
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
9
3
2
2
6
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
9
.
4
.
2
0
2
4

Normal approximation of Poisson
functionals in Kolmogorov distance

Matthias Schulte∗

Abstract

Peccati, Solè, Taqqu, and Utzet recently combined Stein’s method and Malli-
avin calculus to obtain a bound for the Wasserstein distance of a Poisson func-
tional and a Gaussian random variable. Convergence in the Wasserstein distance
always implies convergence in the Kolmogorov distance at a possibly weaker rate.
But there are many examples of central limit theorems having the same rate for
both distances. The aim of this paper is to show this behaviour for a large class
of Poisson functionals, namely so-called U-statistics of Poisson point processes.
The technique used by Peccati et al. is modified to establish a similar bound for
the Kolmogorov distance of a Poisson functional and a Gaussian random vari-
able. This bound is evaluated for a U-statistic, and it is shown that the resulting
expression is up to a constant the same as it is for the Wasserstein distance.

Key words: Central limit theorem, Malliavin calculus, Poisson point process, Stein’s
method, U-statistic, Wiener-Itô chaos expansion
MSC (2010): Primary: 60F05; 60H07 Secondary: 60G55

1 Introduction and results

Let η be a Poisson point process over a Borel space (X,X ) with a σ-finite intensity
measure µ and let F = F (η) be a random variable depending on the Poisson point pro-
cess η. In the following, we call such random variables Poisson functionals. Moreover,
we assume that F is square integrable (we write F ∈ L2(Pη)) and satisfies EF = 0. By
N we denote a standard Gaussian random variable. In [11], Peccati, Solé, Taqqu, and
Utzet derived by a combination of Stein’s method and Malliavin calculus the upper
bound

dW (F,N) ≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+
∫
X

E(DzF )2 |DzL
−1F |µ(dz) (1)

for the Wasserstein distance of F and N . Here, 〈·, ·〉L2(µ) stands for the inner product
in L2(µ), and the difference operator D and the inverse of the Ornstein-Uhlenbeck gen-
erator L are operators from Malliavin calculus. The underlying idea of these operators

∗Karlsruhe Institute of Technology, Institute of Stochastics, D-76128 Karlsruhe, e-mail:
matthias.schulte[at]kit.edu
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is that each square integrable Poisson functional has a representation

F = EF +
∞∑
n=1

In(fn),

where the fn are square integrable functions supported on Xn, In stands for the n-
th multiple Wiener-Itô integral, and the right-hand side converges in L2(Pη). This
decomposition is called Wiener-Itô chaos expansion, and the Malliavin operators of F
are defined via their chaos expansions. The operators DzF and DzL

−1F that occur in
(1) are given by

DzF =
∞∑
n=1

n In−1(fn(z, ·)) and DzL
−1F = −

∞∑
n=1

In−1(fn(z, ·)) for z ∈ X.

Here, fn(z, ·) stands for the function on Xn−1 we obtain by taking z as first argument.
For exact definitions including the domains and more details on the Malliavin operators
we refer to Section 2.

The Wasserstein distance between two random variables Y and Z is defined by

dW (Y, Z) = sup
h∈Lip(1)

|Eh(Y )− Eh(Z)|,

where Lip(1) is the set of all functions h : R→ R with Lipschitz constant less than or
equal to one. Another commonly used distance for random variables is the Kolmogorov
distance

dK(Y, Z) = sup
s∈R
|P(Y ≤ s)− P(Z ≤ s)|,

which is the supremum norm of the difference of the distribution functions of Y and
Z. Because of this straightforward interpretation, one is often more interested in the
Kolmogorov distance than in the Wasserstein distance. For the important case that Z
is a standard Gaussian random variable N it is known (see [2, Theorem 3.1]) that

dK(Y,N) ≤ 2
√
dW (Y,N). (2)

This inequality gives us for the Kolmogorov distance a weaker rate of convergence than
for the Wasserstein distance. But for many classical central limit theorems, one has
actually the same rate of convergence for both metrics.

In order to overcome the problem that a detour around the Wasserstein distance
and the inequality (2) often gives a suboptimal rate of convergence for the Kolmogorov
distance, we derive a similar bound as (1) for the Kolmogorov distance by a modification
of the proof in [11].

