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Abstract In this (part survey) paper, we revisit algebraic and proof-theoretic methods

developed by Franco Montagna and his co-authors for proving that the chains (totally

ordered members) of certain varieties of semilinear residuated lattices embed into dense

chains of these varieties, a key step in establishing standard completeness results for

fuzzy logics. Such “densifiable” varieties are precisely the varieties that are generated

as quasivarieties by their dense chains. By showing that all dense chains satisfy a

certain e-cyclicity equation, we give a short proof that the variety of all semilinear

residuated lattices is not densifiable (first proved by Wang and Zhao). We then adapt

the Jenei–Montagna standard completeness proof for monoidal t-norm logic to show

that any variety of integral semilinear residuated lattices axiomatized by additional

lattice-ordered monoid equations is densifiable. We also generalize known results to

show that certain varieties of cancellative semilinear residuated lattices are densifiable.

Finally, we revisit the Metcalfe–Montagna proof-theoretic approach, which establishes

densifiability of a variety via the elimination of a density rule for a suitable hypersequent

calculus, focussing on the case of commutative semilinear residuated lattices.

Keywords Many-Valued Logics · Fuzzy Logics · Standard Completeness · Residuated

Lattices · Semilinearity · Density Rule

1 Introduction

Proving the completeness of an axiom system with respect to an intended semantics

is a familiar problem in the study of logical systems. For classical propositional logic,

the Lindenbaum-Tarski construction can be used to show that derivability of a formula

α is equivalent to the validity of the equation α ≈ 1 in the class BA of all Boolean

algebras. The goal then is to show that α ≈ 1 is valid in BA if and only if it is valid
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in the standard two-element Boolean algebra 2. By Birkhoff’s theorem for equational

classes, this is equivalent to showing that 2 generates BA as a variety. But also, by the

Stone representation theorem, every Boolean algebra embeds into a power of 2, so this

algebra generates BA even as a quasivariety.

Two of the most important “fuzzy” logics, with intended semantics defined over

the real unit interval [0, 1], are Gödel logic G and  Lukasiewicz logic Ł. Gödel logic was

introduced by Dummett in 1959 [23] as a generalization of finite-valued logics defined by

Gödel in 1932 [28]. The intended semantics for the logic is provided by the algebra G =

〈[0, 1],∧,∨,→, 0, 1〉, while an axiomatization is obtained as an extension of intuitionistic

logic with the prelinearity axiom schema (α→ β)∨(β → α). Completeness corresponds,

as in the classical case, to showing that the variety GA of Gödel algebras is generated

by G, which follows from the fact that GA is generated by countable Gödel chains

(totally ordered members of GA) and the observation that any countable Gödel chain

embeds into G. Proving completeness for  Lukasiewicz logic is harder. The axiom system

introduced by  Lukasiewicz in 1930 [38] was shown to be complete for the intended

semantics given by the algebra 〈[0, 1],→,¬〉, where x → y = max(1, 1 − x + y) and

¬x = 1−x, in an unpublished proof by Wajsberg in the 1930s and then a long syntactic

proof by Rose and Rosser in 1958 [48]. A more elegant algebraic proof, introducing MV-

algebras and involving the theory of lattice-ordered abelian groups, was provided by

Chang the same year [11]. For further details and references, we refer to [17].

A more general approach to logics with semantics defined over [0, 1] was initiated by

Hájek in his 1998 monograph [29]. The intended semantics of Hájek’s basic fuzzy logic

BL is the class of “standard BL-algebras” 〈[0, 1],∧,∨, ·,→, 0, 1〉, where · is a continuous

t-norm: a commutative associative increasing binary function on [0, 1] with unit 1 and

residuum→. Completeness for BL with respect to this intended semantics corresponds

to the generation of the variety of BL-algebras by the standard BL-algebras and was

proved by Cignoli et al. (essentially by showing that two axioms used by Hájek were

redundant) two years later [18]. BL thus provides an underlying logic for studying

extensions based on particular (classes of) t-norms including Gödel logic,  Lukasiewicz

logic, and also product logic where the t-norm is just ordinary multiplication [30].

Observing that a t-norm admits a residuum if and only if it is left-continuous, Godo

and Esteva introduced monoidal t-norm logic MTL in 2001 [24] with an intended

semantics given by standard MTL-algebras 〈[0, 1],∧,∨, ·,→, 0, 1〉, where · is a left-

continuous t-norm with residuum→. Standard completeness for MTL, or, equivalently,

generation of the variety of MTL-algebras by the standard MTL-algebras, was proved

by Jenei and Montagna a year later [35]. Their method was subsequently applied

to obtain standard completeness results for many other fuzzy logics, including non-

commutative, n-contractive, involutive, and first-order versions of MTL [12,25,36,46].

The “Jenei–Montagna” method for a logic L consists of establishing the following:

1. The variety of L-algebras is generated as a quasivariety by its countable chains.

2. Each countable L-chain embeds into a countable dense L-chain.

3. Each countable dense L-chain embeds into a standard L-algebra.

The first claim follows for a broad family of “semilinear” varieties of residuated lattices

(see Section 2 below), while the third claim is achieved via a Dedekind-MacNeille con-

struction that holds for varieties of residuated lattices defined by equations of a certain

form. The second claim, which provides the main focus for this paper, is established

by defining the required embeddings of chains into dense chains.
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The introduction of BL, MTL, and a plethora of related logics provided an explicit

connection between logics with intended semantics defined over the real unit interval

and substructural logics with weakening such as FLew (see [47]). This connection was

witnessed, on the one hand, by the development of hypersequent calculi for many of

these logics [1, 2, 42, 43] (see also [40, 44]) and, on the other, by the intensive study of

their algebraic semantics given by varieties of residuated lattices [9, 27, 37]. This led,

in the 2003 dissertation of the first author [39], to the introduction of new “weakening

free” substructural fuzzy logics. In particular, uninorm logic UL, was conjectured to be

complete with respect to all standard UL-algebras 〈[0, 1],∧,∨, ·,→, e, f, 0, 1〉 where · is a

left-continuous uninorm: a commutative associative increasing binary function on [0, 1]

with unit e and residuum →. In this case, however, finding the embeddings required

by the second step of the Jenei–Montagna method proved to be difficult. Metcalfe and

Montagna therefore introduced a new proof-theoretic method in 2007 [41], proving that

the variety of UL-algebras for the logic UL is generated by its dense chains and hence

also, via a Dedekind-MacNeille completion, by its standard members. This method was

subsequently simplified and extended to other families of logics in [4–7,16].

The “Metcalfe–Montagna” method for a logic L consists of the following steps:

1. A hypersequent calculus L is defined for L that is complete with respect to validity

in all L-algebras, and admits cut elimination.

2. The extension LD of L with a “density rule” is shown to be complete with respect

to validity in all dense L-chains.

3. Density elimination is proved for LD; that is, a derivation of a hypersequent in LD

can be algorithmically transformed into a derivation of the same hypersequent in L.

Remarkably, in recent papers by Galatos and Horčik [26] and Baldi and Terui [8], the

method has been reinterpreted algebraically to obtain the embeddings required by the

Jenei–Montagna method.

