	 give	 an	 average	 result	 per	 sample.	 	 Each	 sample	was	 repeated	 three	 times	 and	

there	were	3	samples	available	to	test	from	each	bladder.	

	

Statistical	Analysis	

Survival	 fractions	 are	presented	 as	 a	 standard	deviation	of	 the	mean.	 Significance	

between	and	within	groups	was	determined	using	the	Tukey	multi-comparison	test	

after	a	two-way	ANOVA.	Data	was	defined	as	significant	when	p	values	were	≤	0.05.	

Graphs	were	plotted	using	the	Prism	6.0	software.		

	

	

RESULTS	

	

Clonogenic	assay	

Figure	 2	 shows	 the	 clonogenic	 survival	 of	 reporter	 HaCaT	 cells	 grown	 in	 ITCM	

originated	from	the	urinary	bladder	of	nude	mice.	This	figure	focused	exclusively	on	



comparing	 the	 effects	 of	 ITCM	 from	 normal	 and	 tumour-bearing	 mice.	 The	 data	

show	that	the	presence	of	the	F98	glioma	in	the	right	hemisphere,	but	in	the	absence	

of	 radiation,	 significantly	 increased	 the	 survival	 of	 the	 reporter	 cells	 compared	 to	

the	 control	 group	 (p-value	 =	 0.0061).	 Similarly,	 clonogenic	 survival	 was	 also	

increased	when	 ITCM	originated	 from	 “scatter	 animals”,	which	 also	had	 a	 tumour	

but	were	exposed	to	a	whole	body	dose	of	1.36	mGy	(p-value	=	0.0011).	Comparing	

the	Tumour	Control	and	Scatter	groups	we	can	also	observe	 that	scatter	radiation	

does	not	play	a	significant	role	modifying	the	clonogenic	survival.				

As	 a	 matter	 of	 comparison,	 figure	 2	 also	 includes	 reporter	 cells	 grown	 in	 ITCM	

originated	from	tumour	free	mice.	ITCM	from	animal	exposed	to	valley	doses	of	0.5	

Gy,	which	correspond	to	200	Gy	for	PB	and	22	Gy	for	MRT,	significantly	decreased	

the	survival	of	the	reporter	cells	compared	to	the	control	group	(p-value	=	<	0.0001	

for	PB;	and	p	<	0.0001	for	MRT).			

	

Figure	3	shows	the	clonogenic	survival	of	the	reporter	HaCaT	cells	receiving	ITCM	

from	urinary	bladders	harvested	at	2,	 12	and	48	hours	 after	 irradiation.	The	data	

generated	2	hours	after	 irradiation	 (Fig	3A)	 indicate	 that	 ITCM	 from	normal	mice	

exposed	 to	 200	 Gy	 PB	 or	 22	 Gy	 MRT	 significantly	 reduced	 the	 survival	 of	 the	

reporter	 cells	 (p-value	 =	 <	 0.0001	 for	 PB;	 p=	 <	 0.0001	 for	 MRT).	 However,	 the	

difference	between	the	 two	modalities	was	not	significant	 in	 this	case.	When	mice	

harbouring	F98	tumours	were	irradiated	with	the	same	doses	as	above,	ITCM	from	

these	 animals	 did	 not	 significantly	 reduce	 the	 survival	 of	 the	 reporter	 cells.	

However,	the	difference	between	PB	and	MRT	was	now	significant	(p-value	=	0.04)	



with	 the	PB	 inducing	stronger	signals.	 ITCM	 from	animals	exposed	 to	1000	Gy	PB	

significantly	reduced	the	clonogenic	survival	of	 the	reporter	cells	 (p-value	=	0.01),	

while	 the	 110	 Gy	 MRT	 group	 did	 not.	 The	 PB	 and	 MRT	 modalities	 were	 also	

statistically	different	in	this	subgroup	(p-value	=	0.001).		

