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Abstract 

 

Metastasis is the main cause of death in cancer patients and understanding mechanisms that control 

tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to 

cancer spreading. We noted earlier that tumor cells expressing the adhesion receptor integrin v3 can 

carry the molecule in distinct states of activation, and that cells that metastasize from the blood stream 

express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo 

and asked when and how the affinity state of integrin v3 confers a critical advantage to disseminating 

cancer cells. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital 

microscopy and histology in chick embryos and SCID mice, we identified tumor cell extravasation from 

the blood stream as a rate-limiting step that is supported by high affinity v3. We found in vitro and in 

vivo that successful transendothelial migration depended on cooperation between the tumor cells and 

platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study 

identifies activated tumor cell integrin v3 as critical for early steps of metastasis from the blood 

stream and highlights the high affinity conformation of the receptor and interaction with platelets as 

potential targets for prevention of metastatic disease. 
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Introduction    

 

As cancer progresses, tumor cells disseminate from primary tumors to distant sites via the lymphatics or 

blood stream. Circulating tumor cells attach to the microvasculature of target organs, penetrate the 

vessel wall, and survive and proliferate within their new tissue microenvironments. Each step can be rate 

limiting and involve adhesion receptors such as integrins (1). Integrins are heterodimeric transmembrane 

receptors that recognize extracellular matrix proteins and may exist in high or low affinity states. The 

affinity can determine ligand recognition and signals that impact cell survival, adhesion, migration, and 

invasion (2-7). Integrin affinity is regulated inside the cell and controls the adhesive phenotype and 

ability to bind soluble ligand (8). Integrin activation to high affinity is especially important for 

leukocytes and platelets, which circulate within the blood stream and can abruptly change their adhesive 

properties upon stimulation to interact with the vessel wall at sites of vascular injury or inflammation (9-

11). Integrin activation can further control cell mobilization from bone marrow and other tissues to enter 

the circulation and relocate to distant tissue niches (12).  

We previously showed that human tumor cells can express the adhesion receptor integrin v3 in 

distinct states of activation and that tumor cells carrying the high affinity form of the receptor 

metastasize most efficiently (13). Here, we asked which steps of the metastatic cascade are influenced 

by integrin activation in tumor cells, and which mechanisms are involved in integrin activation-

dependent metastasis. We showed earlier by blood perfusion in vitro that expression of v3 in a high 

affinity state enables tumor cells to interact with platelets and arrest at components of the vessel wall 

despite shear forces of blood flow (13, 14). Furthermore, we found that activated v3 helps activate 

metalloproteinase MMP-9 and supports invasive tumor cell migration (15). In the present study, we 

followed steps of the metastatic cascade in vivo and examined if, when, and how expression of activated 

v3 confers a critical advantage to disseminating tumor cells. We used chick embryos and immune 

deficient mice to follow tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital 

microscopy, and histology and analyzed the impact of v3-activation on primary tumor growth, 

intravasation, tumor cell dissemination, and target organ colonization.  The results indicate that 

expression of high affinity tumor cell v3 is not required for primary tumor growth, but does promote 

initial steps of target organ colonization from the blood stream to multiple metastatic sites. The 

mechanism by which activated v3 supports tumor cell access to target tissues depends on platelets 

which assist tumor cell extravasation.  
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Materials and Methods 

 

Cell lines, labeling, and in vivo model 

MDA-MB 435 human tumor cells were from Dr. Janet Price (MD Anderson). Variants of the parental 

cells lacking v3 and reconstituted with v3WT or v3D723R were previously described (13). 

Clone E9 cells were isolated by limiting dilution of the parental cells. Parent Combo cells represent a 

pool of 20 clones, each expressing non-activated v3 based on in vitro migration and blood perfusion 

as detailed below.  

 

For in vivo tracking, the tumor cells were stably transduced with red fluorescent protein (dsRed2) or 

firefly luciferase (Fluc) using a self-inactivating lentiviral vector (16). For hematogenous metastasis, 

1x105 - 1x106 tumor cells were injected into the tail vein of 5- to 8-week old female C.B17/lcTac-Prkdc 

scid mice (Taconic) and metastatic activity followed by non-invasive bioluminescence imaging 

(IVIS200) (17), fluorescence microscopy of lung whole mounts, or real time PCR of human alu 

sequences in lung extracts using sense primer 5’ ACG CCT GTA ATC CCA GCA CTT 3’ and antisense 

primer 5’ TCG CCC AGG CTG GAG TGC A 3’ (18).  

 

Induction of thrombocytopenia  

Thrombocytopenia was induced by i.v. injecting SCID mice with anti-murine GPIbα (CD42b) (Emfret) 

(3 μg/g bodyweight).  

 

Flow cytometry 

Integrin expression and v3 activation were analyzed by flow cytometry (FACS Calibur, Becton 

Dickinson) with anti v3 mAb VNR1-27.1 (19), or activation-dependent human ligand-mimetic scFv 

antibodies Bc-12 and Bc-15 (20). ScFv binding was detected with M2 mouse anti-FLAG and anti-

mouse-APC using TBS with or without 1mM EDTA, 1mM Ca2+, or 0.1 mM Mn2+ as binding and 

washing buffer.  

 

In vitro migration and arrest during blood flow 

Haptotactic migration toward human extracellular matrix proteins was detailed earlier (21). 