Theorem 1.1 Let F ∈ L2(Pη) with EF = 0 be in the domain of D and let N be a
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standard Gaussian random variable. Then

dK(F,N) ≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+ 2E〈(DF )2, |DL−1F |〉L2(µ) (3)

+2E〈(DF )2, |F DL−1F |〉L2(µ) + 2E〈(DF )2, |DF DL−1F |〉L2(µ)

+ sup
s∈R

E〈D1I(F > s), DF |DL−1F |〉L2(µ)

≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+ 2c(F )
√

E〈(DF )2, (DL−1F )2〉L2(µ)

+ sup
s∈R

E〈D1I(F > s), DF |DL−1F |〉L2(µ)

with

c(F ) =
√

E〈(DF )2, (DF )2〉L2(µ) +
(
E〈DF,DF 〉2L2(µ)

) 1
4
((

EF 4
) 1

4 + 1
)
.

Comparing (1) and (3), one notes that both terms of the Wasserstein bound (1) also
occur in (3), which means that the bound for the Kolmogorov distance is always larger.

We apply our Theorem 1.1 to two situations, where we obtain the same rate of
convergence for the Kolmogorov distance and the Wasserstein distance. At first we
derive the classical Berry-Esseen inequality with the optimal rate of convergence for the
normal approximation of a classical Poisson random variable. As another application
of Theorem 1.1, we consider so-called U-statistics of Poisson point processes, which are
defined as

F =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

where k ∈ N, f ∈ L1(µk), and ηk6= is the set of all k-tuples of distinct points of η. In
[4, 5] and [14], Lachièze-Rey and Peccati and Reitzner and Schulte used the bound
(1) for the Wasserstein distance to derive central limit theorems with explicit rates of
convergence for such Poisson functionals occurring in stochastic geometry and random
graph theory. Now Theorem 1.1 allows us to replace the Wasserstein distance by the
Kolmogorov distance without changing the rate of convergence, which means that the
inequality (2) is not sharp for this class of Poisson functionals.

The main finding of this work, Theorem 1.1, is refined and proven in a different way
in the the subsequent paper [3] by Eichelsbacher and Thäle. In [7], Last, Peccati, and
Schulte further simplify the bounds for the normal approximation of Poisson functionals
in Kolmogorov distance from Theorem 1.1 and [3] and apply them to several problems,
where they provide new presumably optimal rates of convergence. Our result for the
normal approximation of U-statistics of Poisson point processes (see Theorem 4.2) is
used by Reitzner, Schulte, and Thäle in [15] and [16] to derive central limit theorems
with rates of convergence for the Kolmogorov distance for the total edge length of the
Gilbert graph and for distances between non-intersecting Poisson k-flats, respectively.

This paper is organized in the following way. Before we prove our main result
Theorem 1.1 in Section 3, we introduce some facts from Malliavin calculus and Stein’s
method in Section 2. The applications of Theorem 1.1 are discussed in Section 4, and
the result for U-statistics is shown in Section 5.
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In this paper, we use the following notation. By Lp(Pη), p > 0, we denote the set
of random variables Y depending on a Poisson point process η such that E|Y |p < ∞.
Let Lp(µn), p > 0, be the set of functions f : Xn → R := R ∪ {±∞} satisfying∫
Xn |f |p dµn =

∫
Xn |f(x1, . . . , xn)|p µn(d(x1, . . . , xn)) <∞ and let || · ||n and 〈·, ·〉L2(µn)

be the norm and the inner product in L2(µn), respectively. By Lps(µ
n) we denote the

set of all functions f ∈ Lp(µn) that are symmetric, i.e. invariant under permutations
of their arguments.

2 Preliminaries

Malliavin calculus for Poisson functionals. In the sequel, we briefly introduce
three Malliavin operators and some properties of them that are necessary for the proofs
in this paper. For more details on Malliavin calculus for Poisson functionals we refer
to [8, 10, 11, 13] and the references therein.

By In(·), n ≥ 1, we denote the n-th multiple Wiener-Itô integral, which is defined
for all functions f ∈ L2

s(µ
n) and satisfies EIn(f) = 0. The multiple Wiener-Itô integrals

are orthogonal in the sense that

EIm(f)In(g) =

{
n! 〈f, g〉L2(µn), m = n

0, m 6= n
(4)

for all f ∈ L2
s(µ

m), g ∈ L2
s(µ

n),m, n ≥ 1. We use the convention I0(c) = c for c ∈ R. It
is known (see [8] for a proof) that every Poisson functional F ∈ L2(Pη) has a unique
so-called Wiener-Itô chaos expansion

F = EF +
∞∑
n=1

In(fn) (5)

with fn ∈ L2
s(µ

n), where the series converges in L2(Pη). In the following, we call the
functions fn kernels of the Wiener-Itô chaos expansion of F and say that F has a chaos
expansion of order k if fn = 0 for all n > k. Combining (4) and (5), we obtain

VarF =
∞∑
n=1

n! ||fn||2n.