Signals	from	bladders	harvested	12	hours	after	 irradiation	(Fig	3B)	did	not	 induce	

any	significant	decrease	in	reporter	survival.	However,	ITCM	from	mice	dissected	48	

h	 after	 irradiation	 (Fig	 3C)	 significantly	 reduced	 the	 survival	 of	 the	 reporters	

compared	to	the	control;	regardless	of	the	ITCM	originating	from	animals	exposed	

to	200	Gy	PB	(p-value	<	0.0001)	or	1000	Gy	PB	(p-value	<	0.0001).	Conversely,	none	

of	 the	MRT	groups	had	an	effect	on	 the	HaCaT	cells.	When	comparing	each	valley	

dose	 sub-group,	 200	 Gy	 PB	 was	 significantly	 different	 to	 22	 Gy	 MRT	 (p-value	 <	

0.0001),	as	well	as	for	1000	Gy	PB	and	110	Gy	MRT	(p-value	<	0.0001).	

Figure	4	shows	the	results	for	the	calcium	flux	assay	for	the	ITCM	obtained	from	the	

bladder	tissue	of	healthy	control,	the	tumour	control	and	the	healthy	animals	whose	

brains	were	exposed	 to	PB	or	an	equivalent	MRT	dose.	The	data	are	presented	as	

bar	charts	representing	the	total	area	under	the	curve	for	the	flux	from	the	point	of	

addition	of	the	ITCM	to	the	return	of	the	calcium	spike	to	the	baseline.		While	there	

are	differences	 in	 area	under	 the	 curve	none	of	 these	 are	 significant	 although	 the	

trend	is	similar	to	that	seen	in	Figure	2	for	the	clonogenic	endpoint.	Figure	5	shows	

a	 comparison	 of	 the	 data	 for	 the	PB	 and	MRT	 irradiated	 tumour-bearing	 animals.	

These	 animals	 were	 sacrificed	 2,	 12	 and	 48hrs	 post	 irradiation	 of	 the	 brain.	 The	

signals	 from	 these	 bladders	 are	 very	 variable	 and	 show	 no	 significant	 effects	 or	

trends.	



	

Discussion	

The	data	presented	in	this	paper	result	from	an	attempt	to	determine	if	the	

bystander/abscopal	 effects	 seen	 in	 rats	 could	 also	be	 seen	 in	 athymic	mice	

which	have	a	compromised	immune	system.	It	is	important	to	stress	that	NU-

Foxn1nu	mice	 have	 an	 intact	 innate	 immune	 system	and	 therefore	 the	 data	

presented	 could	 suggest	 that	 the	 abscopal	 response	 might	 not	 require	 an	

intact	 adaptive	 immunity	 or	 T	 cell	 response,	 but	 can	 still	 be	 operating	

through	 the	 innate	 immune	 response,	 via	 macrophages	 or	 neutrophils.	

Therefore	 the	 results	 support	 the	 hypothesis	 that	 the	 innate	 immune	

machinery	would	be	a	candidate	 for	 the	abscopal	effect	 -	mediating	a	rapid	

reaction	to	damage	or	tumours	and	releasing	cytokines	 into	the	circulation.	

These	 conclusions	 are	 supported	 by	 much	 of	 our	 data	 using	 fish	 models	

(Mothersill	 and	Seymour	2009)	which	 show	 that	 fish	of	 at	 least	5	different	

species	have	very	strong	abscopal	effects	and	can	also	communicate	signals	

between	irradiated	and	unirradiated	animals.	Fish	are	widely	considered	to	

be	at	an	immune	system	transition	point	(Danilova	2006;	Dzik	2010)	relying	

mainly	 on	 innate	 immune	 response	 but	 having	 a	 very	 weak	 capacity	 for	

adaptive	immunity	(Watts,	Munday,	and	Burke	2001).		

	

A	very	intriguing	finding	was	the	influence	of	the	presence	of	tumour	on	the	

response.	The	finding	in	this	study,	that	the	presence	of	tumour	in	the	animal	

led	to	no	or	significantly	weaker	signals	being	“seen”	by	the	reporter	cells	in	



the	clonogenic	assay	supports	the	observations	in	the	rat	experiments	using	

F98	 cells	 (Fernandez-Palomo	 et	 al.	 2015).	 We	 are	 not	 aware	 of	 any	 other	

reports	of	bystander	effects	being	weaker	or	ablated	when	tumour	is	present	

in	 the	 animal	 but	 very	 early	 work	 by	 our	 group	 (Mothersill	 and	 Seymour	