Cancer cell arrest during blood flow was measured as described (13). Briefly, dsRed tagged tumor cells 

(red fluorescence) were suspended in human blood anticoagulated with 50 nM -Pro-Arg-chloro methyl 

ketone,  spiked with 10 M mepacrine (green fluorescence) and perfused over collagen I or 
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subendothelial matrix at a venous wall shear rate of 50 s-1 (4 dynes/cm2). Adhesive events and cell 

interactions were recorded by fluorescence video microscopy and quantified at 50 predefined positions 

by image analysis using MetaMorph software.  

 

Dorsal skin fold chamber and intravital microscopy 

Tumor cell interaction with the pulmonary microvasculature was observed by intravital microscopy in 

lung allografts grown in dorsal skin fold chambers on SCID mice as described (22). Briefly, titanium 

frames were implanted into a dorsal skin fold, transplanted with SCID lung allografts 3 days later, and 

allowed to vascularize for 14 days. The allografts were superfused with TNF (50l at 1g/ml) 2.5 

hours before injecting 2.5x106 dsRed tagged tumor cells i.v. together with FITC-dextran (500 kDa) to 

visualize the vasculature. Adhesive events were observed with an intravital microscope (Leitz Biomed) 

(22). 

 

Transendothelial migration and platelet preparation 

Human pulmonary microvascular endothelial cells were grown for 5 days on transwell filters (8 m 

pores) coated with human fibronectin (10μg/ml). Monolayer integrity was measured by transendothelial 

resistance. Conditioned medium from IMR-90 fibroblasts in the lower chamber was used to attract 

tumor cells (4x104 ) seeded atop the endothelial layer during a 16 hr migration period. Where indicated, 

washed human platelets (433x103/l) were added to the tumor cell suspension, with or without 

stimulation with thrombin receptor activating peptide TRAP-6 (12.5 M). Non-migrated tumor cells 

were removed from the filter tops with cotton swaps, filters fixed in 4% paraformaldehyde and 

transmigrated tumor cells counted by fluorescence microscopy on the filter underside in 5 optical fields.  
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Results 

 

Tumor cell model for investigating a role of integrin v3 activation in hematogenous metastasis 

 

To identify critical steps within the metastatic cascade affected by the activation state of integrin v3 

and to analyze mechanisms involved, we generated a model of tumor cell of variants with a common 

genetic background and defined levels of v3 expression and activation. We chose MDA-MB 435 

human tumor cells because of their aggressive metastatic behavior in immune deficient mice, which 

makes them suitable for following individual steps of the metastatic cascade (23). The majority of 

MDA-MB 435 parental cells expresses integrin v3, but this population is heterogeneous and contains 

a subset that expresses v3 in a constitutively activated functional form, while most cells express the 

non-activated integrin (13). Our previous results indicate that cells carrying activated v3 are selected 

as the metastasis forming cells when the parental cells are injected into the blood stream (13). To 

generate cells with defined states of v3 activation without in vivo selection, which may favor 

additional properties unrelated to v3, we cloned MDA-MB 435 cells by limiting dilution and 

analyzed 25 individual clones for v3 expression and activation state. Clone E9 was identified as 

carrying v3 in a constitutively activated form because it bound soluble v3 ligands including the 

v3 specific ligand-mimetic scFv antibody Bc-15. We previously isolated this antibody from a 

combinatorial immunoglobulin library and showed that it contains an RGD integrin-binding motif 

typical for v3 ligands within CDR-H3 (20). Twenty cell clones, each of which expressed v3 but 

failed to bind Bc-15 and other soluble v3 ligands were pooled and named Parent Combo. These cells 

uniformly express non-activated v3. Figure 1 summarizes v3 expression and activation in the used 

cell variants. Bc-15 binding in the presence of calcium indicates that v3 is activated.  Binding in the 

presence of manganese indicates that intrinsically non-activated v3 can be experimentally activated to 

recognize soluble ligand. Manganese also maximizes intrinsic v3 activation. Based on these criteria, 

the cells carrying intrinsically activated v3 are clone E9, BCM2, and 3D723R mutant expressing 

cells. BCM2 were isolated after exposing very low numbers of MDA-MB 435 parental cells to human 

blood and recovering surviving, proliferating tumor cells. 3D723R cells were generated by 

reconstituting a 3-lacking subpopulation of MDA-MB 435 (3minus) with the activating 3 mutant gene. 

Reconstitution with the 3 wild type gene (3WT) results in non-activated v3 expression {7809}.  
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Functional validation of tumor cell integrin v3 activation 

 

Before investigating steps within the metastatic cascade where the activated form of tumor cell integrin 

v3 may exert its pro-metastatic properties, we verified the functional activation state of the receptor in 

our cell model. Cells carrying the activating mutant 3D723R were compared against 3minus cells,  

activated clone E9, and non-activated pool Parent Combo. We analyzed two metastasis related tumor 

cell functions that are mediated by integrin v3 and which require the activated, high affinity state of 

the receptor (15, 24).  One functions is migration toward a fibrinogen substrate, which is exclusively 

supported by v3 on these cells (21). The other function is tumor cell attachment to components of the 

vessel wall during blood flow. This process depends on activated v3 to bind soluble plasma proteins, 

such as fibrinogen, and cross link the tumor cells with platelets which then supports the arrest event 

(14). We found that the 3D723R expressing cells as well as clone E9, but not the 3minus and Parent 

Combo cells, migrated actively toward fibrinogen and this was blocked by an inhibitory anti-3 

antibody (Fig.2A). Consistent with this finding, 3D723R expressing cells and clone E9, but not 3minus 

and Parent Combo cells were able to arrest on a collagen I matrix during blood flow in a platelet-

dependent manner. The interaction of 3D723R cells and clone E9 with platelets during blood flow and 

the ability of the tumor cells to arrest were inhibited by a function blocking anti-v3 antibody 

(Fig.2B). Cells expressing 3WT that failed to bind soluble ligand binding as seen in Fig.1 also failed to 

interact with platelets and arrest during blood flow, confirming that v3 is not activated (Fig.2B). 

