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Mitochondria are essential for eukaryotic life and more than 95% of their 

proteins are imported as precursors from the cytosol. The targeting signals for 

this post-translational import are conserved in all eukaryotes. However, this 

conservation does not hold true for the protein translocase of the mitochondrial 

outer membrane that serves as entry gate for essentially all precursor proteins. 

Only two of its subunits, Tom40 and Tom22, are conserved and thus likely were 

present in the last eukaryotic common ancestor. Tom7 is found in representatives 

of all supergroups except the Excavates. This suggests that it was added to the 

core of the translocase after the Excavates segregated from all other eukaryotes. A 

comparative analysis of the biochemically and functionally characterized outer 

membrane translocases of yeast, plants and trypanosomes, which represent three 

eukaryotic supergroups, shows that the receptors that recognize the conserved 

import signals differ strongly between the different systems. They present a 

remarkable example of convergent evolution at the molecular level. The 

structural diversity of the functionally conserved import receptors therefore 

provides insight into the early evolutionary history of mitochondria. 

 

Protein import distinguishes mitochondria from its endosymbiontic ancestor 

The origin of eukaryotic cells arguably is the most important transition in evolution 

besides the origin of life itself. It is now widely accepted that the development of the 

nucleus, the name-giving feature of eukaryotes, required a highly efficient energy 

metabolism that could only be provided by mitochondria (Lane 2014). The acquirement 

of a bacterial endosymbiont by the archeal ancestor of eukaryotes (Williams, et al. 2013; 

Koonin and Yutin 2014; Spang, et al. 2015), that subsequently was converted into the 

mitochondrion was therefore likely the event that triggered the evolution of eukaryotes. 

The process of organellogenesis was accompanied by a massive reduction of the 

endosymbiont's genome. While part of it was lost, some genes were transferred to the 

host's nucleus, a process designated endosymbiotic gene transfer (EGT) (Thorsness and 

Weber 1996; Adams and Palmer 2003; Timmis, et al. 2004). Today mitochondrial 

genomes harbor very few genes encoding between 3 and 65 different proteins (Gray, et 

al. 1999; Allen 2003), which stands in sharp contrast to the complexity of the 

mitochondrial proteomes which even in unicellular organisms amounts to more than 

1000 proteins (Meisinger, et al. 2008; Niemann, et al. 2013; Huang, et al. 2014). This 

indicates that essentially all mitochondrial proteins, many of which are encoded by 

genes that had been transferred to the nucleus by EGT, are imported from the cytosol.  
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Gaining the capability to import proteins is therefore the defining event that marks the 

transition of the endosymbiont to a genetically integrated organelle that largely is under 

the control of the nucleus (Dolezal, et al. 2006; Lithgow and Schneider 2010; Hewitt, et 

al. 2011; Gray 2012). The question of how mitochondrial protein import evolved is 

therefore tightly linked to the more general question of the origin of the eukaryotic cell.   

 

Protein import has mainly been studied in yeast  

Saccharomyces cerevisiae has been a powerful model to investigate mitochondrial 

protein import resulting in a wealth of data on the machineries and the mechanism of 

the process (Chacinska, et al. 2009; Schmidt, et al. 2010; Schulz, et al. 2015). 

Bioinformatic and experimental evidence shows that protein import and the factors 

mediating it are highly conserved between yeast and mammals (Dolezal, et al. 2006). 

Since these two systems are morphologically very different, it is often assumed that the 

observed conservation may extend to all eukaryotes. However, this is a misconception: 

according to the latest molecular phylogenetic tree eukaryotes are divided into a small 

number of supergroups, that diverged very early in evolution (Adl, et al. 2005; Burki 

2014). Moreover, metazoans including mammals, and yeast belong to the same 

supergroup of the Opisthokonts, indicating that on the large scale they are closely 

related (fig. 1).  

Thus, except for plants which define the supergroup of the Archeaplastida and whose 

protein import system has been investigated for many years (Murcha, et al. 2014), there 

are few experimental studies on mitochondrial protein import in non-opisthokont 

organisms. However, since very recently there is a new kid on the block. Studies in the 

parasitic protozoa Trypanosoma brucei, a member of the supergroup of the Excavates, 

identified and characterized the composition and function of the translocase that 

mediates protein transport across the mitochondrial outer membrane (OM) (Mani, et al. 

2015).  

Thus, for the first time we have sufficient data of the mitochondrial protein import 

machinery of representatives of three different eukaryotic supergroups that allow us to 

perform a comparative analysis that is not simply based on sequence similarities but on 

structural and functional features of import components. We deliberately excluded 

eukaryotes with mitochondria-related organelles that lack an own genome from our 

analysis as their protein import systems have been subject to reductive evolution (Heinz 

and Lithgow 2013). 
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Protein import is mediated by four major heteroligomeric protein complexes in the OM 

and the inner membrane (IM) (fig. 2). In this review we focus on the translocase of the 

OM (TOM) the entry gate for essentially all mitochondrial proteins. It is localized at the 

interface of the organelle and the cytosol and thus the first machinery with which 

imported proteins need to engage.  

 

Mitochondrial import signals are conserved 

The mitochondrial proteome of which more than 95% is imported from the cytosol, is 

not only of comparable size in yeast, plants and trypanosomes but also contains 

substrates for all the different types of import pathways. (Meisinger, et al. 2008; 

Niemann, et al. 2013; Huang, et al. 2014) (table 1).  

The largest class which includes approximately 60% of all mitochondrial proteins is 

targeted to mitochondria by N-terminal presequences, that are rich in basic and 

hydroxylated amino acids that have the propensity to form amphiphilic helices. 

Presequences are found on most matrix and many IM protein precursors. They mediate 

import across the TOM and TIM23 complexes (fig. 1) (Habib, et al. 2007; Chacinska, et al. 

2009). After import they are generally processed by the heterodimeric mitochondrial 

processing peptidase (MPP) and in some cases further trimmed by two other proteases, 

Icp55 and Oct1. Finally, the processed presequences are degraded by Cym1 and Prd1 

(Desy, et al. 2012; Mossmann, et al. 2012; Teixeira and Glaser 2013). 