In this (part survey) paper, we revisit the Jenei–Montagna and Metcalfe–Montagna

methods for proving that the chains of a variety of semilinear residuated lattices embed

into dense chains of the variety. In Section 2, we prove, following related results in the

literature (see in particular [16,19,20,32,41,44]), that these “densifiable” varieties are

precisely those generated as a quasivariety by their dense chains. By showing that all

dense chains satisfy a certain e-cyclicity equation, we then give a short proof of Wang

and Zhao’s result that the variety of semilinear residuated lattices is not densifiable [50].

In Section 3, we adapt the Jenei–Montagna method of [35] to show that any variety of

integral semilinear residuated lattices axiomatized by additional lattice-ordered monoid

equations is densifiable. We also generalize methods introduced in [25, 31, 33] to show

that certain varieties of cancellative semilinear residuated lattices are densifiable. In

Section 4 we describe the Metcalfe–Montagna method of [41], providing a proof of

densifiability for the variety of commutative semilinear residuated lattices. We conclude

the paper in Section 5 with some open problems and directions for further research.

2 Densifiable varieties of semilinear residuated lattices

A residuated lattice (see [9, 27,37,45] for further details) is an algebraic structure

L = 〈L,∧,∨, ·, \, /, e〉

satisfying the following conditions:
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(a) 〈L, ·, e〉 is a monoid;

(b) 〈L,∧,∨〉 is a lattice with order ≤;

(c) \ and / are binary operations satisfying the residuation property

xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.

If ≤ is a total order, then we call L a (residuated) chain. If ≤ is also dense, then we call L

a dense chain. We recall that a residuated lattice is commutative if it satisfies xy ≈ yx,

integral if it satisfies x ≤ e, and idempotent if it satisfies xx ≈ x. In commutative

residuated lattices, the residuals x\y and y/x coincide and we therefore often replace

both with x → y, shortening the signature accordingly. We also define x0 = e and

xn+1 = x · xn for n ∈ N.

A residuated lattice is called semilinear if it is a subdirect product of residuated

chains. The class SemRL of semilinear residuated lattices forms a variety; a finite

equational basis for SemRL is provided in [9] (see also [10, 37]). Any subvariety V of

SemRL is clearly generated as a quasivariety by its countable chains; that is, V =

ISPPU (Vc), where Vc is the class of countable chains in V and I, S, P, and PU denote

the isomorphism, subalgebra, product, and ultraproduct class operators, respectively.

Equivalently, a quasi-equation is valid in V if and only if it is valid in Vc.
In this paper, we aim to identify varieties of semilinear residuated lattices that

are generated as quasivarieties by their dense chains. The following characterization

of this property is an easy consequence of [20, Theorems 3.4.3 and 3.4.11], by way

of [22, Lemma 1.5]; for convenience, we provide here a self-contained proof.

Theorem 1 A variety V of semilinear residuated lattices is generated as a quasivariety

by its dense chains if and only if each chain in V embeds into a dense chain in V.

Proof Let V be a variety of semilinear residuated lattices. For the right-to-left-direction,

it suffices to recall that every algebra in V embeds into a product of chains of V. So if

each chain in V embeds into a dense chain in V, then every algebra in V embeds into

a product of dense chains in V.

For the left-to-right direction, suppose that V is generated as a quasivariety by the

class Vd consisting of the dense chains of V, i.e., V = ISPPU (Vd). Let A ∈ V be a

non-trivial chain. Then, since an ultraproduct of dense chains is again a dense chain,

we may assume that A is a subalgebra of a product B =
∏
i∈I Bi of dense chains Bi

(i ∈ I). Given a, b ∈ B, let [a = b] = {i ∈ I : a(i) = b(i)}.
For each proper filter F on I (that is, a filter of the Boolean algebra P(I)), consider

the following congruence relation on
∏
i∈I Bi:

aθF b ⇐⇒ [a = b] ∈ F.

Note that θF ∩A2 is a congruence on A and for filters F,K on I,

θF ∩ θK = θF∩K .

We consider the set of filters

F = {F ⊆ P(I) : F is a proper filter on I and θF ∩A2 = ∆A}.

Observe that {I} ∈ F 6= ∅. Moreover, if C is a chain in F , then θ∪C ∩A2 = ∆A, which

implies that C has an upper bound in F . Hence, by Zorn’s Lemma, F has a maximal

element U , which is clearly proper. We claim that U is an ultrafilter on I.
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Let J be a proper non-empty subset J of I. Let ↑ J be the principal filter on I

generated by J , and ↑(I \ J) the principal filter generated by I \ J . Set F1 = U ∨ ↑ J
and F2 = U∨↑(I\J). Then (θF1

∩A2)∩(θF2
∩A2) = (θF1

∩θF2
)∩A2 = (θF1∩F2

)∩A2 =

θU ∩ A2 = ∆A. Since A is a chain, the element ∆A is finitely meet irreducible in the

congruence lattice of A (see [9]). Hence, either θF1
∩A2 = ∆A or θF2

∩A2 = ∆A. But

then the maximality of U implies that J ∈ U or I \ J ∈ U , establishing that U is an

ultrafilter on I. Since θU ∩A2 = ∆A, it follows that A is isomorphic to the subalgebra

A/U of B/U . We conclude the proof by observing that B/U is an ultraproduct of

dense chains and hence itself a dense chain. ut

For convenience, let us call any variety of semilinear residuated lattices satisfying one

of the equivalent conditions in Theorem 1 densifiable. The next result shows that any

densifiable variety of semilinear residuated lattices is e-cyclic, that is, it satisfies the

e-cyclicity equation x\e ≈ e/x. This equation plays a key role in the development of

Conrad-type theory in the setting of residuated lattices [10].

Lemma 1 Every dense residuated chain satisfies the e-cyclicity equation x\e ≈ e/x.1

Proof We show that x\e ≈ e/x is valid in any dense residuated chain A. Suppose for a

contradiction that a\e > e/a for some a ∈ A. Then, using residuation, a > (a\e)\e. By

assumption, a > b > (a\e)\e for some b ∈ A. So, using residuation again, e > a\b and

(a\e)b > e. Combining these inequations, (a\e)b > a\b, which gives a(a\e)b > b. But

e ≥ a(a\e), so b = eb ≥ a(a\e)b > b, a contradiction. Hence a\e ≤ e/a, and reasoning

symmetrically, a\e = e/a. ut

Consider now the three element (idempotent) residuated chain C with universe

C = {⊥, e,>} ordered by ⊥ < e < > and multiplication table

· ⊥ e >
⊥ ⊥ ⊥ >
e ⊥ e >
> ⊥ > >

It is easily checked that · is associative and residuated, so C = 〈C, ·, \, /,∧,∨, e〉 is a

residuated chain. But also ⊥\e = e and e/⊥ = >, so C is not e-cyclic. We immediately

obtain the following result:

Theorem 2 ([50]) The variety of semilinear residuated lattices is not densifiable.

The first proof of this theorem, given by Wang and Zhao in [50] (disproving a conjecture

in [44]), followed a similar pattern, but involved a more complicated equation and

a much larger algebra. A significantly shorter proof, using an equation with three

variables and a four element algebra, was provided by Horčik in [32]. It is also noted

in [32] that the variety of idempotent semilinear residuated lattices is not densifiable, an

immediate consequence here of the fact that the algebra C defined above is idempotent.

We should remark that, strictly speaking, the proofs in [32] establish the densifiability

of varieties of pointed residuated lattices (or FL-algebras): residuated lattices with

an extra constant symbol. Since this constant symbol satisfies no extra equations for

these varieties, the difference in the results is negligible. However, other failures of

densifiability established in [32] for involutive varieties of semilinear residuated lattices

(again by finding a suitable chain where an equation satisfied by all dense chains fails)

are particular to the pointed residuated lattices setting.