Thus, our cell model contains variants in which the adhesion receptor integrin v3 is expressed either 

constitutively activated (3D723R cells and clone E9) or not activated (Parent Combo and 3WT cells). 

BCM2 cells behaved like 3D723R cells and clone E9, confirming v3 activation (not shown). 

 

 

Activation of tumor cell integrin v3 promotes initial steps of target organ colonization from the 

blood stream but does not affect primary tumor growth 

 

To identify steps within the metastatic cascade in which the activation state of tumor cell integrin v3 

limits success, we first examined the ability of the cells to form a primary tumor. This was done in chick 

embryos and in the mammary fat pad of SCID mice. The chick model was chosen because it also allows 

analysis of tumor cell dissociation from a primary tumor and intravasation (18). After inoculating tumor 

cells (2x106) expressing activated mutant receptor v3D723R versus cells expressing non-activated 
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v3WT onto the chorioallantoic membrane (CAM) near the allantoic vein of 10 day old chick 

embryos, tumors were induced by each cell line and grew at similar rates. They also showed similar 

rates of intravasation, measured by the number of tumor cells in the lower CAM seven days after 

implantation (578346 3D723R, 641225 3WT, n=7/group). Quantification was based on real time 

PCR of the human alu sequences as described (18). Similarly, 3D723R expressing cells and those 

carrying 3WT, as well as 3minus cells grew at comparable rates when injected into the mammary fat 

pad of SCID mice (Fig.3A). Thus, the expression of v3 and its functional activation state apparently 

do not limit tumor formation at a primary site or the ability of tumor cells to gain access to the 

circulation.  

 

We next examined tumor cell colonization of target organs from the blood stream. At this step, 

expression of constitutively activated v3 provided the tumor cells with a clear advantage. Following 

tumor cell arrest and expansion in the lungs of SCID mice after tail vein injection by fluorescence 

microscopy and alu PCR indicated that cells expressing activated v3D723R remained in the 

pulmonary vascular bed and developed metastatic foci more successfully than cells carrying non-

activated v3WT. Of 1x106 injected cells, 8.5-9.5x105 were found in the lungs 3 hours later regardless 

of v3 activation. For both cell types, this number dropped sharply within the next 12 hours and 

reached a low point at 24 hours. At this time and during the following 18 days, 3WTexpressing cells 

were barely detectable in the lungs while 3D723R carrying cells maintained a level of about 1x105 

cells at 24 hours and then increased steadily, exceeding 2.5x108 cells compared to only 8x105 3WT 

cells on day 35 (Fig.3B). Clearance of tumor cells from lung tissue within the first 24 hours and the 

early advantage of the 3D723R expressing cells were confirmed by fluorescence microscopy 

monitoring dsRed tagged cells within the lungs (Fig.3C). Intravital microscopy of lung tissue grafts, 

grown within dorsal skin fold chambers on SCID mice, allowed to detect the arrest process of 3D723R 

expressing cells within the pulmonary microvasculature  (Fig. 3D). While the arrest events were rare and 

not suitable for quantification as only small tissue areas could be observed over time, the captured 

images provide evidence that activated v3 expressing cells can successfully arrest within the 

pulmonary vascular bed. No arrest events were observed after injection of non-activated 3WT 

expressing cells. Together, these results indicate that activated integrin v3 endows circulating tumor 

cells with functional properties that enhance the ability of the cells to colonize the lungs from the blood 

stream. An initial advantage of tumor cells carrying high affinity v3 translates into enhanced 

metastatic burden over time.  
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Integrin v3 activation promotes hematogenous metastasis to multiple sites 

 

We next asked if the advantage conferred to the tumor cells by the high affinity receptor is specific for 

colonizing the lung, or if v3 activation more generally promotes metastasis from the blood stream. To 

address this question, we used variants of our cell model that carry intrinsically activated v3. It is not 

known whether tumor cell subpopulations that express the activated integrin in vivo permanently carry 

the receptor in a high affinity form, or if the activation state is dynamically regulated. Therefore and 

because of other potential genotypic and phenotypic alterations that might be associated with intrinsic 

activation of integrin v3, we compared the metastatic activity of tumor cells with intrinsically 

activated versus non-activated v3 and monitored the distribution of metastatic lesions by non-

invasive bioluminescence imaging of SCID mice injected with firefly luciferase (F-luc) tagged tumor 

cells.  

 

E9 cells, cloned in vitro from the parent, express intrinsically activated v3 (Fig. 1). When injected 

into the venous circulation, E9 cells actively produced metastatic lesions in the lungs and other target 

organs of breast cancer and melanoma metastasis. In contrast, Parent Combo cells, representing a pool 

of 20 clones with non-activated v3, poorly colonized the lungs and other sites. Figure 4A shows 

typical organ distribution and quantification of metastatic burden in the lungs comparing clone E9 and 

Parent Combo cells. The differences in lung colonization were statistically significant when measured 