All these proteases, as well as the features of the presequences themselves are 

conserved, although their specific substrates may vary in the different systems (Carrie, 

et al. 2015). The only discernable differences in the presequences is that the plant ones 

are on average longer and contain more serine residues than the ones in yeast and  

trypanosomes. This might be due to the fact that in plant mitochondrial targeting signals 

must be differentiated from the plastid ones (Murcha, et al. 2014). 

A few IM proteins facing the intermembrane space (IMS) have in addition to a 

presequence also a sorting signal that is removed by the IM protease (IMP) or other 

proteases (Chacinska, et al. 2009). IMP is highly conserved, it is found in all eukaryotes 

and shows homology to the bacterial leader peptidase (Schneider, et al. 1991; Teixeira 

and Glaser 2013).  

Presequences are not only highly similar between different species but also functionally 

conserved. They correctly localize proteins heterologously expressed in different 
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supergroups, both in vivo and in vitro (table 2) although exceptions exist (van Wilpe, et 

al. 1999).  

Carrier proteins (MCP) define a conserved mitochondrial protein family that is localized 

in the IM and whose members have six transmembrane helices. Except for a small 

subset in plants, MCPs lack presequences and instead have internal as yet poorly 

defined targeting sequences. MCPs cross the OM using the TOM complex before they 

engage with the TIM22 complex that inserts them into the IM. Yeast, plants and 

trypanosomes have a comparable number of carrier proteins (Palmieri, et al. 1996; 

Colasante, et al. 2009; Haferkamp and Schmitz-Esser 2012), all of which must be 

imported (table 1). Again in vivo and in vitro experiments suggest that carrier proteins 

are correctly localized when heterologously expressed (table 2).  

-barrel proteins are initially imported into the IMS using the TOM complex and 

subsequently inserted into the OM by the sorting and assembly machinery (SAM) (Hohr, 

et al. 2015). -barrel proteins contain a loosely defined signal after the last -strand that 

in yeast is recognized by Sam35 of the SAM (Kutik, et al. 2007). What features of -

barrel proteins are recognized by TOM is unclear, however the proteins are generally 

correctly localized when expressed in heterologous systems. Interestingly, even some 

bacterial and chloroplast -barrel proteins can be targeted to mitochondria when 

expressed in non-plant eukaryotes (table 2). 

Finally, there are a handful of IMS-localized small TIM chaperones which have a 

cysteine-containing internal targeting signal and which are imported by the 

mitochondrial intermembrane space assembly (MIA) pathway (Herrmann and Riemer 

2012). Both the small TIMs as well as their targeting signals appear to be conserved in 

essentially all eukaryotes.   

In summary, these results strongly suggests that the mitochondrial targeting signals and 

the machineries that process them were already established in the last common 

ancestor of all eukaryotes. This is supported by the observation that a sizable fraction of 

extant bacterial proteins contains N-terminal extensions predisposed for mitochondrial 

targeting (Lucattini, et al. 2004).  

While, for some substrates, e. g. cytochrome c (Babbitt, et al. 2015) and c1 (Priest and 

Hajduk 2003), organism-specific variations in the import pathway exist, the function of 

the TOM, mediating import across the OM of approximately 1000 different proteins 

which contain the same conserved targeting signals, is the same in yeast, plants and 

trypanosomes. The situation in plants however is complicated by the fact that they also 
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have plastids (Perry, et al. 2008), whose proteins must be excluded from mitochondria. 

Moreover, there is a large fraction of plant proteins that are dually localized to both 

organelles (Carrie and Whelan 2013). It has been shown in these cases that in vitro and 

in vivo import systems do not always faithfully mirror the physiological situation (Hurt, 

et al. 1986; Lister, et al. 2001; Fuss, et al. 2013).  

Thus, since the translocases in yeast, plant and trypanosomatids were largely shaped by 

the same functional constraints one might expect their composition and the structures 

of their subunits to be very similar. Surprisingly, this is not the case and a comparative 

analysis between the TOM complexes of the three species reveals striking differences 

(fig. 3).  

 

TOM complex architecture  

TOM consists of 6-7 subunits which depending on the affinities to each other can be 

divided into core and peripheral components (Perry, et al. 2008). The core of TOM 

includes a -barrel protein and 3-4 tightly associated subunits, some of which are very 

small. The remaining proteins are more loosely associated with the complex. Whereas in 

yeast and trypanosomes the TOM subunits are coded for by single copy genes, we often 

find multiple genes encoding highly similar isoforms of TOM subunits in plants (Lister, 

et al. 2004) (table 3). Except for one -barrel membrane protein, all subunits contain a 

single membrane-spanning -helix.  The molecular weight of the whole complex ranges 

from 220 kDa in plants to 1000 kDa in T. brucei. It is known that all components are 

present in more than one copy but the exact subunit stoichiometry has not yet been 

determined for any system. In the next few paragraphs we discuss the different TOM 

subunits in order of their degree of conservation.  

 

The -barrel pore 

The protein-conducting pore of TOM is formed by a -barrel protein of approximately 

40 kDa that has been identified in the isolated TOM complexes of fungi, plants and 

trypanosomes (Moczko, et al. 1992; Sollner, et al. 1992; Jansch, et al. 1998; Werhahn, et 

al. 2001; Mani, et al. 2015). An orthologue of this protein, termed Tom40, can be found 

in all eukaryotes (table 4, supplementary table S1, Supplementary Material online) and 

was shown to be essential for life in all species where it has been tested (Maćasev, et al. 

2004; Dolezal, et al. 2006; Perry, et al. 2008; Pusnik, et al. 2009; Hewitt, et al. 2011).  
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Using bioinformatics it was initially not possible to identify a Tom40 orthologue in 

trypanosomes (Schneider, et al. 2008; Pusnik, et al. 2009) and the -barrel protein 

forming the OM import pore was finally discovered by a biochemical approach and 

termed ATOM40 for archaic translocase of the OM of 40 kDa. BLAST analyses revealed a 

limited sequence similarity of ATOM40 to a subgroup of a bacterial Omp85-like proteins 

(Pusnik, et al. 2011). HHPred analyses (Soding, et al. 2005) on the other hand suggested 

that ATOM40 might be a highly diverged VDAC-like protein (Zarsky, et al. 2012). The 

main members of this protein family are the protein import pore Tom40 and the 

metabolite transporter voltage dependent anion channel (VDAC) (Pusnik, et al. 2009),  

which are found in all eukaryotes. However, while ATOM40 could be grouped into the 

VDAC-like protein family, it is too diverged to be categorized into a specific subfamily. 