The representation (5) allows us to define the difference operator D, the Ornstein-
Uhlenbeck generator L, and the Skorohod integral δ in the following way:

Definition 2.1 Let F ∈ L2(Pη) with the Wiener-Itô chaos expansion (5). If∑∞
n=1 nn! ||fn||2n <∞, then the random function z 7→ DzF defined by

DzF =
∞∑
n=1

n In−1(fn(z, ·))
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is called the difference operator of F . For
∑∞

n=1 n
2 n! ||fn||2n < ∞ the Ornstein-

Uhlenbeck generator of F , denoted by LF , is given by

LF = −
∞∑
n=1

n In(fn).

Let z 7→ g(z) be a random function with a chaos expansion

g(z) = g0(z) +
∞∑
n=1

In(gn(z, ·)), gn(z, ·) ∈ L2
s(µ

n),

for µ-almost all z ∈ X and
∑∞

n=0(n+ 1)! ||gn||2n+1 <∞. Then the Skorohod integral
of g is the random variable δ(g) defined by

δ(g) =
∞∑
n=0

In+1(g̃n),

where g̃n is the symmetrization g̃n(x1, . . . , xn+1) = 1
(n+1)!

∑
σ gn(xσ(1), . . . , xσ(n+1)) over

all permutations σ of the n+ 1 variables.

We denote the domains of these operators by domD, domL, and dom δ. The difference
operator also has the geometric interpretation

DzF = F (η + δz)− F (η) (6)

a.s. for µ-almost all z ∈ X, where δz stands for the Dirac measure concentrated at the
point z ∈ X, whence it is sometimes called add-one-cost operator (see Theorem 3.3
in [8]). If F /∈ domD, we can define the difference operator by (6). If we iterate this
definition and put Dn

x1,...,xn
F = DxnD

n−1
x1,...,xn−1

F , the kernels of the Wiener-Itô chaos
expansion of F in (5) are given by the formula

fn(x1, . . . , xn) =
1

n!
EDn

x1,...,xn
F =

1

n!
E

∑
I⊂{1,...,n}

(−1)n+|I|F (η +
∑
i∈I

δxi)

for x1, . . . , xn ∈ X (see Theorem 1.3 in [8]).
For centred random variables F ∈ L2(Pη), i.e. EF = 0, the inverse Ornstein-

Uhlenbeck generator is given by

L−1F = −
∞∑
n=1

1

n
In(fn).

The following lemma summarizes how the operators from Malliavin calculus are related.

Lemma 2.2 a) For every F ∈ domL it holds that F ∈ domD, DF ∈ dom δ, and

δDF = −LF. (7)
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b) Let F ∈ domD and g ∈ dom δ. Then

E〈DF, g〉L2(µ) = E[F δ(g)]. (8)

For proofs we refer to [11] and [10], respectively. Equation (8) is sometimes called
integration by parts formula. Because of this identity, one can see the difference
operator and the Skorohod integral as dual operators.

For our applications in Section 4 we need a special integration by parts formula,
where it is not required that the first Poisson functional is in domD. In this case, the
difference operator is given by (6).

Lemma 2.3 Let F ∈ L2(Pη), s ∈ R, and g ∈ dom δ such that g(z) has a Wiener-Itô
chaos expansion of order k for µ-almost all z ∈ X. Moreover, assume that Dz1I(F >
s) g(z) ≥ 0 a.s. for µ-almost all z ∈ X. Then

E〈D1I(F > s), g〉L2(µ) = E[1I(F > s) δ(g)].

Proof: It is easy to see that 1I(F > s) ∈ L2(Pη), whence it has a Wiener-Itô chaos
expansion

1I(F > s) =
∞∑
n=0

In(hn)

with h0 = E1I(F > s) and kernels hn ∈ L2
s(µ

n), n ≥ 1, that are given by

hn(x1, . . . , xn) =
1

n!
EDn

x1,...,xn
1I(F > s).

