True Congenital Cysts of the Pancreas in the Newborn and Infant

Berger S*, Bartenstein A and Schweizer P

1Department of Pediatric Surgery, University of Bern, Switzerland
2Department of Pediatric Surgery, Eberhard Karls-University, Germany

Abstract

Objectives: True congenital pancreatic cysts (CPC) are extremely rare, only 27 cysts were reported so far in children under 3 years of age. With several new cases reported here, conclusions for diagnostic work up and treatment can be drawn.

Material and Methods: 4 cases with CPC are analyzed retrospectively and reviewed together with all previously published cases.

Results: Girls were affected by CPC about twice as frequent as boys, cysts were localized more often in the tail than in the head or body of the pancreas. Unilocular cysts are seen more frequent than multilocular cysts. Diagnosis can be made by prenatal or postnatal ultrasound. Usually, total excision of the cyst(s) was performed and prognosis was good in otherwise healthy children.

Conclusion: This rare diagnosis should be considered when cystic lesions appear in routine antenatal ultrasound. The benign nature of these cysts together with a certain risk for complications when left in place justifies for a planned surgical approach in the neonate aiming at total excision of the cyst with preservation of the pancreas. Ultrasound is sufficient for preoperative imaging.

Keywords: Pancreatic cyst; Congenital; Prenatal diagnosis; Pediatric

Introduction

The rareness of true CPC and the fact that it is increasingly detected nowadays by prenatal ultrasound rather than by gastrointestinal symptoms in the adult requires an update on this disorder for the obstetrician, pediatric surgeon and pediatric gastroenterologist. True pancreatic cysts may be congenital or of neoplastic [1,2] or hydatid [3] origin. An epithelial lining of the luminal surface and a lack of inflammatory cells are diagnostic for true CPC which is extremely rare, previously reported in 27 infants (0-3 years).

A retrospective analysis of cases of CPC treated in two German university pediatric surgery departments (Mainz and Tübingen) over a period of 20 years was made. Four cases of congenital pancreatic cysts (cases 1-3: Tübingen, case 4: Mainz) with differences in clinical presentation and diagnostic evaluation were found and are reported in the following. All previously reported congenital pancreatic cysts in children were reviewed to give an overview of this entity.

Case Presentation 1

A 2 years and 7 month old girl presented with partially bilious vomiting for 10 days and a weight reduction of 450 g. Nocturnal and postprandial abdominal pain was complained of.

*Correspondence: Steffen Berger, Department of Pediatric Surgery, Children’s Hospital, Inselspital, University of Bern, CH-3010 Bern, Switzerland, Tel: 0041-31-632-9262; Fax: 0041-31-632-9292; E-mail: stefen.berger@insel.ch

Received Date: 10 Jun 2016
Accepted Date: 12 Aug 2016
Published Date: 05 Oct 2016

Citation: Berger S1*, Bartenstein A1 and Schweizer P2
1Department of Pediatric Surgery, University of Bern, Switzerland
2Department of Pediatric Surgery, Eberhard Karls-University, Germany

OPEN ACCESS

Copyright © 2016 Berger S. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
chemistry was normal. A plain abdominal x-ray showed a duodenal distension with little intraluminal gas beyond the ligament of Treitz. Ultrasound revealed a 3 x 2.5 cm cyst in the body of the pancreas. Intraoperatively, a solitary cyst arising with a vascularized hilus from the body of the pancreas was found. The cyst was resected; it contained proteinaceous fluid that was lipase (80 U/L) and amylase (82 U/L) positive. Histology of the cyst wall showed pancreatic tissue with acini but without Langerhans islets, the luminal surface of cyst was covered by flat epithelium. The postoperative course was uneventful, a control ultrasound at 6 months after the operation was normal.

Case Presentation 2

An 8 months old boy, normally developed, was referred because of bilious vomiting and food neglect in the past two weeks. A mandarin-sized painful tumor was palpable in the epigastrium. Serum bilirubin (1.8 mg/dL) and serum amylase (120 U/L) were elevated, other blood parameters (lipase, liver enzymes) were within normal range. Ultrasound showed a cystic tumor to the right of the duodenum and a choledochocoele was suspected. A multicystic tumor of the head of the pancreas with retroduodenal extension was found intraoperatively (Figure 1). A single tubular connection to the main pancreatic duct was isolated and dissected. The cysts were excised, a resection of the pancreatic head was not performed. Histology showed either thick fibrous or membranous cyst wall partially with typical pancreatic tissue containing acini but no Langerhans islets. The luminal surface was covered by flat cuboidal epithelium. Some spots with few inflammatory cells (lymphocytes, macrocytes) were detected. 6 months postoperatively the child was free of symptoms of pancreatitis or cholestasis, blood chemistry and ultrasound were normal.