(See supplementary fig. S2 in (Schnarwiler, et al. 2014)).  

Recombinant yeast Tom40 and trypanosomal ATOM40 have been analyzed by 

electrophysiology using the planar lipid bilayer technique that allows single channel 

measurements (Hill, et al. 1998; Künkele, et al. 1998; Harsman, et al. 2012). Consistent 

with their function as protein-conducting pores both proteins form a wide hydrophilic 

channel that shows selectivity for cations and that can be blocked by addition of a 

synthetic presequence. However, a more in depth analysis performed in parallel for 

yeast Tom40 and ATOM40 revealed that recombinant Tom40 inserted as a monomer 

whose gating behavior is dominated by fast flickering, whereas recombinant ATOM40 

was active as a trimer that showed low frequency gating only (Harsman, et al. 2012). 

Thus, in this respect ATOM40 behaves more similar to chloroplast and bacterial 

versions of Omp85-like protein import and export channels, rather than to Tom40 of 

yeast. 

The -barrel nature of Tom40 and ATOM40 indicate their bacterial origin. The fact that 

both can be grouped into the VDAC-like protein family points to a single evolutionary 

origin of the protein. However, with which - if any - specific -barrel protein in extant 

bacteria it shares common ancestry is unclear at present. 

 

Tom22-like proteins  

All TOM complexes isolated so far have a subunit with a cytosolically exposed N-

terminus, whose molecular weights range from 10 kD in plants to 18 kDa in yeast. They 

share homology within and around their single transmembrane domains, suggesting 
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that they derive from a single common ancestor (Maćasev, et al. 2004) (supplementary 

fig. S1, Supplementary Material online). 

The yeast subunit, termed Tom22, functions as a secondary receptor. It is tightly bound 

to Tom40 and interacts with the primary receptors Tom20 and Tom70 (see below). In 

addition to its transmembrane region Tom22 consists of a N-terminal cytosolic and a C-

terminal IMS domain, which both contain clusters of acidic amino acids (Kiebler, et al. 

1993; Mayer, et al. 1995). Most importantly, independent of the receptor function of 

Tom22, its transmembrane domain is required for TOM assembly into a 450 kDa 

complex (Wilpe, et al. 1999). However, despite its dual function yeast lacking Tom22 can 

grow, albeit very slowly. 

The plant orthologue of Tom22 was first identified in isolated TOM from A. thaliana and 

S. tuberosum (Jansch, et al. 1998; Werhahn, et al. 2001). Surprisingly the protein, termed 

Tom9, has a much shorter cytosolic domain, which is basic. The IMS domain of Tom9, on 

the other hand, retained an excess of acidic residues (Maćasev, et al. 2004). Studies 

investigating the specific function of plant Tom9 have not been published and it is not 

known whether the protein is essential.  

The purified ATOM complex of T. brucei contains a 14 kD protein whose transmembrane 

domain including flanking regions show similarity to Tom22 and Tom9 when analyzed 

by HHPred (Soding, et al. 2005) (supplementary fig. S1, Supplementary Material online), 

although it lacks the conserved proline residue in the transmembrane domain (fig. 3). 

The protein was termed ATOM14 and is highly conserved in all trypanosomatids. An 

alignment with yeast Tom22 and plant Tom9 suggests that the cytosolic domain of 

ATOM14 essentially lacks acidic amino acids and is even shorter than in plant Tom9 

(supplementary fig. S1, Supplementary Material online). In contrast, ATOM14 has an 

IMS domain that is twice as long as yeast Tom22 or plant Tom9. ATOM14 is tightly 

associated with ATOM40. The protein is essential under all conditions and, as Tom22 in 

yeast, plays an important role in (A)TOM assembly. In its absence much less of the 

ATOM complex was formed and ATOM11 and to some extent ATOM69 became unstable 

(Mani, et al. 2015). 

In summary, there are two types of Tom22-like proteins. The ones typified by the yeast 

protein which have a cluster of acidic residues in the cytosolically exposed N-terminal 

domain and the ones exemplified by the plant Tom9 that lack this domain and thus 

generally are shorter. In yeast the acidic cytosolic domain has been implicated in 

presequence binding whereas in plant Tom9 the corresponding much shorter, non-

acidic domain cannot bind presequences (Rimmer, et al. 2011). However, even in yeast 
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Tom22 the cytosolic acidic residues can be replaced without significantly affecting 

protein import or cell growth (Nargang, et al. 1998). This, indicates that in yeast 

presequences may preferentially be bound by hydrophobic interactions or in the case of 

plants that another protein may compensate for inability of plant Tom9 to bind 

presequences. It has been shown that also the IMS domain of yeast Tom22 can bind 

presequences (Kiebler, et al. 1993; Mayer, et al. 1995; Komiya, et al. 1998). The same 

likely applies for the IMS domain of plant Tom9 as it is able to functionally replace the 

corresponding domain of the yeast protein (Maćasev, et al. 2004). 

Yeast-type Tom22 orthologues with a cytosolic acidic cluster are largely restricted to 

Opisthokonts (Maćasev, et al. 2004) (table 4). Moreover, the yeast Saccharomyces 

castellii has a plant-type Tom22 orthologue with a short cytosolic domain lacking an 

acidic cluster. This lack appears to be compensated for by the gain of an acidic cluster in 

the cytosolic domain of the primary receptor Tom20 (Hulett, et al. 2007).  

The most widespread form of Tom22 is of the plant-type. It is not only found in most 

Archeaplastida but also in Excavates, e. g. ATOM14 in trypanosomatids, and in at least a 

few representatives of the Stramenopiles and the Alveolates (Maćasev, et al. 2004) 

(table. 4).  