1 This result was observed independently by Nikolaos Galatos (private communication).
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3 An Algebraic Approach

In order to show that a variety of semilinear residuated lattices is densifiable, it suffices

to establish a single densification step: embedding chains of the variety containing a gap

between two elements into chains of the variety where the gap is filled. More precisely:

Lemma 2 A variety V of semilinear residuated lattices is densifiable if and only if any

countable chain A ∈ V satisfying a < b for some a, b ∈ A is a subalgebra of a countable

chain B ∈ V satisfying a < c < b for some c ∈ B.

Proof Let V be a variety of semilinear residuated lattices. The left-to-right direction

is straightforward. Suppose that V is densifiable and let A be a countable chain in V
satisfying a < b for some a, b ∈ A. Then A is a subalgebra of a dense chain C in V
and there exists c ∈ C such that a < c < b. We let B be the countable subalgebra

of C generated by A ∪ {c}. For the right-to-left direction, suppose that any countable

chain A ∈ V satisfying a < b for some a, b ∈ A is a subalgebra of a countable chain

B ∈ V satisfying a < c < b for some c ∈ B. To prove that V is densifiable, it suffices

to show that every countable chain A ∈ V embeds into a dense chain B ∈ V. Let

A0 = A. We define for each n ∈ N, a countable chain An+1 ∈ V such that An is a

subalgebra of An+1 and for all a, b ∈ An satisfying a < b, there exists c ∈ An+1 such

that a < c < b. Enumerate all pairs ai, bi ∈ An satisfying ai < bi and define A0
n = An

and Ai+1
n for i ∈ N as a countable chain in V (which exists by assumption) such that

Ai
n is a subalgebra of Ai+1

n and for some ci ∈ Ai+1
n , ai < ci < bi. Let An+1 ∈ V be the

countable limit algebra with universe An+1 =
⋃
i∈NA

i
n. Note that for any pair a < b

in An, there exists c ∈ An+1 such that a < c < b. Finally, let B ∈ V be the countable

limit algebra with B =
⋃
n∈NAn. Clearly A0 is a subalgebra of B, which is a dense

chain by construction. ut

This criterion for densifiability is formulated for commutative semilinear residuated

lattices in [44] and appears also in more general versions in [8, 20,26].

We will now use this lemma to establish the densifiability of various families of

varieties of semilinear residuated lattices defined by equations of a particular form. Let

us call a formula built using the operation symbols · and e, a monoid formula, and

a formula built using ∧, ∨, ·, and e, an `-monoid (short for lattice-ordered monoid)

formula. We call α ≤ β a monoid inequation if α and β are monoid formulas, and

α ≈ β an `-monoid equation if α and β are both `-monoid formulas.

Let us denote the variety of integral semilinear residuated lattices by SemIRL. The

proof of the following theorem generalizes the proof provided by Jenei and Montagna

for (bounded) commutative integral semilinear residuated lattices in [35], extended to

other varieties of integral residuated lattices by various authors in [12,25,32,36].

Theorem 3 Any variety defined over SemIRL by `-monoid equations is densifiable.

Proof Let V be a non-trivial variety defined over SemIRL by `-monoid equations. By

distributing joins and meets over multiplication and using lattice distributivity, every

`-monoid formula is clearly equivalent to either a join of meets of monoid formulas or

a meet of joins of monoid formulas. Hence every `-monoid equation can be replaced

by inequations with a join of meets of monoid formulas on the left and a meet of joins

of monoid formulas on the right. Using standard lattice properties, it follows that V is

axiomatized over SemIRL by inequations of the form

α1 ∧ . . . ∧ αn ≤ β1 ∨ . . . ∨ βm
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where α1, . . . , αn, β1, . . . , βm are monoid formulas built using the variables x1, . . . , xk.

We claim that the formulas β1, . . . , βm can be chosen in such a way that any variable

occurring on the right occurs on the left of these inequations. Suppose that this is not

the case for some variable xi. Observe that xi does not occur in some βj ; otherwise,

e ≤ xi holds in all algebras in V, contradicting the fact that A is a non-trivial algebra.

Now let α1 ∧ . . . ∧ αn ≤ β′1 ∨ . . . ∨ β′m be the inequation obtained by substituting xi
with βj . If the original inequation holds in an integral semilinear residuated lattice A,

then clearly so does the new inequation, as it is a substitution instance of the original

inequation. The converse also holds, since, by integrality, β′k ≤ βj holds in A for each k

such that xi occurs in βk. So we have removed xi from the equation without changing

V. The claim follows by repeating this argument.

Now let A ∈ V be a countable chain and consider a, b ∈ A satisfying a < b. By

Lemma 2, it suffices to show that A is a subalgebra of some countable chain B ∈ V
satisfying a < c < b for some c ∈ B. Let us therefore assume that for all c ∈ A, either

c ≤ a or b ≤ c. Let 2 = {0, 1} be the two-element chain and let

B = {(c, 1) : c ∈ A} ∪ {(b, 0)}

be the countable subset of the lexicographic product A
−→×2 endowed with the restriction

of the order of A
−→×2. Define

(u, r) ·B (v, s) = (uv, 1) ∧ (u, r) ∧ (v, s).

Observe first that

(u, r)(e, 1) = (ue, 1) ∧ (u, r) ∧ (e, 1) = (u, r) = (eu, 1) ∧ (e, 1) ∧ (u, r) = (e, 1)(u, r).

Also, if (u, r) ≤ (v, s), then u ≤ v, so uw ≤ vw and wu ≤ wv, and

(u, r)(w, t) = (uw, 1) ∧ (u, r) ∧ (w, t) ≤ (vw, 1) ∧ (v, s) ∧ (w, t) = (v, s)(w, t)

(w, t)(u, r) = (wu, 1) ∧ (w, t) ∧ (u, r) ≤ (wv, 1) ∧ (w, t) ∧ (v, s) = (w, t)(v, s).

Since B is a chain, it follows also that

((u, r) ∧ (v, s))(w, t) = (u, r)(w, t) ∧ (v, s)(w, t).

Hence, for associativity, we obtain

((u, r)(v, s))(w, t) = ((uv, 1) ∧ (u, r) ∧ (v, s))(w, t)

= (uv, 1)(w, t) ∧ (u, r)(w, t) ∧ (v, s)(w, t)

= (uvw, 1) ∧ (uv, 1) ∧ (uw, 1) ∧ (vw, 1) ∧ (u, r) ∧ (v, s) ∧ (w, t)

= (uvw, 1) ∧ (u, r) ∧ (v, s) ∧ (w, t)

= (u, r)((v, s)(w, t)).

For the residuals, we observe that

(u, r)(v, s) ≤ (w, 1) ⇐⇒ (uv, 1) ∧ (u, r) ∧ (v, s) ≤ (w, 1)

⇐⇒ uv ≤ w
⇐⇒ v ≤ u\w
⇐⇒ (v, s) ≤ (u\w, 1),
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noting that in the second equivalence, if (uv, 1) ∧ (u, r) ∧ (v, s) ≤ (w, 1), then either

(uv, 1) ∧ (u, r) ∧ (v, s) = (uv, 1), or one of uv = u ≤ w and uv = v ≤ w holds. Hence

we obtain

(u, r)\(w, 1) = (u\w, 1) and, similarly, (w, 1)/(v, s) = (w/v, 1).