Case Presentation 3

A cystic tumor (2 x 2 cm) in the upper left abdomen of a male fetus (32 weeks of gestation) was detected by routine ultrasound. After uncomplicated delivery this finding was confirmed by ultrasound. Blood parameters of the child were normal and the child developed normal for 5 month under close observation. When the child began to vomit increasingly and tolerated less food, the cyst that meanwhile had grown to 3 x 2 cm was operated. A solitary retroduodenal cyst with a hilus to the head of the pancreas was found and resected. The hilus of the cyst contained blood vessels and a narrow duct. The cyst fluid was amylase (15 U/L) and lipase (21 U/L) positive. Histologically, a thin membranous cyst wall was seen with acinar structures and some deformed Langerhans islets. The inner surface was partly covered by flat cuboidal epithelium and partly consisted of connective tissue without epithelium. Besides single lymphocytes, no inflammatory cells were detected. A follow-up ultrasound at 6 month postoperatively was normal.

Case Presentation 4

In a female fetus of 30 wk gestation, a cystic tumor in the abdomen was diagnosed upon a routine screening ultrasound (Figure 2a,b). The child was born by vaginal delivery at 37 weeks of gestation with a weight of 3000 g. The early postnatal period was uneventful and the child was referred for surgical treatment on day 6 on a full oral diet and without any abdominal symptoms or irregular laboratory parameters.

Postnatal ultrasound (Figure 2c) confirmed the MRI finding (Figure 2e,f) of a 5 x 6 x 4 cm cystic tumor in the left side of the abdomen. Bilirubin, alcalic phosphatase, liver enzymes, serum amylase and lipase were within normal range. Preoperative differential diagnosis included intestinal duplication, a mesenteric cyst, and ovarian cyst, splenic and pancreatic cyst.

Surgery was performed at the age of 9 days. Intraoperatively, a large cyst was seen in the left abdomen. Adhesions to the lateral abdominal wall, the left colonic flexure, the omentum majus, and splenic hilus were dissected easily. A tight adhesion of the cyst to the tail of the pancreas was then seen (Figure 3a). This pedicle-like
Pancreatic cysts are a rare cause of a fetal intraabdominal mass [5], only in recent decades prenatally detectable by ultrasound [17]. Before the era of prenatal high-resolution sonography most congenital pancreatic cysts were diagnosed at higher age, usually when an abdominal mass became palpable or when gastrointestinal symptoms occurred due to compression of adjacent viscera [36] during childhood [37], adolescence, or in adult patients [13].

The currently reported cysts were diagnosed at 30 and 32 weeks of gestation (cases 3,4) or postnatally at 8 and 19 months of age (cases 1,2). Since considerable postnatal growth of congenital pancreatic cysts has been reported [17], prenatal diagnosis and early operation may avoid complications due to extrinsic pressure on adjacent organs as seen in cases 1-3 and in some cases in literature [7,19,32,38]. An increasing number of prenatally detected pancreatic cysts may be expected along with the rapid spread of routine prenatal ultrasound. However, prenatal ultrasound cannot differentiate between pancreatic cysts and pancreatic pseudocysts, which may also be visible before birth [39].

For preoperative diagnostic work up, plain abdominal radiograms, barium x-ray studies, angiography [9], sonography [17], CT scan [12] and MRI [25,27] were employed so far. Postnatal MRI scans were reported only occasionally in this condition. For preoperative topographic evaluation, however, sonography offers sufficient information with a spatial resolution exceeding that of an MRI scan in the neonate (for direct comparisons see Figure 2c and 2e). This is confirmed by the other reports of MRI-findings in this entity, made in 3 days [27], 4 months [25] and 15 months [32] old infants. Ultrasound may therefore be regarded as the gold standard in the diagnosis of cystic intraabdominal tumors in the neonate.

Important features of congenital pancreatic cysts

Including the present cases, antenatal diagnosis was made in 14 of 25 children so far since the first description of antenatal diagnosis by Hopper in 1979. If the diagnosis is not made antenatally, it is usually delayed for some months, with an average age at diagnosis (among 11 children of 0-3 years after 1979) of 8.7 months. Among all children younger than 3 years were 10 boys and 23 girls, the sex was not indicated in 2. The sex ratio is therefore 1:2.3 with a female predominance [40]. The localization of the cyst was not specified in 5 cases. In 11 cases the cyst arose from the tail, in 3 cases from tail and body, in 6 from the body, in 3 from body and head, and in 6 cases from the head of the pancreas. The tail of the pancreas is thus involved more frequently than the head or body of the pancreas (Figure 4). Unilocular cysts (n=24) were seen more frequent than multilocular cysts (n=8) [12].