For a fixed z ∈ X the expression Dz1I(F > s) is bounded, and its chaos expansion has
the kernels

1

n!
EDn

x1,...,xn
Dz1I(F > s) =

1

n!
EDn+1

z,x1,...,xn
1I(F > s) = (n+ 1)hn+1(z, x1, . . . , xn).

Hence, we obtain the representation

Dz1I(F > s) =
∞∑
n=1

n In−1(hn(z, ·))

for all z ∈ X. From Fubini‘s theorem and the orthogonality of the multiple Wiener-Itô
integrals it follows that

E〈D1I(F > s), g〉L2(µ)

=

∫
X

E [Dz1I(F > s) g(z)] µ(dz)

=

∫
X

E

[
∞∑
n=1

n In−1(hn(z, ·))
k∑

n=0

In(gn(z, ·))

]
µ(dz)

=

∫
X

k+1∑
n=1

n!

∫
Xn−1

hn(z, x1, . . . , xn−1) gn−1(z, x1, . . . , xn−1)µn−1(d(x1, . . . , xn−1))µ(dz).

(9)
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On the other hand, we have

E [1I(F > s) δ(g)] = E

[
∞∑
n=0

In(hn)
k∑

n=0

In+1(g̃n)

]

=
k+1∑
n=1

n!

∫
Xn

hn(x1, . . . , xn) g̃n−1(x1, . . . , xn)µn(d(x1, . . . , xn))

=
k+1∑
n=1

n!

∫
Xn

hn(x1, . . . , xn) gn−1(x1, . . . , xn)µn(d(x1, . . . , xn)).

(10)

Here, we use the symmetry of hn in the last step. Comparing (9) and (10) concludes
the proof. �

The next lemma provides an upper bound for the second moment of a Skorohod inte-
gral, which is used in Section 5.

Lemma 2.4 Let f ∈ L2(µk+1) be symmetric in its last k arguments and let g(z) =
Ik(f(z, ·)). Then

E
[
δ(g)2

]
≤ (k + 1)E

∫
X

Ik(f(z, ·))2 µ(dz).

Proof: By the definition of δ, we obtain δ(g) = Ik+1(f̃) with the symmetrization

f̃(x1, . . . , xk+1) =
1

(k + 1)!

∑
σ

f(xσ(1), . . . , xσ(k+1))

as above. From the Cauchy-Schwarz inequality, it follows that ||f̃ ||2k+1 ≤ ||f ||2k+1.
Combining this with Fubini’s Theorem, we have

E
[
δ(g)2

]
= (k + 1)! ||f̃ ||2k+1 ≤ (k + 1)! ||f ||2k+1 = (k + 1)E

∫
X

Ik(f(z, ·))2 µ(dz),

which concludes the proof. �

Stein’s method. Besides Malliavin calculus our proof of Theorem 1.1 rests upon
Stein’s method, which goes back to Charles Stein [17, 18] and is a powerful tool for
proving limit theorems. For a detailed and more general introduction into this topic
we refer to [1, 2, 18]. Very fundamental for this approach is the following lemma (see
Chapter II in [18]):

Lemma 2.5 For s ∈ R the function

gs(w) = e
w2

2

∫ w

−∞
(1I(u ∈ (−∞, s])− P(N ≤ s)) e−

u2

2 du (11)

is a solution of the differential equation

g′s(w)− w gs(w) = 1I(w ∈ (−∞, s])− P(N ≤ s) (12)

7



and satisfies

0 < gs(w) ≤
√

2π

4
, |g′s(w)| ≤ 1, and |w gs(w)| ≤ 1 (13)

for any w ∈ R.

Equation (12) is usually called Stein’s equation. The function gs is infinitely dif-
ferentiable on R \ {s}, but it is not differentiable in s. We denote the left-sided and

right-sided limits of the derivatives in s by g
(m)
s (s−) and g

(m)
s (s+), respectively. For

the first derivative, a direct computation proves

g′s(s+) = −1 + g′s(s−), (14)

and we define g′s(s) := g′s(s−).
By replacing w by a random variable Z and taking the expectation in (12), one

obtains
E[g′s(Z)− Z gs(Z)] = P(Z ≤ s)− P(N ≤ s)

and as a consequence of the definition of the Kolmogorov distance

dK(Z,N) = sup
s∈R
|E[g′s(Z)− Z gs(Z)]|. (15)

The identity (15) will be our starting point in Section 3. Note furthermore, that we
obtain, by combining (12) and (13), the upper bound

|g′′s (w)| ≤
√

2π

4
+ |w| (16)

for w ∈ R \ {s}.