 

Tom7 

The TOM complex of yeast and plants contains a small protein each consisting of 60 and 

75 amino acids respectively. These proteins, termed Tom7, show only low sequence 

similarity but have a conserved sequence motif in their single atypical membrane-

spanning domains (Maćasev, et al. 2004). This suggests that yeast and plant Tom7 

derive from the same common ancestor. One of the functions of yeast Tom7 is to 

destabilize TOM possibly to allow the incorporation of new subunits (Hönlinger, et al. 

1996; Becker, et al. 2011). This role is antagonistic to yeast Tom6 described below. The 

function of plant Tom7 has not been investigated yet (table 3).  

Bioinformatic searches identified putative Tom7 orthologues in representatives of all 

eukaryotic supergroups except the Excavates which include the trypanosomatids 

(Maćasev, et al. 2004)(table. 4).  
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Tom5 and Tom6 in yeast and plants 

Purified TOM of yeast and plants each contain two proteins, of approximately 50 and 60 

amino acids in length, termed Tom5 and Tom6, which have a single transmembrane 

domain each. 

Yeast Tom5 is tightly associated with Tom40 and has its N-terminus exposed to the 

cytosol. It helps to transfer precursor proteins from the receptors to Tom40 and 

supports TOM biogenesis. Tom6 stabilizes the large TOM complex and thus has an 

antagonistic function to Tom7 which promotes its disassembly (Dietmeier, et al. 1997; 

Model, et al. 2001). Neither Tom5 nor Tom6 is essential for yeast. In plants the specific 

functions of Tom5 and Tom6 have not been investigated.  

Interestingly, yeast Tom5 appears to be similar to plant Tom6 and yeast Tom5 to plant 

Tom6 (supplementary fig. S2, Supplementary Material online). This suggests that the 

two proteins in yeast and plants share a common evolutionary origin. However, a 

bioinformatic analysis did not reveal any candidates for orthologues of Tom5 and Tom6 

in other supergroups (table. 4). It should be considered though that very small open 

reading frames are often missed when genomes are annotated. 

 

Small ATOM subunits in trypanosomatids 

ATOM from T. brucei contains two small subunits with a single membrane spanning 

domain, termed ATOM11 (100 aa) and ATOM12 (105 aa), which are conserved but 

specific for Kinetoplastids (Mani, et al. 2015) (table. 4). Both proteins are essential and 

RNAi-mediated ablation shows that ATOM11 mediates the interaction of the ATOM core 

complex with the two peripheral subunits ATOM46 and ATOM69 (see below), whereas 

ATOM12 has an antagonistic function and prevents this association (Mani, et al. 2015). 

Thus, despite the lack of sequence similarity with any Tom subunit of yeast and plants 

the function of trypanosomal ATOM11 and ATOM12 seem at least in part analogous to 

yeast Tom6 and Tom7, respectively. 

 

TOM receptor subunits 

The TOM core complex dynamically interacts with more loosely associated subunits that 

function as primary import receptors. The best studied ones are yeast and mammalian 

Tom20 and Tom70 (Endo and Kohda 2002). Tom20 is a N-terminally anchored 

membrane protein whose cytosolically exposed domain contains a single 

tetratricopeptide repeat (TPR) domain. TPR folds provide a protein-protein interaction 
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platform, the specificity of which is determined by the variable residues in the 

conserved TPR motif (Abe, et al. 2000). Tom20 preferentially recognizes soluble 

precursor proteins carrying N-terminal targeting signals. It binds to the hydrophobic 

surface of presequences and subsequently transfers the precursors to Tom22 (Söllner, 

et al. 1989; Ramage, et al. 1993; Saitoh, et al. 2007).  

Tom70 is the primary receptor for mitochondrial carrier proteins that have internal 

targeting sequences and can also bind hydrophobic precursor proteins that carry 

presequences (Hines, et al. 1990; Steger, et al. 1990; Hines and Schatz 1993). It is N-

terminally anchored in the membrane and contains a large cytosolically exposed 

segment consisting of 11 TPR motifs. The eight TPR motifs distal to the membrane 

directly recognize substrate proteins (Chan, et al. 2006; Wu and Sha 2006). The three 

TPR motifs proximal to the membrane form the clamp domain that interacts with the 

cytosolic chaperone Hsp70 in yeast as well as Hsp90 in mammals from which Tom70 

can receive precursors proteins (Hachiya, et al. 1995; Young, et al. 2003).  

While Tom20 and Tom70 have a preference for hydrophilic and hydrophobic substrates, 

respectively, they have in part redundant functions. Yeast can grow and respire in the 

absence of Tom70. Loss of Tom20 abolished respiration but was not lethal and 

respiration could be restored by overexpression of Tom70. Finally, deletion of both 

receptors caused a severe growth phenotype but did not kill the cells provided that the 

secondary receptor Tom22 was still present (Ramage, et al. 1993; Harkness, et al. 1994; 

Lithgow, et al. 1994; Moczko, et al. 1994; Yamamoto, et al. 2009).  

Tom20 and Tom70 are found in all Opisthokonts. Whereas Tom20 is restricted to this 

supergroup, putative orthologues of Tom70 were recently discovered in the 

Stramenopiles of the SAR supergroup. In Blastocystis the protein localizes to the 

mitochondria-related organelle and its cytosolic domain was functional in the context of 

the yeast protein (Tsaousis, et al. 2011). However, in the Excavates and the 

Archeaplastidae no Tom70 orthologues could be found (Chan, et al. 2006) (table 4). 

The single protein import receptor associated with plant TOM is also termed Tom20 

(Heins and Schmitz 1996). Superficially plant and opisthokont Tom20 are very similar, 

both have a single transmembrane helix and a cytosolic domain containing TPR motifs - 

the yeast Tom20 has one and the plant protein two - which recognize presequence-

containing proteins. Furthermore, both proteins show the same domain organization 

and share conserved residues in their transmembrane regions, but only if their 

sequences are aligned in an antiparalell way. In other words, yeast Tom20 is signal-

anchored, whereas plant Tom20 is anchored to the membrane via its C-terminus (tail-
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anchored). It is difficult to imagine genetic mechanisms that during evolution could lead 

to the sequence reversal that is observed between the two proteins. Therefore plant and 

yeast Tom20, while being functional analogues, most likely have different evolutionary 

origins (Lister and Whelan 2006; Perry, et al. 2006). 