14 days after tail vein injection of 1x105 tumor cells, as well as 34 days after injecting 1x106 tumor cells, 

to challenge the system. Ex vivo imaging of excised target organs on day 56 revealed increased 

incidence of metastasis to multiple sites for clone E9 expressing the activated integrin (Fig. 4B). This 

enhancement of overall metastatic activity and potential to colonize most major target organs of breast 

cancer and melanoma metastasis from the blood stream, was confirmed with BCM-2 cells, a polyclonal 

derivative of MDA-MB 435 cells that also expresses intrinsically activated v3 (Fig. 1). Tail vein 

injected BCM-2 cells colonized the lungs, brain, liver, adrenal glands and skeletal bone, as seen by non-

invasive bioluminescence imaging and histology (Fig. 4B). Similar results were obtained with 3D723R 

cells carrying the experimentally activated mutant receptor.  These results indicate that expression of 

high affinity integrin v3 provides blood borne tumor cells with a critical advantage during the 

colonization of major target organs of metastasis.  
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Activated tumor cell integrin v3 cooperates with platelets to promote metastasis from the blood 

stream 

 

To analyze mechanisms by which the expression of tumor cell integrin v3 in a high affinity state 

supports early steps of metastasis from the blood stream, we followed a key function of the activated 

integrin that initially lead us to appreciate distinct affinity states of v in tumor cells, namely the 

ability of the activated receptor to promote tumor cell interaction with platelets (13, 14).  Here, we asked 

if an interaction between tumor cells and platelets could promote not only initial tumor cell arrest within 

the target organ microvasculature but also subsequent steps of organ colonization. After attaching to the 

microvascular endothelium of target organs, metastatic tumor cells penetrate the endothelial barrier 

before invading target tissues. To investigate this step, we analyzed the effect of v3 activation on 

tumor cell transendothelial migration in the presence or absence of platelets. Comparing cells expressing 

experimentally (3D723R) or intrinsically (BCM2) activated v3 against cells carrying the non-

activated integrin (3WT) revealed that either cell type poorly penetrated monolayers of human 

pulmonary microvascular endothelial cells in the absence of platelets. However, when platelets were 

present, tumor cells with activated v3 transmigrated very efficiently in contrast to cells with the non-

activated integrin. This response was enhanced when platelets were stimulated with thrombin receptor 

activating peptide (TRAP-6) (Fig.5A). Platelet failed to support tumor cell-transendothelial migration if 

they had previously released their -granule contents and were washed before addition to tumor cells 

and endothelial monolayers (Fig.5A). Platelet releasate alone potentiated tumor cell-induced endothelial 

retraction in 2D cocultures (not shown). This indicates that tumor cell interaction with platelets, and 

platelet activation resulting in the release of proteins and stimulants contained in platelet granules, 

strongly promote tumor cell penetration of the lung microvascular endothelium. Importantly, this 

cooperation with platelets depended on the activated state of tumor cell integrin v3, as cells 

expressing the non-activated wild type receptor (Fig.5A) and 3 knock-down cells (not shown) largely 

failed to penetrate the endothelium regardless of the presence of platelets. TRAP-6, used for platelet 

stimulation, alone had no effect on tumor cell transendothelial migration (Fig.5A). 

 

To examine if the in vitro observed effect of platelets on tumor cell invasion of the lung microvascular 

endothelium is relevant for hematogenous metastasis in vivo, we rendered SCID mice thrombocytopenic 

and followed the fate of injected tumor cells within a time window of reduced platelet counts. 

Thrombocytopenia was induced by injecting mice with an antibody against murine platelet receptor 
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GPIb. This treatment reduced platelet counts 10-fold from an average of 823x103/l to 72x103/l four 

hours after antibody injection. Counts remained low for 4 days before returning to normal. To examine 

if platelets support early events of target organ colonization, 5x105 tumor cells with activated v3, 

namely 3D723R cells and BCM2, were injected into the venous circulation 4 hours after treatment with 

anti-platelet antibody when platelet counts reached the low point. Three days later, within the time of 

reduced platelet counts, the lungs were examined by histology in serial sections throughout the lung 

tissue. As shown in Table 1, the number of detectable micrometastases for both tumor cell types was 

reduced in thrombocytopenic mice. Importantly, it was possible to discern extravasated from 

intravascular tumor cell nests by analyzing the integrity of basement membranes and the endothelium of 

the pulmonary microvasculature. Tumor cells clearly surrounded by intact endothelium were classified 

as intravascular. Tumor cells detected in thrombocytopenic animals largely failed to extravasate, while 

almost all tumor cells in mice with normal platelet counts were found outside the vasculature (Fig.5B). 

Furthermore, the majority of tumor cells in mice with normal platelet counts began to proliferate and 

incorporate BrdU on day 3 post injection, while the percentage of BrdU-positive tumor cells was 3.6-3.9 

fold reduced in thrombocytopenic animals (Tab.1). Inhibition of tumor cell extravasation by reducing 

platelet counts early during target organ colonization from the blood stream translated into reduced 

numbers and sizes of metastatic foci in the lungs 18 days after tumor cell injection (Fig.5C). Considering 

that platelet counts remained low only during the first 4 days after tumor cell injection, and then returned 

to normal allowing micrometastases to develop in the presence of normal platelet counts for the 

following 14 days, the overall reduction in metastatic burden indicates that platelets indeed played a 

major role during the initial steps of target organ colonization from the blood stream. Thus, an absence 

of platelets or the inability of tumor cells to cooperate with them can limit metastatic activity. The 

finding that activation of tumor cell integrin v3 promotes cooperation with platelets in support tumor 

cell extravasation as a critical early step of target organ colonization from the blood stream provides a 

mechanism through which the high affinity form of the integrin promotes metastasis.  
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Discussion   

 

The metastatic cascade comprises discrete steps in each of which tumor cell musts succeed to establish 

distant lesions (25). Knowledge about mechanisms supporting individual steps of the dissemination 

process can help define molecular and functional targets for therapeutic intervention and possibly 

prevention of metastatic disease.  