3 Proof of Theorem 1.1

By a combination of Malliavin calculus and Stein’s method similar to that in [11], we
derive the upper bound for the Kolmogorov distance.

Proof of Theorem 1.1: Using the identity (7) and the integration by parts formula
(8), we obtain

E[F gs(F )] = E[LL−1F gs(F )] = E[δ(−DL−1F ) gs(F )] = E〈−DL−1F,Dgs(F )〉L2(µ).
(17)

In order to compute Dzgs(F ), we fix z ∈ X and consider the following cases:

1. F, F +DzF ≤ s or F, F +DzF > s;

2. F ≤ s < F +DzF ;

3. F +DzF ≤ s < F .

8



For F, F +DzF ≤ s or F, F +DzF > s, it follows from (6) and Taylor expansion that

Dzgs(F ) = gs(F +DzF )− gs(F ) = g′s(F )DzF +
1

2
g′′s (F̃ )(DzF )2

=: g′s(F )DzF + r1(F, z, s),

where F̃ is between F and F +DzF . For F ≤ s < F +DzF , we obtain by (6), Taylor
expansion, and (14)

Dzgs(F ) = gs(F +DzF )− gs(F ) = gs(F +DzF )− gs(s) + gs(s)− gs(F )

= g′s(s+)(F +DzF − s) +
1

2
g′′s (F̃1)(F +DzF − s)2

+g′s(F )(s− F ) +
1

2
g′′s (F̃2)(s− F )2

= g′s(F )DzF + (g′s(s−)− 1− g′s(F ))(F +DzF − s)

+
1

2
g′′s (F̃1)(F +DzF − s)2 +

1

2
g′′s (F̃2)(s− F )2

= g′s(F )DzF − (F +DzF − s) + g′′s (F̃0)(s− F )(F +DzF − s)

+
1

2
g′′s (F̃1)(F +DzF − s)2 +

1

2
g′′s (F̃2)(s− F )2

=: g′s(F )DzF − (F +DzF − s) + r2(F, z, s)

with F̃0, F̃1, F̃2 ∈ (F, F +DzF ). For F +DzF ≤ s < F , we have analogously

Dzgs(F ) = gs(F +DzF )− gs(F ) = gs(F +DzF )− gs(s) + gs(s)− gs(F )

= g′s(s−)(F +DzF − s) +
1

2
g′′s (F̃1)(F +DzF − s)2

+g′s(F )(s− F ) +
1

2
g′′s (F̃2)(s− F )2

= g′s(F )DzF + (g′s(s+) + 1− g′s(F ))(F +DzF − s)

+
1

2
g′′s (F̃1)(F +DzF − s)2 +

1

2
g′′s (F̃2)(s− F )2

= g′s(F )DzF + (F +DzF − s) + g′′s (F̃0)(s− F )(F +DzF − s)

+
1

2
g′′s (F̃1)(F +DzF − s)2 +

1

2
g′′s (F̃2)(s− F )2

=: g′s(F )DzF + (F +DzF − s) + r2(F, z, s)

with F̃0, F̃1, F̃2 ∈ (F +DzF, F ). Thus, Dzgs(F ) has a representation

Dzgs(F ) = g′s(F )DzF +R(F, z, s), (18)

where R(F, z, s) is given by

R(F, z, s)

= (1I(F, F +DzF ≤ s) + 1I(F, F +DzF > s)) r1(F, z, s)

+ (1I(F ≤ s < F +DzF ) + 1I(F +DzF ≤ s < F )) (r2(F, z, s)− |F +DzF − s|).

9



Combining (17) and (18) yields

E [g′s(F )− Fgs(F )] = E
[
g′s(F )− 〈g′s(F )DF +R(F, ·, s),−DL−1F 〉L2(µ)

]
.

Thus, the triangle inequality and |g′s(F )| ≤ 1 lead to

|E [g′s(F )− Fgs(F )] | ≤ |E
[
g′s(F )

(
1− 〈DF,−DL−1F 〉L2(µ)

)]
| (19)

+|E〈R(F, ·, s), DL−1F 〉L2(µ)|
≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+ E〈|R(F, ·, s)|, |DL−1F |〉L2(µ).

In r2(F, z, s), we assume that s is between F and F +DzF so that

|F +DzF − s| ≤ |DzF | and |F − s| ≤ |DzF |.