But also,

(u, r)(v, s) ≤ (b, 0) ⇐⇒ (uv, 1) ∧ (u, r) ∧ (v, s) ≤ (b, 0)

⇐⇒ (uv, 1) ≤ (a, 1) or (u, r) ∧ (v, s) ≤ (b, 0),

so, writing ⇒ for the Heyting implication of B viewed as a chain, we obtain

(u, r)\(b, 0) = (u\a, 1)∨((u, r)⇒ (b, 0)) and (b, 0)/(v, s) = (a/v, 1)∨((v, s)⇒ (b, 0)).

Hence B is an integral residuated chain. Now observe that

(u1, r1)(u2, r2) · · · (un, rn) = (u1u2 . . . un, 1) ∧ (u1, r1) ∧ (u2, r2) ∧ . . . ∧ (un, rn).

We aim next to show that B satisfies all defining inequations of V of the form

α1 ∧ . . . ∧ αn ≤ β1 ∨ . . . ∨ βm

where α1, . . . , αn, β1, . . . , βm are monoid formulas built using the variables x1, . . . , xk
and each xi occurs on the left. Consider ui ∈ A and ri ∈ {0, 1} for 1 ≤ i ≤ k. Let vp
and wq be the elements of A obtained for 1 ≤ p ≤ n and 1 ≤ q ≤ m by evaluating αp
and βq with each xi assigned to ui. Without loss of generality, we may assume that

v1 = min{v1, . . . , vn} and w1 = max{w1, . . . , wm}. The inequation above holds in A,

so v1 ≤ w1. Now let v′p and w′q be the elements of B obtained for 1 ≤ p ≤ n and

1 ≤ q ≤ m by evaluating αp and βq with each xi assigned to (ui, ri). Then, recalling

the definition of the multiplication in B and the fact that each αp and βq are monoid

formulas, we obtain

v′1 ∧ . . . ∧ v′n =
∧n
p=1(vp, 1) ∧ (u1, r1) ∧ . . . ∧ (uk, rk)

≤ (v1, 1) ∧ (u1, r1) ∧ . . . ∧ (uk, rk)

≤ (w1, 1) ∧ (u1, r1) ∧ . . . ∧ (uk, rk)

≤
∨m
q=1((wq, 1) ∧ (u1, r1) ∧ . . . ∧ (uk, rk))

≤ w′1 ∨ . . . ∨ w′m.

We may therefore conclude that B ∈ V and that a 7→ (a, 1) is an embedding of A into

B with (a, 1) < (b, 0) < (b, 1) as required. ut

It is worth making a few remarks in connection with the preceding proof. Observe

first that if our goal were to embed A into a totally-ordered residuated semigroup

containing an element between a and b, then we could define multiplication as simply

(u, r) ·B (v, s) = (uv, 1) (see Lemma 4.1.2 of [32]). The more complicated version

(u, r) ·B (v, s) = (uv, 1) ∧ (u, r) ∧ (v, s) is required here to ensure that (e, 1) is a unit

of the multiplication. Observe also that more straightforward options are available for

the target algebra B if we are concerned only with embedding A into a residuated

chain containing an element between a and b. One could, for example, consider the

whole algebra A
−→×2 instead of B above, defining multiplication in the same manner.
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More generally, it suffices to construct a totally ordered monoid extension B of A that

contains c with a < c < b. While B may not possess all residuals, we require that it

preserves those in A. Now the embedding of B into the residuated chain L(B) of all

order-ideals of B preserves products, residuals, finite joins, and all existing meets. The

subalgebra C of L(B) generated by B is a countable chain in SemIRL that satisfies

the required density property.

As remarked above, densifiability results have often been stated for varieties in

the signature of pointed residuated lattices. The following lemma shows that in an

integral setting, adding axioms ensuring that the additional constant ⊥ denotes the

least element makes no difference to the densifiability of the variety.

Lemma 3 Let V be a densifiable variety of integral semilinear residuated lattices and

let V ′ be the variety of integral semilinear bounded residuated lattices defined by the

equational theory of V and ⊥ ≤ x. Then V ′ is densifiable.

Proof Let V and V ′ be as in the statement of the lemma and consider any chain A′ ∈ V ′.
Then the residuated lattice reduct A of A′ is in V. By assumption, A embeds into a

dense chain B ∈ V. Let ⊥′ be the image in B of the bottom element ⊥ of A, and define

C to be the interval [⊥′, e]. It is clear that C is closed under the lattice and residual

operations of B. Also, since A embeds into B, ⊥′ is an idempotent element of B and

a, b ∈ C implies ⊥′ = ⊥′⊥′ ≤ ab ≤ e, i.e., ab ∈ C. So C with the operations of B

restricted to C forms a subalgebra C of B. Let C′ be C with an additional constant

interpreted by ⊥′. Then C′ is a dense chain in V ′, and clearly A′ embeds into C′. ut

A residuated lattice is called cancellative if it satisfies xy/y ≈ x and x\xy ≈ y.

The variety CanSemRL of cancellative semilinear residuated lattices then consists of

all residuated lattices satisfying the semigroup cancellation laws xy ≈ xz ⇒ y ≈ z

and yx ≈ zx ⇒ y ≈ z. Important subvarieties of CanSemRL include the varieties

SemLG and SemLG− of semilinear `-groups and negative cones of semilinear `-groups,

respectively. The densifiability results below generalize or adapt methods used to prove

(standard) completeness results for ΠMTL and related logics in [25,31,33].

Theorem 4 Any variety defined over CanSemRL or SemLG− by monoid inequations

is densifiable.

Proof Any trivial variety is densifiable, so let V be a non-trivial variety defined over

CanSemRL or SemLG− by monoid inequations. We claim that V contains a countable

non-trivial integral chain C. If V is a variety of negative cones of lattice-ordered groups,

then the free algebra of V on one generator is in V and isomorphic to 〈Z−,∧,∨,+,→, 0〉
where x→ y = min(0, y − x). If V is defined over CanSemRL by monoid inequations,

then V must contain a countable chain with a non-trivial negative cone C. Clearly, C

is semilinear, cancellative, and, since taking the negative cone preserves all inequations

between monoid terms, C is in V.

Now consider any countable chain A ∈ V and B = A×C with lexicographic order

≤B. The operation

(a, x) ·B (b, y) := (ab, xy)

is clearly associative with neutral element (e, e) and cancellative. Also, if (a, x) ≤ (b, y)

then a < b or a = b and x ≤ y. Hence for each (c, z) ∈ B, ac ≤ bc and it follows that

either ac < bc or ac = bc and xz ≤ yz, i.e.,

(a, x)(c, z) = (ac, xz) ≤ (bc, yz) = (b, y)(c, z).
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Moreover, it is easily checked that

(a, x)\B(b, y) =

{
(a\b, x\y) if a(a\b) = b

(a\b, e) if a(a\b) < b

(a, x)/B(b, y) =

{
(a/b, x/y) if (a/b)b = a

(a/b, e) if (a/b)b < a.

Hence B is a cancellative residuated chain and a negative cone if A is also a negative

cone. Moreover, B satisfies any monoid inequation satisfied by A and C and is hence

in V. Finally, a 7→ (a, e) is an embedding of A into B and whenever a < b in A, also

(a, e) < (b, c) < (b, e) for some c < e in C. ut

In the context of `-groups, we consider the inverse operation x−1 = x\e = e/x and

call inequations between formulas built using ·, e, and −1 group inequations.