Besides Tom20 plants have another protein, termed OM64, that likely acts as a receptor 

for protein import (Chew, et al. 2004). OM64 is N-terminally anchored in the 

mitochondrial OM but not associated with isolated TOM. Its large cytosolic segment 

includes an amidase domain flanked by three C-terminal TPR domains, that similar to 

Tom70 of yeast can bind the cytosolic chaperones Hsp70 and Hsp90 (Panigrahi, et al. 

2014). OM64 plays a role in import of at least some mitochondrial proteins in vivo and 

was shown to interact with a number of precursor proteins in vitro (Lister, et al. 2007). 

It is a paralogue of Toc64, a protein associated with the OM protein translocase of 

plastids, that likely functions as a receptor for plastid protein import. 

Inactivation of all three active Tom20 genes in A. thaliana results in a moderate 

reduction in growth but is not lethal. OM64 mutants showed only mild phenotypic 

abnormalities  (Lister, et al. 2007). However, if all three Tom20 isoforms and OM64 are 

knocked out in the same plant an embryo-lethal phenotype is obtained (Duncan, et al. 

2013). C-terminally anchored Tom20 is found in the Archeaplastida and within this 

supergroup appears to be absent in red algae, which also lack a classical Tom20. The 

phylogenetic distribution of OM64 is more restricted, it is present in most vascular 

plants but absent in green and red algae, as well as in other lower plant lineages (Carrie, 

et al. 2010). Thus it is likely that other as yet undiscovered receptors are present in 

these clades. 

ATOM of trypanosomatids contains two receptors, termed ATOM46 and ATOM69, that 

have large domains exposed to the cytosol (Mani, et al. 2015). ATOM69 is superficially 

similar to Tom70. Both have the same molecular weight and multiple TPR-like motifs. 

However, ATOM69 in addition has an N-terminal CS/Hsp20-like domain, which in other 

proteins was shown to bind Hsp90. Moreover, analogous to yeast and plant Tom20, 

ATOM69 is tail-anchored whereas Tom70 has a N-terminal membrane anchor. ATOM46 

also has an N-terminal membrane anchor and an armadillo (ARM) repeat domain. The 

ARM motif functions as a protein-protein interaction module, it is specific for eukaryotes 

and is found in a number of unrelated proteins including soluble nuclear transport 

receptors (Tewari, et al. 2010). Thus, except for the TPR domain in ATOM69, the two 

trypanosomal import receptors do not share any similarity to TOM subunits of other 

species which illustrates their independent evolutionary history. The cytosolic domains 
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of ATOM69 and ATOM46 were shown to bind a number of different precursor proteins. 

In these assays ATOM69 showed a preference for presequence-containing substrates 

and ATOM46 most efficiently bound the hydrophobic MCPs (Mani, et al. 2015). 

Ablation of ATOM46 did not cause any growth or import phenotype under standard 

conditions. Inducible RNAi of ATOM69, however, caused an accumulation of cytosolic 

precursor proteins that was accompanied by a growth arrest. If both proteins are 

ablated simultaneously these phenotypes are strongly exacerbated and occur much 

earlier, suggesting that ATOM69 and ATOM46 are to some extent redundant 

mitochondrial protein import receptors with distinct but partially overlapping substrate 

specificities (Mani, et al. 2015). 

ATOM69 and ATOM46 have been found in all kinetoplastids including the free-living 

relative of trypanosomatids Bodo saltans, illustrating that the unique features of ATOM 

are not an adaptation to the parasitic life style of T. brucei (table 4).  

 

Implications for mitochondrial evolution 

The comparative analysis of yeast, plants and trypanosomes supports a two step model 

for the evolution of TOM. It posits that a simple version of TOM evolved in the 

mitochondrial ancestor (Cavalier-Smith 2006; Dolezal, et al. 2006; Perry, et al. 2006). It 

consisted of the -barrel import pore that was comandeered from the endosymbiont, 

and a tightly associated accessory protein of the Tom22/Tom9-type, that acted as 

primordial receptor recognizing preexisting targeting signals on the imported 

substrates. This is a plausible scenario since the function of yeast Tom22 as a secondary 

receptor is well established and yeast lacking both primary receptors are viable 

provided that Tom22 is still present (Lithgow, et al. 1994). Alternatively, one or more of 

the present or as yet to be discovered receptors may have been present in the ancestor 

of all eukaryotes and later been replaced in at least two probably more of the basic 

eukaryotic lineages.  

All TOMs contain a suite of small proteins whose main function is to regulate the 

assembly and disassembly of the complex. Tom7 is found in a wide range of eukaryotes 

but not in the Excavates (Maćasev, et al. 2004), whereas Tom5 and Tom6 appear to be 

present in Opisthokonts and plants only (table 4) (supplementary fig. S2, 

Supplementary Material Online). The Excavates lack any of these proteins and the ATOM 

complex of trypanosomatids instead contains the two unrelated small proteins ATOM11 

and ATOM12 that are functionally analogous to Tom6 and Tom7, respectively. In 
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summary this suggests that Tom5, 6 and 7 evolved after the ancestor of the Excavates 

diverged from all the other eukaryotes, supporting models that place the root of the 

eukaryotic evolutionary tree at this position (He, et al. 2014).  

All three systems have two primary receptors on the surface of the OM (fig. 4). These 

receptor pairs are functionally equivalent but evolutionary distinct, which is surprising 

since the signals they recognize are conserved (table 2). They therefore arose by 

convergent evolution after the fundamental eukaryotes lineages were already 

established. The occurence of the distinct receptors overlaps but is not congruent with 

the eukaryotic supergroups.  

Yeast-type Tom20 as well as Tom70 are present in all Opisthokonts and in at least some 

members of its sistergroup the Amoebozoans. However, orthologues of Tom70 also 

appear to occur in the Stramenopiles (Tsaousis, et al. 2011) (table 4). This is difficult to 

explain, however the stramenopile Tom70 might have been acquired by horizontal gene 

transfer from an Opisthokont. Alternatively it might not be a true Tom70 orthologue. 