The inequality (16) and the fact that F̃i is between F and F +DzF allow us to bound
all second derivatives in R(F, z, s) by

|g′′s (F̃i)| ≤
√

2π

4
+ |F |+ |DzF |.

Now it is easy to see that

|R(F, z, s)|

≤ (1I(F, F +DzF ≤ s) + 1I(F, F +DzF > s))
1

2

(√
2π

4
+ |F |+ |DzF |

)
(DzF )2

+ (1I(F ≤ s < F +DzF ) + 1I(F +DzF ≤ s < F )) |DzF |

+ (1I(F ≤ s < F +DzF ) + 1I(F +DzF ≤ s < F )) 2

(√
2π

4
+ |F |+ |DzF |

)
(DzF )2

≤ 2

(√
2π

4
+ |F |+ |DzF |

)
(DzF )2

+ (1I(F ≤ s < F +DzF ) + 1I(F +DzF ≤ s < F )) |DzF |.

By (6), the last summand can be rewritten as

(1I(F ≤ s < F +DzF ) + 1I(F +DzF ≤ s < F )) |DzF | = Dz1I(F > s)DzF.

Hence, it follows directly that

E〈|R(F, ·, s)|, |DL−1F |〉L2(µ)

≤ 2E〈(DF )2, |DL−1F |〉L2(µ) + 2E〈(DF )2, |F DL−1F |〉L2(µ)

+ 2E〈(DF )2, |DF DL−1F |〉L2(µ) + E〈D1I(F > s)DF, |DL−1F |〉L2(µ).

Putting this in (19) concludes the proof of the first inequality in (3). The second bound
in (3) is a direct consequence of the Cauchy-Schwarz inequality. �

In [11], the right-hand side of (17) is evaluated for twice differentiable functions
f : R→ R with supx∈R |f ′(x)| ≤ 1 and supx∈R |f ′′(x)| ≤ 2 (for the Wasserstein distance
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the solutions of Stein’s equation must have these properties) instead of the functions
gs as defined in (11). For such a function f it holds that

Dzf(F ) = f ′(F )DzF + r̃(F )

with |r̃(F )| ≤ (DzF )2. Since this representation is easier than the representation we
obtain for Dzgs(F ), the bound for the Wasserstein distance in (1) is shorter and easier
to evaluate than the bound for the Kolmogorov distance in (3).

4 Applications of Theorem 1.1

Normal approximation of a Poisson random variable. As a first application
of Theorem 1.1, we compute an upper bound for the Kolmogorov distance between
a Poisson random variable Y with parameter t > 0 and a normal distribution. In
Example 3.5 in [11], the bound (1) is used to compute a bound for the Wasserstein

distance, and the known optimal rate of convergence t−
1
2 is obtained.

Y has the same distribution as Ft =
∑

x∈ηt 1, where ηt is a Poisson point process
on [0, 1] with t times the the restriction of the Lebesgue measure on [0, 1] as intensity
measure µt. In the following, we denote by In,t(·) the n-th multiple Wiener-Itô integral
with respect to ηt. The representation

I1,t(f) =
∑
x∈ηt

f(x)−
∫
X

f(x)µt(dx)

for a Wiener-Itô integral of a function f ∈ L1(µt) ∩ L2(µt) and the fact that

Ft = t

∫ 1

0

1 dx+
∑
x∈ηt

1− t
∫ 1

0

1 dx

imply that Ft has the Wiener-Itô chaos expansion Ft = EFt + I1,t(f1) = t + I1,t(1).
Hence, the standardized random variable

Gt =
Ft − EFt√

VarFt
=
Ft − t√

t

has the chaos expansion Gt = I1,t(1)/
√
t and DzGt = −DzL

−1Gt = 1/
√
t for z ∈ [0, 1].

It is easy to see that

E|1− 〈DGt,−DL−1Gt〉L2(µt)| = |1−
1

t
〈1, 1〉L2(µt)| = |1−

t

t
| = 0.

We obtain

E〈(DGt)
2, (DL−1Gt)

2〉L2(µt) = E〈(DGt)
2, (DGt)

2〉L2(µt) =
1

t
,

E〈DGt, DGt〉2L2(µt)
= 1, and EG4

t = 3+1/t by analogous computations. SinceDz1I(Gt >

s)DzGt |DzL
−1Gt| ≥ 0 for s ∈ R and z ∈ [0, 1] and DzGt |DzL

−1Gt| = 1/t for z ∈ [0, 1],

11



it follows from Lemma 2.3 and the Cauchy-Schwarz inequality that

sup
s∈R

E〈D1I(Gt > s), DGt |DL−1Gt|〉L2(µt)

= sup
s∈R

E[1I(Gt > s) δ(DGt |DL−1Gt|)] ≤ E[δ(DGt |DL−1Gt|)2]
1
2 =

1

t
E[I1,t(1)2]

1
2 =

1√
t
.