Theorem 5 Any variety defined over SemLG by group inequations is densifiable.

Proof Let V be a non-trivial variety defined over SemLG by group inequations and

consider any countable chain A ∈ V. Define B as the lexicographic product of A and

Z = 〈Z,∧,∨,+,−, 0〉 ∈ V, where

(a, x) ·B (b, y) = (ab, x+ y)

(a, x)\B(b, y) = (a\b, y − x)

(a, x)/B(b, y) = (a/b, x− y).

Then B is a totally ordered group. Moreover, all group inequations satisfied by both

A and Z are satisfied by B, so B ∈ V. Observe finally that a 7→ (a, 0) is an embedding

of A into B such that whenever a < b in A, also (a, 0) < (a, 1) < (a, b) in B. ut

The previous theorem provides only a limited family of varieties of `-groups closed

under lexicographic products by Z. It is shown in [34] that there are uncountably many

varieties of `-groups that are closed with respect to such lexicographic products and

an equal number of semilinear varieties that are not. Many of the varieties that do are

not of the type described in Theorem 5. Second, lexicographic products can dramat-

ically change the membership of a variety. Indeed, there is an interesting example of

a semilinear `-group variety V such that, if Vl is the variety generated by all algebras

{Z−→×G | G ∈ V}, then [V,Vl] is an uncountable interval of semilinear varieties.

We turn our attention now to a further characterization of densifiability that is

particularly useful in syntactic approaches to this property. Let Fm(Y ) be the formula

algebra of the language of residuated lattices over a set of variables Y , writing just Fm

when Y is a fixed countably infinite set of variables X. For any class K of residuated

lattices, we define for Σ ∪ {α} ⊆ Fm,

Σ `K α ⇐⇒ for each A ∈ K and homomorphism h : Fm→ A,

whenever e ≤ h(β) for all β ∈ Σ, also e ≤ h(α).

It is easily shown that `K is a substitution-invariant consequence relation (see [45] for

details). Moreover, if K is a quasivariety, then `K is finitary: that is, whenever Σ `K α,

then there exists some finite Σ′ ⊆ Σ such that Σ′ `K α. If a variety V is generated as
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a quasivariety by K ⊆ V, then a quasi-equation is valid in V if and only if it is valid in

K, and for Σ ∪ {α} ⊆ Fm,

Σ `V α ⇐⇒ Σ `K α.

Hence, any variety V of semilinear residuated lattices satisfies the following linearity

property for Σ ∪ {α, β} ⊆ Fm:

Σ ∪ {α\β} `V γ1 and Σ ∪ {β\α} `V γ2 =⇒ Σ `V γ1 ∨ γ2.

Moreover, for any variety V of commutative residuated lattices and Σ ∪ {α, β} ⊆ Fm,

we have the following “local deduction theorem”:

Σ ∪ {α} `V β ⇐⇒ there exists n ∈ N such that Σ `V (α ∧ e)n → β.

We refer to [20,27,44] for further details and references.

Let FV (Y ) be the free algebra of a variety V of residuated lattices on a set of

variables Y ⊆ X. We denote the image of α under the natural map from Fm(Y ) to

FV (Y ) by ᾱ. Given Σ ⊆ Fm(Y ), we write FV (Y )/Σ to denote the quotient of FV (Y )

by the convex normal subalgebra of FV (Y ) generated by {ᾱ : α ∈ Σ}. We note that for

any countable A ∈ V and Y ⊆ X of the same cardinality as A, there exists Σ ⊆ Fm(Y )

such that A is isomorphic to FV (Y )/Σ. Note also that for any α, β ∈ Fm(Y ),

Σ `V α\β ⇐⇒ FV (Y )/Σ |= α ≤ β,

where |= denotes the usual satisfaction relation of first-order logic. We are now able

to prove our further characterization of densifiable varieties of semilinear residuated

lattices, established for the commutative case in [41] and generalized to extended lan-

guages in [16] and implicational semilinear logics in [20,21]. Let us write Var(S1, . . . , Sn)

for the set of variables occurring in some structures (sets, multisets, sequents, or hy-

persequents) S1, . . . , Sn defined over Fm.

Lemma 4 A variety V of semilinear residuated lattices is densifiable if and only if for

any Σ ∪ {α, β, γ} ⊆ Fm and variable x 6∈ Var(Σ, α, β, γ):

Σ `V (α\x) ∨ (x\β) ∨ γ =⇒ Σ `V (α\β) ∨ γ.

Moreover, if V is a commutative variety, then V is densifiable if and only if for any

{α, β, γ} ⊆ Fm and variable x 6∈ Var(α, β, γ):

`V (α→ x) ∨ (x→ β) ∨ γ =⇒ `V (α→ β) ∨ γ.

Proof Suppose first that V is densifiable and hence generated as a quasivariety by its

dense chains. Consider Σ ∪ {α, β, γ} ⊆ Fm and x 6∈ Var(Σ, α, β, γ). If Σ 6`V (α\β) ∨ γ,

then for some dense chain A ∈ V and homomorphism h : Fm → A, we have h(δ) ≥ e

for each δ ∈ Σ, h(α) > h(β), and h(γ) < e. Because A is a dense chain, there exists

c ∈ A such that h(α) > c > h(β). We define h′ : Fm → A by h′(y) = c if y = x, and

h′(y) = h(y) otherwise. Then h(δ) ≥ e for each δ ∈ Σ, h′(α) > h′(x) > h′(β), and

h′(γ) < e. So Σ 6`V (α\x) ∨ (x\β) ∨ γ.

For the converse direction, consider a >A b in a countable residuated chain A ∈
V. We need to prove that there exists a residuated chain B ∈ V such that A is a

subalgebra of B and a >B c >B b for some c ∈ B. First, because A is countable,

we can assume that A = FV (Y )/Σ, for some set of formulas Σ ⊆ Fm(Y ) such that
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x 6∈ Y . For γ ∈ Fm(Y ), let us write [γ] for the equivalence class of γ̄ in A. Consider

a = [α] >A [β] = b and define

∆ = {γ\δ : γ, δ ∈ Fm(Y ) and [γ] >A [δ]}

Then Σ 6`V (α\β) ∨
∨

∆′ for any finite ∆′ ⊆ ∆ and hence also, by assumption,

(?) Σ 6`V (α\x) ∨ (x\β) ∨
∨

∆′ for any finite ∆′ ⊆ ∆.

Enumerate all pairs of formulas 〈γn, δn〉 from Fm(Y ∪ {x}). Let Σ0 = Σ and define

Σn+1 for n ∈ N such that Σn+1 = Σn ∪ {γn\δn} or Σn+1 = Σn ∪ {δn\γn} and (?) is

satisfied by Σn+1. If this were not possible at step n+ 1, then we would have

Σn ∪ {γn\δn} `V (α\x) ∨ (x\β) ∨
∨

∆1 for some finite ∆1 ⊆ ∆

and Σn ∪ {δn\γn} `V (α\x) ∨ (x\β) ∨
∨

∆2 for some finite ∆2 ⊆ ∆.