 

This study has yielded insight into the role of integrin activation in human tumor metastasis and 

identified extravasation of circulating tumor cells as a step where the affinity state of tumor cell integrin 

v3 makes a critical contribution. 

 

The adhesion receptor integrin v3 allows tumor cells to attach and migrate on extracellular matrix 

proteins including vitronectin, fibronectin, fibrin, and von Willebrand Factor (26). Ligation of the tumor 

cell receptor can transduce signals that promote survival, proliferation, and expression of genes 

supporting invasion, growth factor responses and stromal interaction (6, 27). In tumors such as 

melanoma, glioma, breast and ovarian cancer, v3 appears in invasive margins and distant lesions, and 

is associated with malignant progression (26, 28-31). Analyzing metastasis promoting tumor cell 

functions, we noted earlier that tumor cells can express integrin v3 in distinct states of activation and 

that cells from metastatic lesions carry the integrin in a constitutively high affinity form (13). 

Importantly, targeting of the activated conformer of v3 on circulating tumor cells with RGD 

containing ligand mimetic antibodies from cancer patients prevented metastasis from the blood stream 

(20).  

 

As most prominently shown for platelets and leukocytes, changes in integrin affinity allow the cells to 

control their adhesive properties within the blood stream and during transit between the circulation and 

tissues. Prototypic receptors capable of rapid activational changes are platelet integrin IIb3 and 

leukocyte integrins M2, L2, and 41 (4, 8). Furthermore, activation of several other 1 integrins 

was noted in different cell types associated with their relocation between tissue niches during 

development, tissue remodeling, and wound healing (7, 32-34).  While external signals, agonist 

stimulation and binding to multivalent ligands can trigger integrin activation from the outside-in (3), 

constitutive activation as noted for tumor cell v3 in our previous studies likely depends primarily on 

inside-out signals that lead to constraints in the molecular structure of the   heterodimer (2). 
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Crystallographic analyses of v3 (35, 36) showed that large-scale reorientations of the subunit 

ectodomains are linked to conformational changes in transmembrane domains (4). This involves 

formation of integrin activation complexes with intracellular integrin binding proteins, such as talin and 

Rap1-GTP-interacting adaptor molecule RIAM, which results in enhanced receptor affinity without 

altering receptor valency (8, 37). Recent evidence further suggests that oxidation of redox sensitive 

cystein residues in integrins can also trigger conformational changes leading to integrin activation and 

receptor redox modulation (38). This mechanism could be highly relevant in the dynamic control of 

integrin affinity within microenvironments of activated leukocytes and, perhaps, metastasizing tumor 

cells that can alter their metabolic properties and production of reactive oxygen species in response to 

new tissue environments. Our recent proteomic study of bone and brain metastatic cells indicated organ 

specific metabolic adaptation of the tumor cells with prominent changes in oxidative pathways and 

redox potential of the cells (17).  

 

To identify steps within the metastatic cascade that are specifically supported by tumor cell integrin 

v3, among the many other integrins and adhesion receptors expressed by disseminating tumor cells, 

and to pin-point in which mechanisms the activation state of v3 limits the rate of metastatic progress, 

we chose a cell model where v3 was identified as important for metastasis and in which proof-of-

principle exists for the requirement of v3 activation for the metastatic phenotype (13). We used the 

MDA-MB 435 cell system because it exemplifies a heterogeneous tumor cell population in which the 

majority of the cells express non-activated v3, while a small subset carries the high-affinity receptor 

apparently in a constitutively activated format. Our previous results indicate that this subset is likely 

responsible for metastasis (13). However, in vivo mechanisms providing these cells with a critical 

advantage during dissemination were unknown. Here we used variants of the MDA-MB 435 model, 

which share a genetic background and in which the v3 activation state was either controlled 

experimentally be introducing a 3 mutation that renders the heterodimer consitutively active 

(3D723R) (39), or which were selected in vitro from the parental cell population and validated for a 

stable functional activation state of the receptor. In each of these variants, the general integrin 

expression profile, including that of other v integrins were unaltered. Thus, this model allowed us to 

follow the specific contribution of activated v3 to distinct steps of the metastatic cascade, and to 

identify tumor cell extravasation from the blood stream as a rate-limiting step which requires the high 

affinity receptor. We found, in vitro and in vivo, that successful transendothelial migration further 
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depended on a cooperation between the tumor cells and platelets and involved the release of platelet 

granules.  

 

Platelet  granules contain a multitude of adhesive ligands, coagulation proteins, pro and anti-

angiogenic factors, growth factors, chemokines, cytokines, proteases and bioactive lipid metabolites, 

many of which directly affect endothelial cells and the integrity of the vascular endothelium.  For 

example, platelet released sphingosine 1-phosphate induces rapid loss of endothelial tight junction 

proteins ZO-1 and Claudin-18 (40), and lysophosphatidic acid induces vascular permeability (41). 

Metalloproteinases, and other proteases from platelet  granules, may facilitate extravastation of 

leukocytes and monocytes, specifically when activated by thrombin within the platelet 

microenvironment (42, 43). Furthermore, junctional adhesion molecules, such as JAM-C and adhesion 

receptor GPIb expressed on platelets, can serve as binding partners for leukocyte integrin M2 and 

support monocyte and neutrophil extravasation, as well as recruitment of cytotoxic T cells (44-48). Such 

mechanisms might also be involved in the ability of platelets to support angiogenesis (49, 50).  