Indeed the observed sequence identity between the stramenopile and the opisthokont 

Tom70s is only weak, which makes it difficult to exclude that it arose by convergent 

evolution. Not all Archeaplastidae have both Tom20 and OM64, and the red algae lack 

both proteins (Carrie, et al. 2010) (table 4). ATOM46 and ATOM69 are specific for 

Kinetoplastids (table 4). This suggests that they are a deep branching clade within the 

Excavates or, as has been proposed before, that this supergroup has a polyphyletic 

origin (Cavalier-Smith 2010). In any case we expect that additional as yet unidentified 

import receptors are present in this group (fig. 4).  

Protein import was already operational in the last common ancestor of eukaryotes. 

However, it appears that only after the establishment of the major eukaryotic lineages 

the number of imported proteins became so large, probably driven by ongoing EGT, that 

it required an increase in the specificity and efficiency of the process, that could only be 

achieved by a pair of dedicated receptor proteins. Mitochondrial protein import is one of 

the first - if not the first - mitochondria-specific character. The variations that are seen in 

functionally identical but evolutionary distinct modules of TOM, such as the receptor 

subunits, therefore likely mirror the early diversification of eukaryotes. Uncovering the 

diversity of protein import receptors of the mitochondrial OM might therefore help to 

reveal the early branches of the eukaryotic evolutionary tree. 
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Biochemical constraints on receptor function 

The comparative analysis presented in this review shows that only the -barrel import 

pore and the Tom22/Tom9 component of TOM are universally conserved (table 4). A 

Tom7 orthologue is present in all but one and Tom5 and Tom6 in two supergroups. The 

small ATOM subunits, on the other hand, evolved independently. This suggests that 

small proteins that regulate the assembly state of the complex are a basic requirement 

for a functional TOM. 

All three TOMs dynamically interact with protein import receptors which evolved 

independently. These receptors represent different solutions to the same biological 

problem, namely the efficient and specific import of 1000 or more different 

mitochondrial proteins (table 1).  

All systems appear to need a pair of receptors that have distinct substrate preferences 

and some degree of redundancy. Removal of the receptor, that binds the broader range 

of substrates including presequence-containing proteins, causes stronger effects on 

protein import and fitness than if the other receptor with a preference for hydrophobic 

substrates is ablated. Moreover, in all cases ablation of both receptors causes a stronger 

effect than their individual removal might suggest.  

Based on the three known receptor pairs we can identify the overarching structural 

features of the individual import receptors. Both require a single transmembrane region 

and an exposed cytosolic domain, however, whether the protein is anchored in a Nin - 

Cout or Nout – Cin orientation is not important. The cytosolic domain of at least one 

receptor subunit must have a substrate binding domain consisting of multiple TPR 

motifs and a binding site for cytosolic chaperones such as Hsp70 or Hsp90, that might be 

based on specialized TPR motifs or possibly on a CS/Hsp20 domain. However, in which 

order these modules are arranged is not important. The soluble domain of the second 

receptor also requires a protein-protein interaction domain, which may include a TPR 

motif or an ARM domain. 

There are still many clades, especially in the Excavates and the SAR supergoup, where 

mitochondrial protein import receptors have not been identified yet (fig. 4). The general 

features of import receptors defined above, indicate that TPR motif-containing proteins 

with a predicted N- or C-terminal transmembrane domain are excellent candidates for 

such proteins. However, the TPR domain is widespread and also found in other 

receptor-like proteins such as Pex5 and Sec72 (Schlegel, et al. 2007). Confident 

identification of novel import receptors therefore requires an experimental approach. 
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While the genomes of many eukaryotes of interest have been sequenced, they are often 

not easily accessible to biochemical investigations. However, even in such systems it 

should in many cases be possible: i) to determine the mitochondrial localization of the 

candidate receptors as well as ii) to test whether they can bind import signals, since 

such an experiment requires recombinant proteins only.  

Thus, we believe that characterizing novel import receptors across the eukaryotic 

phylogeny is both feasible and rewarding. We expect that the study of the pattern of 

receptor variation, will shed light on the basic eukaryotic lineages, whereas identifying 

the shared traits between them will allow to define the fundamental biochemical 

features mandatory for their function. 
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Table 1. Imported proteins and their (predicted) targeting signals 

 Species (supergroup) 
S. cerevisiae 

(O) 
A. thaliana 

(A) 
T. brucei 

(E) 
Giardiaa) 

(E) 
No. of mitochondrial 

proteins 
ca. 1000 ca. 1000 ca. 1000 50-100 

No. of presequence-
containing proteins 

ca. 600b) 
 
 

ca. 690b) 
 

ca. 620c) 
 
 

some have 
presequences, 
many do not 

Average length of 
presequences (aa) 

25-30 ca. 50 25-30 
(some are much 

shorter)d) 

ND 

Features of 
presequences 

amphiphilic helix amphiphilic helix 
(serine rich) 

amphiphilic helix ND 

Presequence 
processing peptidases 

-MPP/-MPP 
Icp55 
Oct1 

Imp1/Imp2 
Cym1 
Prd1 

-MPP/-MPPe) 
Icp55 
Oct1 

Imp1/imp2 
Cym1 
Prd1 

-MPP/-MPP 
Icp55 
Oct1 

Imp1/Imp2 
Cym1 
Prd1 

-MPP 
- 
- 
- 
- 
- 

No. of carrier proteins 35 58 24 0 
Import signals of 
carrier proteins 

internal sequences internal sequences, 
some have 

presequences 

internal sequences - 

No. of -barrel 
proteins 

5 7 5 1 

Import signals of -
barrel proteinsf) 

-signal -signal -signal ND 

No. of small TIM 
chaperones 

   ND 

Import signals of 
small TIM chaperones 

internal Cys-
containing peptide 

internal Cys-
containing peptide

internal Cys-
containing peptide

ND 

 

ND, no data 

a) Giardia is included in this analysis as an example for an organism with mitosomes 
which underwent extensive reductive evolution. The data listed in this column are from 
(Dolezal, et al. 2005; Smíd, et al. 2008; Jedelsky, et al. 2011). 
b) Experimentally determined (Vögtle, et al. 2009; Lee, et al. 2013; Huang, et al. 2014). 
c) Bioinformatic prediction. 
d) See (Häusler, et al. 1997).  
e) The MPP subunits of most plants are identical to the core1 and core 2 subunits of 
complex III of the respiratory chain (Mossmann, et al. 2012). 
f) The -signal in yeast  is recognized by SAM subunit Sam35 (Kutik, et al. 2007)
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Table 2. Mitochondrial proteins are correctly localized in heterologous systemsa)  
 