But then, by the linearity property,

Σn `V (α\x) ∨ (x\β) ∨
∨

(∆1 ∪∆2),

a contradiction. Let Σ∗ =
⋃
n∈N Σn and define B = FV (Y ∪ {x})/Σ∗. Then B is a

chain by construction. Also, writing now [γ] for the equivalence class of γ̄ in B, we have

[α] >B [x] >B [β]. Finally, A can be viewed as a subalgebra of B by construction: if

[γ] >A [δ], then Σ 6`V γ\δ and so also Σ∗ 6`V γ\δ, and [γ] >B [δ].

Suppose now that V is a commutative variety. The right-to-left direction follows

immediately from the more general case above. For the other direction, suppose that

for any {α, β, γ} ⊆ Fm and x 6∈ Var(α, β, γ), whenever `V (α → x) ∨ (x → β) ∨ γ,

also `V (α → β) ∨ γ. We prove that this implication holds also in the presence of a

set of formulas Σ and hence that V is densifiable. Consider Σ ∪ {α, β, γ} ⊆ Fm and

x 6∈ Var(Σ, α, β, γ) such that

Σ `V (α→ x) ∨ (x→ β) ∨ γ.

By the local deduction theorem, for some {δ1, . . . , δm} ⊆ Σ and δ = (δ1∧e) · · · (δm∧e),

`V δ → ((α→ x) ∨ (x→ β) ∨ γ)

and, using some valid equations of commutative semilinear residuated lattices,

`V ((δ · α)→ x) ∨ (x→ (δ → β)) ∨ (δ → γ).

So then, by assumption,

`V ((δ · α)→ (δ → β)) ∨ (δ → γ),

and, using some valid equations of commutative semilinear residuated lattices,

`V (δ · δ)→ ((α→ β) ∨ γ).

But δ · δ is of the form (δ′1 ∧ e) · . . . · (δ′k ∧ e) for some {δ′1, . . . , δ′k} ⊆ Σ, so by the local

deduction theorem once more, Σ `V (α→ β) ∨ γ. ut

Let us remark that the proof of the second part of this theorem for commutative

varieties of semilinear residuated lattices makes essential use of the local deduction

theorem for such varieties. We do not know, however, whether or not the statement

holds in the more general setting of semilinear residuated lattices.
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4 A Proof-Theoretic Approach

In this section we describe a proof-theoretic method for establishing the densifiability

of semilinear varieties, introduced by Metcalfe and Montagna in [41] and developed

further in [4–7, 16]. For convenience and clarity of exposition, we focus here on just

one fundamental example: the variety CSemRL of commutative semilinear residuated

lattices. By Lemma 2, we know that in any densifiable variety, a countable chain

containing a gap can be embedded into a countable chain where the gap has been filled

by at least one element. However, it can be a challenging problem – for non-integral

varieties in particular – to find these embeddings. Indeed, recent work of Galatos and

Horčik [26] and Baldi and Terui [8] demonstrates the usefulness of proceeding in the

opposite direction: appropriate embeddings for CSemRL and other varieties have been

obtained via an analysis of the corresponding proof-theoretic approach.

Recall that by Lemma 4, it suffices for the densifiability of CSemRL to show that for

any {α, β, γ} ⊆ Fm and x 6∈ Var(α, β, γ), whenever `CSemRL (α→ x) ∨ (x→ β), also

`CSemRL (α→ β)∨γ. We could try to establish this property by considering derivations

of corresponding equations in equational logic or formulas in a suitable axiom system.

However, in such proof systems, we have very little control over the formulas that

occur in derivations. Instead, we make use here of a hypersequent calculus that is

not only sound and complete with respect to validity in CSemRL, but also admits

cut elimination, allowing us to consider only derivations built from subformulas of the

formula to be proved.

Let us define a sequent as an ordered pair consisting of a multiset of formulas Γ and

a formula α, written Γ⇒ α. A hypersequent is a finite multiset of sequents, written

Γ1 ⇒ α1 | . . . | Γn ⇒ αn.

Hypersequent rules are sets of rule instances, each consisting of a finite set of hyperse-

quents called the premises of the rule and a further hypersequent called the conclusion.

These are typically presented schematically using α, β, γ, δ as metavariables for formu-

las, Γ,Π,∆,Σ as metavariables for finite multisets of formulas, and G,H as metavari-

ables for hypersequents. A hypersequent calculus is just a set of hypersequent rules. In

Figure 1, we present a hypersequent calculus CSemRL for the variety of commutative

semilinear residuated lattices; we also define CSemRL◦ to be CSemRL without (cut).

A derivation of a non-empty hypersequent G in a calculus S is a finite labelled tree

such that the root node is labelled G and for each node labelled G0 with child nodes

labelled G1, . . . ,Gn, there is a rule instance of a rule of S with premises G1, . . . ,Gn
and conclusion G0. Note in particular that a derivation in CSemRL will have leaves

labelled with hypersequents of the form G | α ⇒ α, corresponding to the rule (id)

whose instances have no premises. We write d `S G to denote that there is a derivation

d of G in S, or just `S G if the particular derivation is unimportant. Note that `S can

also be defined as a consequence relation between hypersequents, where hypersequents

on the left can label leaves in a derivation, but we will not need this here (see [45] for

further details).
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Axioms Cut Rule

G | α⇒ α
(id)

G | Γ⇒ α G | Π, α⇒ δ

G | Γ,Π⇒ δ
(cut)

Structural Rules

G
G | H

(ew)
G | H
G | H | H

(ec)
G | Γ,Σ⇒ γ G | Π,∆⇒ δ

G | Γ,∆⇒ γ | Π,Σ⇒ δ
(com)

Left Operation Rules Right Operation Rules

G | Γ⇒ δ

G | Γ, e⇒ δ
(e⇒)

G |⇒ e
(⇒e)

G | Π⇒ α G | Γ, β ⇒ δ

G | Γ,Π, α→ β ⇒ δ
(→⇒)

G | Γ, α⇒ β

G | Γ⇒ α→ β
(⇒→)

G | Γ, α, β ⇒ δ

G | Γ, α · β ⇒ δ
(·⇒)

G | Γ⇒ α G | Π⇒ β

G | Γ,Π⇒ α · β
(⇒·)

G | Γ, α⇒ δ

G | Γ, α ∧ β ⇒ δ
(∧⇒)1

G | Γ⇒ α

G | Γ⇒ α ∨ β
(⇒∨)1

G | Γ, β ⇒ δ

G | Γ, α ∧ β ⇒ δ
(∧⇒)2

G | Γ⇒ β

G | Γ⇒ α ∨ β
(⇒∨)2

G | Γ, α⇒ δ G | Γ, β ⇒ δ

G | Γ, α ∨ β ⇒ δ
(∨⇒)

G | Γ⇒ α G | Γ⇒ β

G | Γ⇒ α ∧ β
(⇒∧)

Fig. 1 The Hypersequent Calculus CSemRL

Example 1 We derive the prelinearity law in CSemRL as follows:

x⇒ x (id) y ⇒ y (id)

x⇒ y | y ⇒ x
(com)

x⇒ y |⇒ y → x
(⇒→)

⇒ x→ y |⇒ y → x
(⇒→)

⇒ x→ y |⇒ (x→ y) ∨ (y → x)
(⇒∨)2

⇒ (x→ y) ∨ (y → x) |⇒ (x→ y) ∨ (y → x)
(⇒∨)1

⇒ (x→ y) ∨ (y → x)
(ec)

Notice that the hypersequent (x ⇒ y | y ⇒ x) two lines down can be read as just a

“hypersequent translation” of (x→ y) ∨ (y → x).
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We interpret sequents and non-empty hypersequents by the function

I(β1, . . . , βm ⇒ α) = (β1 · . . . · βm)→ α

I(Γ1 ⇒ α1 | . . . | Γn ⇒ αn) = I(Γ1 ⇒ α1) ∨ . . . ∨ I(Γn ⇒ αn).