 

Our results show that platelets and their released factors can very potently promote tumor cell 

transendothelial migration, and that platelets are in fact required for extravasation of circulating tumor 

cells in vivo. This platelet-mediated effect, supporting an initial critical step of target organ colonization 

by circulating tumor cells, depends on the expression of the activated form of tumor cell integrin v3 

in our model. It is possible that platelets, activated within the local microenvironment of tumor cells that 

have arrested within the capillary bed of target organs, promote endothelial permeability and allow 

tumor cells expressing the activated form of integrin v3 to efficiently use the receptor for penetration 

of the vessel wall and infiltration of target tissues. This potential mechanism is supported by our 

previous finding that functional activation of v3 enhances tumor cell migration and promotes 

activation of metalloproteinases, such as MMP-9 (21). In addition, our in vitro perfusion studies 

indicated that platelets may also critically contribute to tumor cell arrest during blood flow through an 

interaction mediated by activated tumor cell integrin v3. In its high affinity form, v3 is capable of 

binding soluble ligands, such as fibrinogen, that can crosslink tumor cells to platelet integrin IIb3 (13, 

14). This interaction, resulting in platelet supported tumor cell arrest in the microvasculature, resembles 

platelet-platelet cohesion during thrombus formation and platelet-leukocyte interaction via platelet 

receptors and activated leukocyte integrin M2 in inflammation. It is conceivable that platelet 

supported tumor cell arrest could promote tumor cell interaction with the endothelium in a variety of 
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capillary beds, potentially with or without help from potential target organ specific endothelial receptors, 

and assist tumor cells in colonizing multiple tissues in which the tumor cells can thrive. Indeed, our data 

indicate that tumor cells expressing the activated form of integrin v3 and therefore capable of 

interacting with platelets, show enhanced metastatic activity in all major target organs examined, and 

that reduction in platelet numbers lead to a general decrease in metastatic activity from the blood stream. 

This involves specific adhesive interactions and is not due to unpecific blockage of microvessels by 

platelet-tumor cell heteroaggregates, because we found no evidence for tumor cell induced thrombus 

formation in platelet aggregation studies, or thromboembolism by intravital microscopy and histology.  

 

Considering that experimentally induced thrombocytopenia during the initial four days after tumor cell 

injection strongly inhibited tumor cell extravasation in the mouse model, and with it significantly 

reduced metastatic burden in the long run, indicates that platelets play a critical role in early steps of the 

metastatic cascade when tumor cell disseminate via the blood stream. The cooperation between tumor 

cells and platelets gives tumor cells carrying the activated form of integrin v3 direct, and possibly 

indirect advantages for target organ colonization. Together, this study identifies the activated form of 

tumor cell integrin v3 as critical for early steps of metastasis from the blood stream and highlights the 

high affinity conformation of the receptor as a potential therapeutic target for prevention of metastatic 

disease. 
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Figure Legends 

 

Figure 1. 

Tumor cell model for integrin v3 activation in tumor metastasis 

Flow cytometry analysis of tumor cell variants expressing defined levels and activation states of integrin 

v3. The cell variants were selected from MDA-MB parental cells in vitro or generated by 

experimental expression of 3 subunit gene variants. Left panels: integrin v3 heterodimer expression 

(Mab VNR1). Right panels: integrin v3 activation state measured by binding of soluble ligand 

mimetic scFv antibody Bc-15. This human scFv antibody carries an RGD sequence within CDR-H3 and 

behaves like a natural ligand of the receptor but has the specificity of an antibody and recognizes v3 

only. Lack of scFv binding in the absence of divalent cations (blue lines = no cations) indicates cation 

dependence. Intrinsic activation of integrin v3 allows scFv binding in the presence of calcium  

(1mM) (red line = Ca), while low or no binding in calcium indicates non-activated v3 in cells that 

express the receptor. ScFv binding in the presence manganese (50 M) (green line = Mn) is maximized, 

regardless of the intrinsic v3 activation state, as long as the cells are v3 positive. Bold red +/- signs 

on the right indicate the v3 activation state. 

BCM2 cells were isolated by exposing low cell numbers of the parental cell population to human blood 

and selecting surviving, proliferating tumor cells. These cells express intrinsically activated v3. 

Parent Combo cells (PaCo) were selected from the parental cell population by single cell cloning and 

combining 20 clones each of which express non-activated v3 based on a panel of functional assays, 

including haptotactic cell migration and blood perfusion as detailed in Figure 2. E9 cells represent a 

single clone isolated by limiting dilution, expressing intrinsically activate v3. 3 minus cells largely 

lack v3 expression and were selected by exposing the parental cell population to anti-3 antibody 

coupled to saporin to kill 3- positive cells. 3WT cells are 3minus cells transfected with the 3 wild 

type subunit gene resulting in the expression of non-activated v3. 3D723R cells are 3minus cells 

transfected with the 3 D723R mutant subunit gene, resulting in the expression of intrinsically activated 

v3.  

 

Figure 2. 

Functional validation of tumor cell integrin v3 activation  

A, Haptotactic migration toward immobilized fibrinogen requires expression of integrin v3 in an 

activated functional state. MDA-MB 435 cells selected for lack of 3 expression (3 minus) failed to 
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migrate in contrast to their counterparts reconstituted with the constitutively activating 3mutant D723R 

(p<0.002). Migration of 3 mutant D723R expressing cells is strongly inhibited by blocking anti-3 

antibody (mab M21-3 at 50 g/ml) (p<0.002). E9 cells, a single clone isolated from parental MDA-MB 

435 cells by limiting dilution, express the same amount of v3 as Parent Combo cells, a pool of 20 

clones expressing the non-activated integrin, but in contrast to Parent Combo cells, E9 cells express 

v3 in an intrinsically activated form and migrated actively toward fibrinogen (p<0.001) (16 hr 

migration at 37C toward human fibrinogen immobilized at the underside of transwell insert filters with 8 

m pores). 