1998)	using	human	normal	urothelium	and	urothelium	from	transitional	cell	

carcinoma	(TCC)	patients	did	show	a	loss	of	signal	or	a	switch	to	pro-survival	

signals	 in	 the	 irradiated	 tissues	 from	 the	 TCC	 group.	 It	 may	 be	 that	 the	

presence	 of	 a	 tumour	 in	 an	 organism	 means	 there	 is	 a	 systemic	 micro-

environmental	 change	 leading	 to	 “pro-survival”	 rather	 than	 “pro-death”	

signals	being	produced.		If	this	is	so,	it	could	have	considerable	implications	

for	radiotherapy	while	also	pointing	to	novel	targets	for	improving	outcomes.			

	

In	our	previous	studies,	calcium	flux	was	one	of	the	most	robust	indicators	of	

bystander	 signal	 production	 (Cristian	 Fernandez-Palomo,	 Bräuer-Krisch,	 et	

al.	 2015;	 F.	 M.	 Lyng	 et	 al.	 2006;	 Liu	 et	 al.	 2006).	 In	 these	 experiments	

however,	there	appears	to	be	a	weaker	association.	The	data	suggest	that	in	

normal	 NU-Foxn1nu	 mice,	 which	 did	 not	 have	 a	 tumour	 implanted	 in	 the	

brain,	 irradiation	 of	 the	 brain	 leads	 to	 the	 generation	 of	 signals	 capable	 of	

reducing	the	clonogenic	survival	in	our	reporter	assay.	However	the	calcium	

flux	data,	while	supporting	this	trend,	were	not	significant.	This	was	mainly	

due	to	extremely	high	variability	in	the	calcium	flux	response	from	cell	to	cell	

which	made	the	errors	very	high.	Such	high	variability,	could	suggest	that	the	

calcium	flux	pathway	which	we	have	established	to	be	important	in	rodents,	



fish	and	a	wide	variety	of	cell	lines	(Mothersill	and	Seymour	2012),	may	not	

be	 critical	 for	 the	 production	 of	 a	 bystander	 response	 in	 these	

immunocompromised	mice.	 The	 fact	 that	 the	 clonogenic	 reporter	 cells	 did	

“see”	a	signal	from	the	normal	bladders	suggests	signal	production	occurred	

at	 some	 level	 but	 the	 transduction	 of	 the	 response	 might	 not	 depend	 on	

calcium.	 This	 would	 represent	 a	 novel	 signal	 transduction	 mechanism	 not	

reported	 before.	 Other	 candidate	 mechanisms	 could	 be	 those	 involving	

sodium	channels.	While	these	have	not	been	studied	directly	in	the	bystander	

field,	 they	 are	 implicated	 in	 radiation	 induced	 neurological	 effects	 such	 as	

fatigue	 and	are	known	 to	be	 involved	 in	NOONOO	cycle	 fatigue	 induced	by	

radiation	 (Pall	 2008;	 Song	 et	 al.	 2009;	 Ghosh,	 Maurya,	 and	 Krishna	 2008;	

Molenaar	2011)	and	NOS	are	candidate	signalling	molecules	in	the	bystander	

field	(He	et	al.	2012;	Shao,	Prise,	and	Folkard	2008).	 It	 is	also	possible	 that	

there	 is	 a	 “bypass”	 of	 the	 requirement	 for	 calcium	 channel	 fluxes.	Recently	

our	laboratory	have	shown	that	a	UV	signal	from	irradiated	cells	can	trigger	

bystander	effects	in	cells	contained	in	flasks	which	do	not	share	medium	or	

receive	any	medium	bourne	signals	(Le	et	al.	2015).	At	present	however,	we	

can	only	speculate	on	why	calcium	seems	to	be	irrelevant	for	triggering	the	

bystander	signal	production	 in	 the	experiments	reported	here.	 In	 regard	 to	

the	comparison	between	PB	and	MRT	modalities,	both	had	similar	effects	on	

normal	tissue.	This	might	be	expected	because	the	doses	were	calculated	to	

irradiate	similar	tissue	volumes	and	to	lead	to	similar	valley	doses.		However	

in	the	tumour	bearing	groups	there	was	no	bystander	effect	after	MRT	at	any	



time	point	post	 irradiation.	When	harvested	after	48hrs	the	signal	 from	the	

PB	irradiated	animals	is	significant	however	this	trend	was	not	seen	at	all	in	

the	12hr	group	and	was	present	but	weaker	at	2hrs	post	irradiation	and	only	

statistically	significant	following	the	high	dose	exposure.		