The following soundness, completeness, and cut elimination results are proved in [41]:

Theorem 6 For any non-empty hypersequent G:

`CSemRL I(G) ⇐⇒ `CSemRL G ⇐⇒ `CSemRL◦ G.

General approaches to defining sequent and hypersequent calculi for varieties of (semi-

linear) residuated lattices and establishing cut elimination are described in [13–16,44].

Let us just remark here that calculi for integral commutative semilinear residuated lat-

tices and idempotent integral commutative semilinear residuated lattices are obtained

by extending CSemRL with, respectively, a weakening rule (wl), and both (wl) and a

contraction rule (cl):

G | Γ⇒ δ

G | Γ,Π⇒ δ
(wl)

G | Γ,Π,Π⇒ δ

G | Γ,Π⇒ δ
(cl)

By adding also axioms for a constant ⊥ of the form Γ,⊥ ⇒ δ, we obtain calculi for the

varieties of MTL-algebras and Gödel algebras. However, to obtain calculi for varieties

of (bounded) pointed residuated lattices, we should, in general, adapt the definition of

a sequent slightly to allow an empty right hand side.

We now consider an appropriate “density” rule that corresponds to the condition

in Lemma 4:

G | Γ⇒ x | Π, x⇒ δ

G | Γ,Π⇒ δ
(density)

x 6∈ Var(G,Γ,Π, δ}.

A version of the density rule was introduced by Takeuti and Titani in the context of

first-order Gödel logic in [49], and a first constructive density elimination procedure

was given for a hypersequent calculus for this logic by Baaz and Zach in [3].

We define CSemRLD to be the calculus CSemRL extended with (density). We will

show below that this extended calculus admits density elimination: that is, any deriva-

tion in CSemRLD can be transformed into a derivation in CSemRL. The transformation

proceeds (following [16]) by removing applications of the rule that are uppermost in a

derivation. For example, suppose that we have a derivation d ending

...
Γ⇒ x | Π, x⇒ δ

Γ,Π⇒ δ
(density)

Intuitively, we would like to replace occurrences of x in d “asymmetrically”: with Γ if

x occurs on the left, and with Π on the left and δ on the right, if x occurs on the right.

What we obtain might no longer be a derivation, but is still a finite tree labelled with

hypersequents, now ending
...

Γ,Π⇒ δ | Π,Γ⇒ δ

Γ,Π⇒ δ
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The last step is an application of (ec) and applications of the operational rules and most

structural rules are preserved by this replacement. Where the derivation potentially

breaks down is in applications of (com) where xs can occur in premises on both the

left and the right. For instance, if d ends with

x⇒ x (id)

...

Γ′,Π⇒ δ

Γ′ ⇒ x | Π, x⇒ δ
(com)

...
Γ⇒ x | Π, x⇒ δ

Γ,Π⇒ δ
(density)

then replacing xs as suggested, we get

Γ,Π⇒ δ

...

Γ′,Π⇒ δ

Γ′,Π⇒ δ | Γ,Π⇒ δ
(com)

...
Γ,Π⇒ δ | Γ,Π⇒ δ

Γ,Π⇒ δ
(ec)

But now we are missing the sub-derivation of (Γ,Π ⇒ δ), which was what we wanted

to prove in the first place. However, in this case, we can simply replace the application

of (com) with an application of (ew) and remove the occurrence of (Γ,Π ⇒ δ) as a

premise. Indeed, we can in general use applications of (cut) to repair such derivations.

Theorem 7 CSemRLD admits density elimination.

Proof We first introduce some useful notation. Let us assume that (subscripted) λ and

µ denote non-negative integers, and, for any multiset of formulas Γ, let Γλ denote the

multiset union of λ copies of Γ. We use [, ] to denote multisets and the symbol ] for

multiset union. Given hypersequents

G = ([Γi ⇒ x]ni=1 | [Πj , [x]λj ⇒ γj ]
m
j=1 | [Σk, [x]µk+1 ⇒ x]lk=1)

Hx = (H | Γ⇒ x | Π, x⇒ δ)

where x 6∈ Var(Γ1, . . . ,Γn,Π1, . . . ,Πm, γ1, . . . , γm,Σ1, . . . ,Σl,H,Γ,Π, δ), we define

(G,Hx)D = (H | [Γi,Π⇒ δ]ni=1 | [Πj ,Γ
λj ⇒ γj ]

m
j=1 | [Σk,Γ

µk ⇒ e]lk=1).

Then it is sufficient to establish the following:

Claim. If d1 `CSemRL◦ G and d2 `CSemRL◦ Hx, then `CSemRL (G,Hx)D | Γ,Π⇒ δ.

To see that this suffices, observe that an uppermost application of (density) can be

eliminated. Let G = (G′ | Γ ⇒ x | Π, x ⇒ δ) be the premise of such an application

and suppose that `CSemRL G. Then by cut elimination, `CSemRL◦ G and it follows from the

claim applied with Hx = G that `CSemRL G′ | G′ | Γ,Π⇒ δ | Γ,Π⇒ δ | Γ,Π⇒ δ. So by

(ec), we obtain `CSemRL G′ | Γ,Π⇒ δ as required.
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We prove the claim by induction on the height of d1. If G = (G′ | x ⇒ x) or

G = (G′ | α ⇒ α) for some other formula α, then the result follows by (⇒ e) or (id),

respectively. Otherwise, we consider the last rule applied in d1. The cases of (ec) and

(ew) are immediate using the induction hypothesis. For the operational rules, we have

many cases that follow a common pattern. Suppose for example that d1 ends with

...

G′ | Σ1,1, [x]µ
′
⇒ α

...

G′ | Σ1,2, β, [x]µ1+1−µ′ ⇒ x

G′ | Σ1,1,Σ1,2, α→ β, [x]µ1+1 ⇒ x
(→⇒)

where Σ1 = Σ1,1 ] Σ1,2 ] [α → β] and G′ = ([Γi ⇒ x]ni=1 | [Πj , [x]λj ⇒ γj ]
m
j=1 |

[Σk, [x]µk+1 ⇒ x]lk=2). There are two subcases:

(i) If µ′ < µ1 + 1, then using the induction hypothesis twice:

`CSemRL (G′,Hx)D | Σ1,1,Γ
µ′ ⇒ α | Γ,Π⇒ δ

`CSemRL (G′,Hx)D | Σ1,2, β,Γ
µ1−µ′ ⇒ e | Γ,Π⇒ δ.

So by an application of (→⇒),

`CSemRL (G′,Hx)D | Σ1,Γ
µ1 ⇒ e | Γ,Π⇒ δ.

(ii) If µ′ = µ1 + 1, then using the induction hypothesis twice:

`CSemRL (G′,Hx)D | Σ1,1,Γ
µ1+1 ⇒ α | Γ,Π⇒ δ.

`CSemRL (G′,Hx)D | Σ1,2, β,Π⇒ δ | Γ,Π⇒ δ.

So by an application of (→⇒):

`CSemRL (G′,Hx)D | Σ1,Γ
µ1+1,Π⇒ δ | Γ,Π⇒ δ.

But clearly also, using (⇒e),

`CSemRL (G′,Hx)D |⇒ e | Γ,Π⇒ δ.