Now Theorem 1.1 yields

dK

(
Y − t√

t
, N

)
≤ 2

(
1√
t

+

(
3 +

1

t

) 1
4

+ 1

)
1√
t

+
1√
t
≤ 8√

t

for t ≥ 1, which is the classical Berry-Esseen inequality with the optimal rate of
convergence (up to a constant).

Normal approximation of U-statistics of Poisson point processes. As a sec-
ond application of Theorem 1.1, we discuss U-statistics of the form

F =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

with k ∈ N and f ∈ L1
s(µ

k). Here, ηk6= stands for the set of all k-tuples of distinct points

of η. If the intensity measure µ is non-atomic, η has no multiple points, and ηk6= can be
written as

ηk6= =
{

(x1, . . . , xk) ∈ ηk : xi 6= xj ∀ i 6= j
}
.

In case that µ has atoms, one has to take into account that distinct points of η can
have the same location. We denote k as the order of the U-statistic F . From now on,
we always assume that F ∈ L2(Pη) and VarF > 0. In [14], the chaos expansions of
such Poisson functionals are investigated, and the bound (1) is used to prove a central
limit theorem with a rate of convergence for the Wasserstein distance. From there it
is known that the kernels of the chaos expansion of a U-statistic F are

fi(x1, . . . , xi) =

(
k

i

)∫
Xk−i

f(x1, . . . , xi, y1, . . . , yk−i)µ
k−i(d(y1, . . . , yk−i)) (20)

for i = 1, . . . , k and fi = 0 for i > k. An application of the bound (1) to such Poisson
functionals yields (see Theorem 4.1 in [14])

dW

(
F − EF√

VarF
,N

)
≤ k

k∑
i,j=1

√
Rij

VarF
+ k

7
2

k∑
i=1

√
R̃i

VarF
, (21)

where Rij and R̃i are given by

Rij = E
(∫

X

Ii−1 (fi(z, ·)) Ij−1 (fj(z, ·)) µ(dz)

)2

−
(
E
∫
X

Ii−1 (fi(z, ·)) Ij−1 (fj(z, ·)) µ(dz)

)2

R̃i = E
∫
X

Ii−1 (fi(z, ·))4 µ(dz)

12



for i, j = 1, . . . , k. In [14], the right-hand side of (21) is bounded by a sum of de-
terministic integrals depending on f . Due to technical reasons it is assumed that the
U-statistic F is absolutely convergent, which means that the U-statistic F given by

F =
∑

(x1,...,xk)∈ηk6=

|f(x1, . . . , xk)|

is in L2(Pη). The U-statistic F has a finite Wiener-Itô chaos expansion with kernels

f i(x1, . . . , xi) =

(
k

i

)∫
Xk−i
|f(x1, . . . , xi, y1, . . . , yk−i)|µk−i(d(y1, . . . , yk−i))

for i = 1, . . . , k and f i = 0 for i > k. In order to bound the right-hand side of (21) by
a sum of deterministic integrals, we use the following notation. For i, j = 1, . . . , k let
Π≥2(i, i, j, j) be the set of all partitions π of

x
(1)
1 , . . . , x

(1)
i , x

(2)
1 , . . . , x

(2)
i , x

(3)
1 , . . . , x

(3)
j , x

(4)
1 , . . . , x

(4)
j

such that

• two variables with the same upper index are in different blocks of π;

• each block of π includes at least two variables;

• there are no sets A1, A2 ⊂ {1, 2, 3, 4} with A1 ∪A2 = {1, 2, 3, 4} and A1 ∩A2 = ∅
such that each block of π either consists of variables with upper index in A1 or
of variables with upper index in A2.

Let |π| stand for the number of blocks of a partition π. For functions g1, g2 : X i → R
and g3, g4 : Xj → R the tensor product g1 ⊗ g2 ⊗ g3 ⊗ g4 : X2i+2j → R is given by

(g1 ⊗ g2 ⊗ g3 ⊗ g4)(x
(1)
1 , . . . , x

(4)
j )

= g1(x
(1)
1 , . . . , x

(1)
i ) g2(x

(2)
1 , . . . , x

(2)
i ) g3(x

(3)
1 , . . . , x

(3)
j ) g4(x

(4)
1 , . . . , x

(4)
j ).