	

To	conclude,	this	study	suggests	that	signals	are	produced	by	immunocompromised	

mice	 although	 the	 fact	 that	 their	 innate	 immune	 system	 is	 intact	 is	 probably	

important.	 	 The	 results	 suggest	 that	 the	 pathways	 involved	 in	 signal	 transduction	

may	 be	 different	 from	 those	 seen	 in	 immunocompetent	 animals.	 The	 question	 of	

whether	abscopal	effects	 following	irradiation	using	PB	or	MRT	in	tumour	bearing	

animals	are	beneficial	or	harmful	remains	open	because	the	presence	of	tumour	in	

the	 animal	 appears	 to	 weaken	 these	 signals	 even	 when	 these	 are	 measured	 in	

distant	tissue	without	tumour.			
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Figure 1. Schematic representation of the irradiation modalities. 
This figure graphically shows the geometrical differences between the two arrays studied. 
Athymic Nude mice were exposed to whole brain irradiation of A) MRT or B) PB. The 
dimensions of actual beam delivered were 8 mm high & 20 mm wide.  MRT: Microbeam 
Radiation Therapy; PB: Pencilbeam Therapy  
 
 
 
 
 

 
Figure 2. Comparison of clonogenic survival of HaCaT cells grown in ITCM from 
the control groups. 
The figure shows the clonogenic survival of reporter HaCaT cells grown ITCM 
originated the urinary bladders of the exposed nude mice. Irradiated animals received a 
whole-brain exposure.  The mice from the Tumour Control group were not irradiated. 
White bar = Normal animals. Gray bars = animals inoculated with F98 glioma cells. 
Black bars = Normal irradiated animals (22=22Gy; 200=200Gy). C=Normal Control, 
TC=Tumour control, PB=Pencil beam, MRT=Microbeam radiation 
 



 

Figure 3. Clonogenic survival of HaCaT cells grown in ITCM from synchrotron 
irradiated nude mice. 
ITCM was originated from the urinary bladders of the synchrotron irradiated nude mice. 
Animals received a whole-brain irradiation. Normal and tumour bearing mice were 
exposed to peak doses of 200Gy and 1000 Gy for PB and 22Gy and 110 Gy for MRT in 
order to achieve constant valley doses of 0.5Gy and 2.5 Gy respectively.  White bar = 
Normal animals. Gray bars = tumour-free irradiated animals. Black bars = tumour-
bearing irradiated animals. C=Control, TC=Tumour control, PB=Pencil beam, 
MRT=Microbeam radiation therapy, VD=Valley dose Letters a, b & c indicate significant 
differences between groups. Error bars indicate SEM.  
 



 
Figure 4. Comparison of Calcium Fluxes Between Controls.  
The figure shows the calcium fluxes of reporter HaCaT cells exposed to ITCM originated 
from the urinary bladders of nude mice. Irradiated animals received a whole-brain 
exposure. C=Normal Control; TC=Tumour control (no radiation); Normal=Tumour-free 
irradiated animals (22=22Gy; 200=200Gy); PB=Pencil beam, MRT=Microbeam 
radiation, VD=Valley dose. Letters a, b & c indicate significant differences between 
groups. Error bars indicate SEM. 
 
 



Figure 5. Calcium Fluxes of reporter HaCaT cells.  
The figure shows the calcium fluxes of reporter HaCaT cells exposed to ITCM originated 
from the urinary bladders of nude mice. Irradiated animals received a whole-brain 
exposure. 200=200Gy; 1000=1000Gy; 22=22Gy; 110=110Gy. TC=Tumour control (no 
radiation); Normal=Tumour-free irradiated animals; Tumour=tumour-bearing irradiated 
animal, PB=Pencilbeam, MRT=Microbeam radiation, VD=Valley dose. Letters a, b & c 
indicate significant differences between groups. Error bars indicate SEM.  
 


	1