Hence by an application of (com),

`CSemRL (G′,Hx)D | Σ1,Γ
µ1 ⇒ e | Γ,Π⇒ δ | Γ,Π⇒ δ,

and the desired result follows by a further application of (ec).

Suppose that the last rule applied is (com). We assume first that d1 ends with

...

G′ | Γ1,1,Π1,1, [x]λ
′+1 ⇒ x

...

G′ | Γ1,2,Π1,2, [x]λ1−λ′−1 ⇒ γ1

G′ | Γ1 ⇒ x | Π1, [x]λ1 ⇒ γ1
(com)

where Γ1 = Γ1,1 ] Γ1,2, Π1 = Π1,1 ]Π1,2, and

G′ = ([Γi ⇒ x]ni=2 | [Πj , [x]λj ⇒ γj ]
m
j=2 | [Σk, [x]µk+1 ⇒ x]lk=1).
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Our goal is to show that

`CSemRL (G′,Hx)D | Γ1,Π⇒ δ | Π1,Γ
λ1 ⇒ γ1.

By the induction hypothesis,

`CSemRL (G′,Hx)D | Γ1,2,Π1,2,Γ
λ1−λ′−1 ⇒ γ1,

and, using an application of (e⇒),

`CSemRL (G′,Hx)D | Γ1,2,Π1,2,Γ
λ1−λ′−1, e⇒ γ1.

But also by the induction hypothesis,

`CSemRL (G′,Hx)D | Γ1,1,Π1,1,Γ
λ′ ⇒ e,

and an application of (cut) yields

`CSemRL (G′,Hx)D | Γ1,Π1,Γ
λ1−1 ⇒ γ1.

Now let ·(Γ1) be the product of the formulas in Γ1. Using applications of (ew), (e⇒),

and (·⇒), we obtain

`CSemRL (G′,Hx)D | ·(Γ1),Π1,Γ
λ1−1 ⇒ γ1 | Π, ·(Γ1)⇒ δ.

Moreover, by substituting all occurrences of x with ·(Γ1) in the derivation d2 and

adding an application of (ew), we obtain

`CSemRL (G′,Hx)D | Γ⇒ ·(Γ1) | Π, ·(Γ1)⇒ δ.

Hence, an application of (cut) yields

`CSemRL (G′,Hx)D | Π1,Γ
λ1 ⇒ γ1 | Π, ·(Γ1)⇒ δ.

But also, easily

`CSemRL (G′,Hx)D | Π1,Γ
λ1 ⇒ γ1 | Γ1 ⇒ ·(Γ1).

So an application of (cut) gives the desired result.

Now suppose that d1 ends with:

G′ | Π1,1,Σ1,1 ⇒ x G′ | Π1,2,Σ1,2, [x]λ1+µ1+1 ⇒ γ1

G′ | Π1, [x]λ1 ⇒ γ1 | Σ1, [x]µ1+1 ⇒ x
(com)

where Π1 = Π1,1 ]Π1,2, Σ1 = Σ1,1 ] Σ1,2, and

G′ = ([Γi ⇒ x]ni=1 | [Πj , [x]λj ⇒ γj ]
m
j=2 | [Σk, [x]µk+1 ⇒ x]lk=2).

By the induction hypothesis twice,

d3 `CSemRL H
′ | Π1,1,Σ1,1,Π⇒ δ and d4 `CSemRL H

′ | Π1,2,Σ1,2,Γ
λ1+µ1+1 ⇒ γ1,
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where H′ = ((G′,Hx)D | Γ,Π⇒ δ). So we can construct the following derivation:

... d3

H′ | Π1,1,Σ1,1,Π⇒ δ

... d4

H′ | Π1,2,Σ1,2,Γ
λ1+µ1+1 ⇒ γ1

H′ | Γ,Π⇒ δ | Π1,Σ1,Γ
λ1+µ1 ⇒ γ1

(com)

H′ | Π1,Σ1,Γ
λ1+µ1 ⇒ γ1

(ec)
H′ |⇒ e

(⇒e)

H′ | Π1,Γ
λ1 ⇒ γ1 | Σ1,Γ

µ1 ⇒ e
(com)

Suppose that d1 ends with

G′ | Σ1,1,Σ2,1, [x]µ1+µ2+2 ⇒ x G′ | Σ1,2,Σ2,2 ⇒ x

G′ | Σ1, [x]µ1+1 ⇒ x | Σ2, [x]µ2+1 ⇒ x
(com)

where Σ1 = Σ1,1 ] Σ1,2, Σ2 = Σ2,1 ] Σ2,2, and

G′ = ([Γi ⇒ x]ni=1 | [Πj , [x]λj ⇒ γj ]
m
j=1 | [Σk, [x]µk+1 ⇒ x]lk=3).

By the induction hypothesis twice,

d3 `CSemRL H
′ | Σ1,1,Σ2,1,Γ

µ1+µ2+1 ⇒ e and d4 `CSemRL H
′ | Σ1,2,Σ2,2,Π⇒ δ

where H′ = ((G′,Hx)D | Γ,Π⇒ δ). We first apply the rule (e⇒) to last hypersequent

of d4, obtaining a derivation of H′ | Σ1,2,Σ2,2,Π, e⇒ δ. Then by (cut) with the last

hypersequent of d3, we obtain a derivation

d5 `CSemRL H
′ | Σ1,Σ2,Γ

µ1+µ2+1,Π⇒ δ.

The required derivation is then

... d5

H′ | Σ1,Σ2,Γ
µ1+µ2+1,Π⇒ δ H′ |⇒ e

(⇒e)

H′ | Γ,Π⇒ δ | Σ1,Σ2,Γ
µ1+µ2 ⇒ e

(com)

H′ | Σ1,Σ2,Γ
µ1+µ2 ⇒ e

(ec)
H′ |⇒ e

(⇒e)

H′ | Σ1,Γ
µ1 ⇒ e | Σ2,Γ

µ2 ⇒ e
(com)

The remaining cases are all straightforward. ut

We then obtain immediately from Lemma 4:

Theorem 8 The variety of commutative semilinear residuated lattices is densifiable.
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5 Concluding Remarks

The Jenei–Montagna method for proving densifiability has been used in Theorems 3,

4, and 5 of this paper to characterize a broad range of densifiable varieties of semilinear

residuated lattices, in particular, those defined over the variety of integral semilinear

residuated lattices SemIRL by `-monoid equations. This latter family may be further

broadened using syntactic characterizations and proof-theoretic techniques based on

the Metcalfe–Montagna method [5,8]. However, a general syntactic characterization of

the densifiable varieties of integral semilinear residuated lattices that admit a cut-free

hypersequent calculus is still lacking.

For non-integral varieties of semilinear residuated lattices, the picture is less clear.

The proof-theoretic proof of densifiability described here for the variety CSemRL of

commutative semilinear residuated lattices has been extended to other non-integral

varieties in [4, 6, 16, 41], but the scope of the method is unclear. It is not known, for

example, if all varieties defined over CSemRL by monoid inequations are densifiable.

Moreover, there are two specific cases that are of particular interest. First, it is not

known if the variety of involutive commutative pointed semilinear residuated lattices,

defined over pointed CSemRL by adding the involution axiom schema ¬¬x ≈ x, is

densifiable. Second, an axiomatization is lacking for the variety of residuated lattices

generated by all dense residuated chains.
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