Speciesb) Import 
substratec) 

Speciesd) Super-
groupe) 

Locali- 
zationf) 

Import 
pathwayg) 

Experi-
mental 

evidenceh) 

Reference 

S.
 c

er
ev

is
ia

e 

Sam50 
Oep24 
Oep37 
YadA 

L. tarentolae  
P. sativum 
P. sativum 
Y. enterocolitica 

E 
A-Plas 
A-Plas 
Bact 

OM 
OM 
OM 
OM 

-barrel 
-barrel 
-barrel  
-barrel  

vitro 
vitro 
vivo/vitro 
vivo/vitro 

(Eckers, et al. 2012) 
(Ulrich, et al. 2012) 
(Ulrich, et al. 2012) 
(Ulrich, et al. 2014) 

Erv1 
Tim1 

L. tarentolae  
L. tarentolae  

E 
E 

IMS 
IMS 

? 
? 

vitro 
vitro 

(Eckers, et al. 2012) 
(Eckers, et al. 2012) 

Tim17 
F1 

T. brucei  
N. plumbaginifolia 

E 
A 

IM 
IM 

carrier 
preseq  

vivo/vitro 
vitro 

(Eckers, et al. 2012; Weems, et al. 2015) 
(Chaumont, et al. 1990) 

LipDH(1-14)9) 
Hsp60 
MnSOD 
AtPreP 

T. brucei 
L. tarentolae  
N. plumbaginifolia 
A. thaliana  

E 
E 
A 
A 

Matrix 
Matrix 
Matrix 
Matrix 

preseq 
preseq 
preseq 
preseq 

vivo/vitro 
vitro 
vivo/comp 
vivo/comp 

(Hauser, et al. 1996; Häusler, et al. 1997) 
(Eckers, et al. 2012) 
(Bowler, et al. 1989) 
(Alikhani, et al. 2011) 

T
. b

ru
ce

i 

Tom40 
VDAC 

S. cerevisiae 
N. crassa  

O 
O 

OM 
OM 

-barrel 
-barrel  

vivo 
vitro 

(Chaudhuri and Nargang 2003) 
(Eckers, et al. 2012) 

Tim9 S. cerevisiae  O IMS MIA  vitro (Eckers, et al. 2012) 
ACC 
Tim17 
Tim23 
Cox4 
Letm1 
Frataxin 
Frataxin 
Frataxin 
Ferredoxin 
Su9(1-69)i) 
Dld1(1-72)i) 

S. cerevisiae 
S. cerevisiae 
S. cerevisiae 
S. cerevisiae 
H. sapiens  
A. thaliana 
H. sapiens  
T. pseudonana 
H. sapiens  
S. cerevisiae 
S. cerevisiae 

O 
O 
O 
O 
O 
A 
O 
S 
O 
O 
O 

IM 
IM 
IM 
IM 
IM 
IM 
IM 
IM 
IM 
IM 
IM 

carrier 
carrier 
carrier 
preseq 
preseq 
preseq 
preseq 
preseq 
preseq 
preseq 
preseq 

vitro 
vivo/comp 
vivo 
vivo 
vivo/comp 
vivo/comp 
vivo/comp 
vivo/comp 
vivo/comp 
vitro 
vitro 

(Eckers, et al. 2012) 
(Weems, et al. 2015) 
(Weems, et al. 2015) 
(Häusler, et al. 1997) 
(Hashimi, et al. 2013) 
(Long, Vavrova, et al. 2008) 
(Long, Jirku, et al. 2008; Long, Vavrova, et al. 2008) 
(Long, Vavrova, et al. 2008) 
(Changmai, et al. 2013) 
(Eckers, et al. 2012) 
(Eckers, et al. 2012) 

Isa1 
Isa2 
Adh3 

H. sapiens  
H. sapiens 
S. cerevisiae 

O 
O 
O 

Matrix 
Matrix 
Matrix 

preseq  
preseq 
preseq  

vivo/comp 
vivo/comp 
vitro 

(Long, et al. 2011) 
(Long, et al. 2011) 
(Hauser, et al. 1996) 

P
la

n
ts

 CytP450 
F1
F1

H. sapiens  
S. cerevisiae  
S. pombe 

O 
O 
O 

IM 
IM 
IM 

preseq  
preseq 
preseq 

vitro 
vitro 
vitro 

(Luzikov, et al. 1994) 
(Chaumont, et al. 1990) 
(Schmitz and Lonsdale 1989; Chaumont, et al. 1990) 

MSW S. cerevisiae O Matrix preseq vivo (Schmitz and Lonsdale 1989) 
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Footnotes Table 2 
 

a) The table presents examples for mitochondrial targeting of heterologous substrates. It is not comprehensive. 
b) System in which the heterologous substrates were imported. 
c) Import substrates tested in the heterologous systems.  
d) Origin of heterologous substrates. 
e) Supergroups to which the system belongs:  Opisthokonts (O), Excavata (E), Archaeplastida (A), SAR (S). For S. cerevisiae two heterologous plastid 
(plas) and one bacterial (bact) -barrel protein are listed as well. 
f) Localization of substrate in the system of origin. 
g) Import pathway as indicated in fig. 2 in system of origin. Preseq, presequence. 
h) Vivo, protein localizes to mitochondria in vivo; vitro, protein can be imported into isolated mitochondria; comp, imported protein complements 
function. 
i) Dihydrofolatereductase fusions were tested. 
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Table 3. Composition of TOM and function of its subunits in yeast. plants and trypanosomes  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ND, no data 

a) Data from (Chacinska, et al. 2009)  
b) Data from (Murcha, et al. 2014)  
c) Data from (Mani, et al. 2015) 
  

 

 
 

S. cerevisiae TOM (450 kDa)a) A. thaliana TOM (230 kDa)b) T. brucei ATOM (450-1000 kDa)c) 

Subunit Function 
Essen- 

tial 
Subunit Function 

Essen- 
tial 

Subunit Function 
Essen- 

tial 

co
re

 
co

m
p

le
x

 