B, Left Panel: The ability of tumor cells to attach during blood flow to matrix components of the vessel 

wall depends upon and indicates the activated state of tumor cell integrin v3. MDA-MB 435 3 

minus, 3D723R, E9, and Parent Combo cells were suspended in whole human blood and perfused over 

a collagen I matrix at a venous wall shear rate of 2 dynes/cm2 in a parallel plate flow chamber. Tumor 

cells expressing activated v3 use the receptor to interact with platelets and, as a result, arrest at the 

matrix in the presence of shear generated by blood flow. Middle Panel: In 3D723R expressing cells 

and clone E9, the ability to arrest during blood flow is mediated by v3, as this function is blocked by 

anti v3 antibody (mab VNR1-27.1 at 50 g/ml). Right Panel: Typical images, captured at predefined 

positions, during flow of blood containing either MDA-MB 435 3D723R (left) or 3WT (right) 

expressing cells. The top images, acquired with filter settings for green fluorescence (top images) show 

arrested blood cells and thrombus forming platelets. The bottom images were captured at the same 

positions as their corresponding top images but with filters detecting red fluorescence identify the 

arrested tumor cells. Arrested tumor cells were quantified at 50 predefined positions during ongoing 

perfusion after same number of tumor cells for each cell type were allowed to pass through the chamber. 

Statistical significance was assessed by paired, one-tailed t-tests. 

 

Figure 3. 

Activation of tumor cell integrin v3 promotes initial steps of target organ colonization from the 

blood stream but is not required for primary tumor growth  

A, Tumor cell growth within the mammary fat pad as a primary site does not depend on integrin v3 

expression or the activation state of the receptor. MDA-MB 435 cells selected for lack of 3 expression 

(3-), reconstituted with 3 wild type (3WT), or with the constitutively activating mutant 3 

(3D723R) grew at similar rates after injecting 1x106 cells into the mammary fat pad of SCID mice 
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(n=8). Tumor sizes were measured with calipers by the longest and shortest diameter and calculating the 

volume as (a2xb)/2. 

B, Quantification of tumor cells in SCID mouse lungs at varying time points after tail vein injection of 

1x106 dsRed tagged MDA-MB 435 cells expressing either constitutively activated v3D723R or non-

activated v3WT. Tumor cells were quantified at the indicted time points by real time PCR of human 

alu sequences within the lung tissue. The initial signal at 3h post injection was nearly identical for both 

cell types and reflects tumor cells within the pulmonary microcirculation, most of which are cleared 

during the first day. Bars indicate numbers of lung associated tumor cells (n=5 mice), shown as percent  

( SEM) of the initial tumor cell number at 3 h post injection. Cell numbers are based on PCR standard 

curves, obtained from lung homogenates spiked with known tumor cell numbers. 

C, Lung whole mounts 3 to 12 hrs after tail vein injection of dsRed tagged tumor cells as in B, 

visualizing the tumor cells by fluorescence microscopy (10x). Representative fields are shown. 

D, Arrest of 3D723R expressing cells within the pulmonary microvasculature observed by intravital 

microscopy. Lung allografts were grown in dorsal skin fold chambers on SCID mice, allowed to 

vascularize for 14 days before superfusion with TNF (50l at 1g/ml) 2.5 hours prior to i.v. injection 

of 2.5x106 dsRed tagged tumor cells together with FITC-dextran (500 kDa) to visualize the vasculature. 

Circulation and adhesive events were recorded by intravital video microscopy (Leitz Biomed). Bar, 50 

m. 

 

Figure 4. 

Integrin v3 activation promotes hematogenous metastasis to multiple target organs  

A. Left panels: Metastatic activity of MDA-MB 435 clone E9 expressing intrinsically activated integrin 

v3 compared to 20-clone pool Parent Combo expressing non-activated v3. Non-invasive 

bioluminescence imaging of SCID mice 14 days after tail vein injection of 1x105 F-luc tagged tumor 

cells. Right panels: Quantification of metastatic burden in the lung region by non-invasive 

bioluminescence imaging 14 days after injecting 1x105 tumor cells (Top), or by real time PCR 34 days 

after injecting 1x106 tumor cells to challenge the system and following the tumor cells by human alu 

sequences (Bottom ). Each data point in the top panel represents signal from one mouse (n=8), the 

vertical line indicates the median signal in each group. Bars in the lower panel show average values (+/- 

STDEV) for each group (n=8).  Clone E9 caused significantly higher metastatic lung burden than clone 

pool Parent Combo (p=0.002 by bioluminescence imaging on day 14 after 1x105 injected tumor cells ; 
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p= 0.05 by alu PCR 34 days after 1x106 injected tumor cells). Statistical significance was assessed by 

paired, one-tailed t-tests. 