The content of pancreatic enzymes of the cyst fluid was described only in 20 of the cases. A low enzyme concentration was reported in 8, a high concentration in 6 patients. In 4 cases, no pancreatic enzymes were detected in the cyst fluid and no data were given in 15 cases.

After 1920, mortality from pancreatic cysts was 0% among published cases, excluding cases with severe associated malformations where mortality was high (4 of 5 patients). In otherwise healthy children, pancreatic cysts thus have an excellent prognosis.

Treatment

Since total resection is the treatment of choice in pancreatic cysts whenever feasible, all of the currently reported cases were treated by...
complete excision. An exception to this rule should only be made when major damage to the pancreas has to expected as in large cysts of the pancreatic head. Those conditions should then better be treated by drainage of the cyst into the duodenum or to a jejunal loop by a Roux-en-Y procedure (11 cases). In literature however, most cysts were excised. Treatment by excision (laparotomy) was successful in all 19 cases where it was employed. Recurrence of a cyst has only been reported so far in 2 of 2 cases after laparoscopic resection [33].

Conclusion

It is concluded that CPC will be diagnosed increasingly by routine prenatal ultrasound thus avoiding complications that were seen previously when such cysts were only diagnosed secondary to growth induced compression of adjacent organs. It is assumed from several reported cases [41-43] that cystic intraabdominal tumors may also arise from ectopic pancreatic tissue and show similar histologic features and cyst fluid composition as pancreatic cysts of.