Tom40 -translocation channel 
yes 

 
Tom40-1 
Tom40-2 

-translocation channel yes ATOM40 -translocation channel yes 

Tom22 
-secondary receptor 

-TOM organizer 
 

no 
Tom9-1 
Tom9-2 

ND 
ND 
ND 

ATOM14 
-stabilizes 

ATOM complex 
yes 

sm
a

ll
 s

u
b

u
n

it
s Tom7 

 
-destabilizes TOM complex no 

Tom7-1 
Tom7-2 

ND ND ATOM12 
-destabilizes the association of 

core with ATOM46/69 
yes 

Tom6 -stabilizes the TOM complex no Tom6 ND ND 

ATOM11 
-promotes assembly of core 

with ATOM46/69 
yes 

Tom5 
-promotes TOM complex assembly 

-substrate transfer for Tom22 to 
Tom40 

no Tom5 ND ND 

p
e

ri
p

h
e

ra
l 

su
b

u
n

it
s 

 
p

p
 

Tom20 
-receptor for precursors with a 

presequence 
no 

Tom20-1 
Tom20-2 
Tom20-3 

-receptor for 
precursors with a 

presequence 

no 
no 
no 

ATOM69 
-receptor for all precursor 

proteins 
 

yes 

Tom70 
-receptor for hydrophobic 

precursor proteins 
no 

mtOM64 
 

-putative receptor for 
a subset of proteins 

no ATOM46 

-receptor for all precursors 
(preference for hydrophobic 

proteins) 
-mediates interaction of core 

complex with ATOM69 

no 
Tom71 

-low abundance Tom70 
orthologue 

no 
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Table 4. TOM subunits in representatives of all eukaryotic supergroupsa) 

 
a) For accession numbers and other details see supplementary table S1, Supplementary Materials Online.  

b) (Wojtkowska, et al. 2015) We find no bioinformatic support for these proteins to be orthologues of Tom22, Tom70 or Tom20, respectively. 
c) HHPred and hmmscan analysis suggests that annotated plant Tom5 proteins are in fact orthologues of yeast Tom6. 
d) HHPred and hmmscan analysis suggests that annotated plant Tom6 proteins are in fact orthologues of yeast Tom5. 
e) (Mani, et al. 2015)The Tom22 orthologues in trypanosomes is termed ATOM14. 
f) Annotated as Tom20 in UniProt. We find no bioinformatic support for this protein to be a Tom20 orthologue. 
g) With the exception of B. hominis, which harbors mitochondrion-related organelles (MROs), our analysis was restricted to organisms with bona fide 
mitochondria, capable to perform oxidative phosphorylation. 
h) (Maćasev, et al. 2004) 
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Legends 

 

Figure 1. Eukaryotic phylogeny. Unrooted phylogenetic tree of eukaryotes based on 

genetic and morphological evidences resolves the five supergroups Opisthokonta, 

Amoebozoa, Excavata, Archaeplastida and SAR (Stramenopiles, Alveolates and Rhizaria), 

shown in different colours, that diverged very early during eukaryotic evolution. The 

grey lines indicate that a number of organisms could not yet be confidently associated 

with any of the supergroups. Within the different supergroups the clades are indicated 

that are discussed in this review regardless of their taxonomic rank. Essentially all 

popular model organisms (human, mouse, fungi, worms, flies, yeast etc.) belong to the 

Opisthokonts. Branch lengths are arbitrary and the branching pattern does not 

necessarily represent the inferred relationships between the lineages.  

 

Figure 2. Mitochondrial protein import pathways in yeast. Essentially all 

mitochondrial proteins are imported across the heterooligomeric translocase of the 

outer mitochondrial membrane (TOM). After OM translocation the import pathways 

diverge depending on the class of proteins. Presequence-containing proteins (red) are 

handed over to the translocase of the mitochondrial inner membrane 23 (TIM23) by 

which they are either laterally released into to IM, in the case of -helically anchored IM 

proteins, or pulled into the matrix by the presequence associated motor (PAM) module 

for soluble proteins. In both cases the presequence gets processed by the heterodimeric 

mitochondrial processing peptidase (MPP). The hydrophobic mitochondrial carrier 

proteins (green) associate with the small TIM chaperones in the intermembrane space 

(IMS) and subsequently are inserted into the IM by TIM22. Small IMS-localized proteins 

(blue) with cysteine-rich signals are retained in the IMS by the formation of disulfide 

bonds catalyzed by the mitochondrial intermembrane space assembly (MIA)-pathway. 

The hydrophobic -barrel proteins (orange) interact with the small TIM chaperones in 

the IMS and are then inserted into the OM by the sorting and assembly machinery (SAM) 

of the OM. 

 

Figure 3. Translocase of the outer mitochondrial membrane (TOM) and its 

subunits in yeast, plants and trypanosomes. A, model of TOM in the indicated 

systems. Conserved subunits are shown in the same colour. Organism-specific 

components are depicted in grey. The topology of the Tom22-orthologues 

(Tom22/Tom9/ATOM14) and the two peripheral receptor subunits (light grey) is 
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indicated. Plant OM64 is not stably associated with TOM but likely has a receptor 

function. B, to scale representation of the domain structure of the TOM subunits in the 

indicated systems. Membrane anchors, functional domains and conserved prolines in 

the transmembrane domains are indicated. 

 

Figure 4. Diversity of mitochondrial protein import receptors mapped on a 

schematic eukaryotic phylogenetic tree. Only clades that are discussed in this review 

are indicated regardless of their taxonomic rank. Opisthopkont Tom20 and Tom70 are 

shown in blue. A number of stramenopiles appear to have a Tom70 orthologue 

(indicated in blue and by broken lines), although convergent evolution cannot be 

excluded (see text for discussion). Plant Tom20 and OM64 are indicated in green. At 

least a few green algae have Tom20 but lack OM64. Kinetoplastid ATOM46 and ATOM69 

are indicated in red. Expected novel receptor and/or receptor pairs that have not been 

identified yet are indicated in grey with a question mark.  
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