 

B. Comparison of target organ colonization by tumor cells expressing activated versus non-activated 

v3. Incidence of tumor cell burden in the lungs, brain, liver, adrenal glands and bone (hind legs) 56 

days after tail vein injection of 1x105 clone E9 versus clone pool Parent Combo. Organ associated 

metastatic burden was detected in excised organs by ex vivo bioluminescence imaging, n= 8 mice per 

group. The presence of metastatic lesions was verified by histology (right panels). Brain lesion H&E 

staining, Bar 80m. Liver lesion, top panel identifies tumor lesions by immunohistochemistry with anti 

human CD44 (Mab 29.7) (dark blue), bottom panel shows a neighboring section stained with H&E and 

lesions marked with blue asterisks, Bar 200 m. Adrenal gland section shown by H&E staining, lesions 

marked with blue asterisks, Bar 150 m. Mouse images: Multiple target organ colonization validated 

with polyclonal cell population BCM2 which express activated integrin v3. Non-invasive 

bioluminescence imaging of metastasis development in distinct target organs 56 days after tail vein 

injection 2.5x105 tumor cells. Three representative mice are shown (ventral and dorsal). Metastatic 

burden in the lungs, liver, brain, spine, and adrenal gland was confirmed by bioluminescence imaging of 

the excised organs and by histology as above.  

 

Figure 5.  

Activated integrin v3 promotes tumor cell cooperation with platelets in support of extavasation 

and metastasis from the blood stream 

A. Platelets and activated tumor cell integrin v3 together promote tumor cell transendothelial 

migration in vitro. In the presence of platelets, MDA-MB 435 cell variants with activated mutant 

v3D723R, or expressing intrinsically activated v3 (BCM2), penetrated monolayers of human lung 

microvascular endothelial cells more efficiently than tumor cells with non-activated v3WT (p=0.03). 

Experimental platelet activation with TRAP-6 (thrombin receptor activating peptide-6, a PAR1 agonist) 

before addition to the tumor cells, slightly enhances the stimulatory effect of platelets on tumor cell 

transendothelial migration (p=0.13 for D723R, p=0.21 for BCM2). TRAP-6 alone, or exhausted 

platelets stimulated with TRAP-6, allowed to release their  granules and washed before addition to 

tumor cells, did not enhance tumor cell transendothelial migration.  

B. Experimental thrombocytopenia prevents tumor cell extravasation in vivo and inhibits metastasis. 

SCID mice were injected with a polyclonal antibody against mouse platelet glycoporotein GPIb (3g/g 
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bodyweight) to induce temporary thrombocytopenia. After 4 hrs, platelet count were reduced from an 

average of 823x103/l to an average of 72x103/l and remained low for 4 days before returning to 

normal. 4 hours after induction of thrombocytopenia, 5x105 3D723R expressing cells or BCM2, both 

expressing activated integrin v3, were injected into the tail vein. Representative microscopic images 

of lung sections show tumor cells 3 days after injection into mice with normal platelet counts (top) or 

10-fold reduced platelet counts (bottom). With normal platelet counts, multiple tumor cell clusters 

(green arrows) are seen within the lung tissue outside of blood vessels. With reduced platelet counts, few 

small tumor cell clusters are seen and almost always found inside blood vessels (green arrow). Bars 100 

m. Quantification of in vivo tumor cell extravasation on Day 3 is summarized in Table 1. 

C. Experimental thrombocytopenia reduces metastasis from the blood stream. SCID mice were injected 

with anti platelet glycoprotein GPIb as above or PBS for control (n=6). Four hours later the platelet 

count had dropped from an average of 775x103/l to an average of 65x103/l in the antibody treated 

mice. At this time point, 1x105 sdRed tagged BCM2 tumor cells were injected into the tail vein and lung 

metastases counted microscopically in whole mounts of each lung lobe 18 days later. Bars denote the 

number of metastatic foci per lung  SEM, counted regardless of size. Images below show dsRed tumor 

cell lesions in lung whole mounts representative for each experimental group. Mice with normal platelet 

counts had significantly more metastases (p<0.05) than mice with thrombocytopenia. Generally, lesions 

in control mice were also considerably larger than lesions in anti-platelet treated mice. Differences in 

metastatic burden were confirmed by real time PCR of human alu sequences within the lung tissue (not 

shown). Statistical significance was assessed by paired, one-tailed t-tests. 
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Tumor cell 
type 

Platelet 
count 

Measured 
lung area 

(mm2) 

Number of 
metastases in 

measured area

Number of 
metastases / 

mm2 

 

% 
extravasated

% BrdU 
positive 

3D723R normal 85.3 
140.2 

35
83

0.410
0.592

100
95

68.6
62.4

3D723R reduced 109.6 
126.2 

9
22

0.082
0.174

0
0

15.5
18.6

BCM2 normal 84.4 
88.7 

52
38

0.616
0.428

92
100

67.2
63.0

BCM2 reduced 84.3 
86.7 

14
18

0.166
0.207

7
0

12.2
14.4

 
 

Table 1. Effect of platelets on tumor cell extravasation and early metastasis in vivo. 

Morphometric measurements of mouse lung sections 3 days after i.v. injection of MDA-MB 435 3D723R 

or BCM2 cells. Each cell type was injected into mice with normal or 10-fold reduced platelet counts 

(n=2/condition). Data for each mouse indicate the analyzed lung area, numbers of metastases found (lesion 

count regardless of size), number of metastases/area, percentage of lesions found intravascular (intact 

vascular endothelium/basement membrane), or near blood vessels with broken vascular basement membrane 

indicating extravasation. Also included is the percentage of lesions showing BrdU uptake (24 h in vivo pulse) 

indicating proliferative activity, regardless of lesion size. Tumor cell lesions in mice with normal platelet 

counts were generally considerably larger and had higher proliferative activity than lesions in 

thrombocytopenic mice.  
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