Table 1: Literature overview of congenital true pancreatic cysts in neonates and infants. Cases of children older than 3 years upon diagnosis, numerous cases with manifestation in adulthood and cases of stillborn children with pancreatic cysts are not included. Cysts of heterotrophic pancreatic tissue are not included as well.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Age at Diagnosis</th>
<th>Sex</th>
<th>Origin</th>
<th>Locularity</th>
<th>Lining</th>
<th>Enzyme</th>
<th>Therapy</th>
<th>Syndrome</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richardson</td>
<td>1895</td>
<td>13 mo</td>
<td>?</td>
<td>H</td>
<td>?</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>Railton</td>
<td>1896</td>
<td>6 mo</td>
<td>F</td>
<td>T</td>
<td>Uni</td>
<td>?</td>
<td>?</td>
<td>Drainage</td>
<td>?</td>
<td>No</td>
</tr>
<tr>
<td>Telling</td>
<td>1909</td>
<td>11 mo</td>
<td>F</td>
<td>H</td>
<td>Uni</td>
<td>Epith</td>
<td>?</td>
<td>No</td>
<td>Drainage</td>
<td>Yes</td>
</tr>
<tr>
<td>Connolly</td>
<td>1911</td>
<td>10 mo</td>
<td>F</td>
<td>H</td>
<td>Uni</td>
<td>?</td>
<td>?</td>
<td>No</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>DelAngle</td>
<td>1948</td>
<td>6 wk</td>
<td>F</td>
<td>?</td>
<td>Uni</td>
<td>Epith</td>
<td>?</td>
<td>Yes</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Miles</td>
<td>1959</td>
<td>1 wk</td>
<td>F</td>
<td>H/B</td>
<td>Multi</td>
<td>Epith</td>
<td>Low</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Power</td>
<td>1961</td>
<td>3 wk</td>
<td>M</td>
<td>B?</td>
<td>Uni</td>
<td>Epith</td>
<td>Low</td>
<td>Marsup.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Siakara</td>
<td>1971</td>
<td>5 mo</td>
<td>F</td>
<td>B/T</td>
<td>Multi</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mares</td>
<td>1977</td>
<td>20 mo</td>
<td>F</td>
<td>B</td>
<td>Multi</td>
<td>Epith</td>
<td>High</td>
<td>Drainage</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Hopper</td>
<td>1979</td>
<td>prenat</td>
<td>F</td>
<td>H?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>None</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Baker</td>
<td>1990</td>
<td>prenat</td>
<td>F</td>
<td>T</td>
<td>Multi</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Fleet</td>
<td>1992</td>
<td>prenat</td>
<td>M</td>
<td>B/T</td>
<td>Uni</td>
<td>Epith</td>
<td>?</td>
<td>Ex/Drain</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Auringer</td>
<td>1993</td>
<td>4 mo</td>
<td>F</td>
<td>T</td>
<td>Multi</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Daher</td>
<td>1996</td>
<td>prenat</td>
<td>F</td>
<td>T</td>
<td>Uni</td>
<td>Epith</td>
<td>Low</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Fremond</td>
<td>1997</td>
<td>prenat</td>
<td>M</td>
<td>H</td>
<td>Uni</td>
<td>Epith</td>
<td>Low</td>
<td>Drainage</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Maiullari</td>
<td>2000</td>
<td>15 mo</td>
<td>F</td>
<td>B/T</td>
<td>Uni</td>
<td>Epith</td>
<td>High</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kebapci</td>
<td>2000</td>
<td>prenat</td>
<td>F</td>
<td>T</td>
<td>Uni</td>
<td>Epith</td>
<td>No</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sepulveda</td>
<td>2000</td>
<td>prenat</td>
<td>M</td>
<td>?</td>
<td>Multi</td>
<td>?</td>
<td>?</td>
<td>Excision</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lao</td>
<td>2003</td>
<td>prenat</td>
<td>F</td>
<td>T</td>
<td>Uni</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kaeze</td>
<td>2006</td>
<td>4 mo</td>
<td>M</td>
<td>T</td>
<td>Uni</td>
<td>Epith</td>
<td>Low</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Matta</td>
<td>2006</td>
<td>4 mo</td>
<td>F</td>
<td>H/B</td>
<td>Uni</td>
<td>Epith</td>
<td>High</td>
<td>Drainage</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Choi</td>
<td>2007</td>
<td>prenat</td>
<td>F</td>
<td>T</td>
<td>Uni</td>
<td>Epith</td>
<td>Low</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Chung</td>
<td>2007</td>
<td>prenat</td>
<td>F</td>
<td>?</td>
<td>Uni</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ishimaru</td>
<td>2009</td>
<td>6 mo</td>
<td>M</td>
<td>B</td>
<td>Uni</td>
<td>Epith</td>
<td>High</td>
<td>Excision*</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Castellani</td>
<td>2009</td>
<td>prenat</td>
<td>F</td>
<td>B</td>
<td>Uni</td>
<td>Epith</td>
<td>High</td>
<td>Drainage*</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Chahed</td>
<td>2012</td>
<td>2 wk</td>
<td>M</td>
<td>?</td>
<td>Uni</td>
<td>?</td>
<td>?</td>
<td>Drainage</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Gerscovitch</td>
<td>2012</td>
<td>prenat</td>
<td>?</td>
<td>T</td>
<td>Multi</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Al-Salem</td>
<td>2014</td>
<td>18 mo</td>
<td>M</td>
<td>B</td>
<td>Uni</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Al-Salem</td>
<td>2014</td>
<td>4 mo</td>
<td>F</td>
<td>H/B</td>
<td>Uni</td>
<td>Epith</td>
<td>High</td>
<td>Drainage</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Warnock</td>
<td>2016</td>
<td>5 wk</td>
<td>F</td>
<td>?</td>
<td>Uni</td>
<td>?</td>
<td>?</td>
<td>Excision*</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Berger</td>
<td>2016</td>
<td>31 mo</td>
<td>F</td>
<td>B</td>
<td>Uni</td>
<td>Epith</td>
<td>Low</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Berger</td>
<td>2016</td>
<td>8 mo</td>
<td>M</td>
<td>H</td>
<td>Multi</td>
<td>Epith</td>
<td>?</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Berger</td>
<td>2016</td>
<td>prenat</td>
<td>F</td>
<td>H</td>
<td>Uni</td>
<td>Epith</td>
<td>Low</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Berger</td>
<td>2016</td>
<td>prenat</td>
<td>F</td>
<td>T</td>
<td>Uni</td>
<td>Epith</td>
<td>Low</td>
<td>Excision</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviations: Age: wk= weeks; mo= Months; Diagn= Age at Diagnosis; Prenat= prenatally; y= Years

Sex: F= Female; M= Male;

Origin: H= Head; B= Body; T= Tail

Locula= Locularity: Uni= Unilocular; Multi= Multilocular; Bi= Bilocular

Lining: Epith= Epithelium; Syndr= Associated Malformations; Surv= Survival

*= Recurrence
the pancreas itself. Analysis of the current cases and the findings in literature revealed a female predominance, preferred localization in the pancreatic tail, cuboidal epithelial lining of the lumen, and usually low pancreatic enzyme concentration of congenital pancreatic cysts. Early sonographic diagnosis (prenatal diagnosis in 2/3 of cases) of cyst affecting the body and tail of the pancreas should be followed by total excision which yields an excellent prognosis. Results of the first cases of excision by laparoscopy are not satisfying until now. Cysts originating from the pancreatic head sometimes require internal drainage if excision is not feasible.

References