For π ∈ Π≥2(i, i, j, j) we define the function (g1⊗g2⊗g3⊗g4)π : X |π| → R by replacing
all variables that are in the same block of π by a new common variable. Since we later
integrate over all these new variables, their order does not matter. Using this notation,
we define

Mij(f) =
∑

π∈Π≥2(i,i,j,j)

∫
X|π|

(f i ⊗ f i ⊗ f j ⊗ f j)π dµ|π|

for i, j = 1, . . . , k. Now we can state the following upper bound for the Wasserstein
distance (see Theorem 4.7 in [14]):

Proposition 4.1 Let F ∈ L2(Pη) be an absolutely convergent U-statistic of order k
with VarF > 0 and let N be a standard Gaussian random variable. Then

dW

(
F − EF√

VarF
,N

)
≤ 2k

7
2

∑
1≤i≤j≤k

√
Mij(f)

VarF
. (22)

13



In this situation, we can use Theorem 1.1 to prove the following bound analogous to
(22) for the Kolmogorov distance between a standardized U-statistic and a standard
Gaussian random variable:

Theorem 4.2 Let F ∈ L2(Pη) be an absolutely convergent U-statistic of order k with
VarF > 0 and let N be a standard Gaussian random variable. Then

dK

(
F − EF√

VarF
,N

)
≤ 19k5

k∑
i,j=1

√
Mij(f)

VarF
. (23)

Before we prove this theorem in Section 5, we discuss some of its consequences. Let us
consider a family of Poisson point processes ηt with σ-finite intensity measures µt and
U-statistics

Ft =
∑

(x1,...,xk)∈(ηt)k6=

ft(x1, . . . , xk)

with ft ∈ L1
s(µ

k
t ) and Ft ∈ L2(Pηt) such that√

Mij(ft)

VarFt
→ 0 as t→∞ for all i, j = 1, . . . , k.

Here, we integrate with respect to µt in Mij(ft). Comparing the right-hand sides in
(22) and (23) for the U-statistics Ft, we see that the bounds for the Wasserstein and
Kolmogorov distance have the same rates of convergence and differ only by constants.
An important special case of the described setting is that the Poisson point process
depends on a real valued intensity parameter. The following corollary deals with this
situation and is the counterpart of Theorem 5.2 in [14] for the Kolmogorov distance.

Corollary 4.3 Let ηt be a Poisson point process with intensity measure µt = tµ with
t ≥ 1 and a fixed σ-finite measure µ and let N be a standard Gaussian random variable.
We consider U-statistics Ft ∈ L2(Pηt) of the form

Ft = g(t)
∑

(x1,...,xk)∈(ηt)k6=

f(x1, . . . , xk)

with g : (0,∞)→ (0,∞) and f ∈ L1
s(µ

k) independent of t. Moreover, we assume that∫
X

(∫
Xk−1

f(x, y1, . . . , yk−1)µk−1(d(y1, . . . , yk−1))

)2

µ(dx) > 0

and Mij(f) <∞ for i, j = 1, . . . , k. Then there is a constant C > 0 such that

dK

(
Ft − EFt√

VarFt
, N

)
≤ C t−

1
2

for all t ≥ 1.

14



This corollary follows from bounding
√
Mij(ft)/VarFt in the same way as in the proof

of [14, Theorem 5.2].
In [4], a so-called fourth moment condition for Poisson functionals with positive

variance, finite Wiener-Itô chaos expansion, and non-negative kernels satisfying some
integrability conditions is derived. More precisely, for such Poisson functionals it is
proven that

dW

(
F − EF√

VarF
,N

)
≤ CW,k

√
E
(
F − EF√

VarF

)4

− 3

with a constant CW,k > 0 only depending on k. U-statistics F ∈ L2(Pη) of the form

F =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk) with f ∈ L1
s(µ

k) and f ≥ 0

such that VarF > 0 and Mij(f) <∞ for i, j = 1, . . . , k belong to this class and satisfy

Mij(f)

(VarF )2
≤ E

(
F − EF√

VarF

)4

− 3.

Then (23) can be modified to

dK

(
F − EF√

VarF
,N

)
≤ Ck

√
E
(
F − EF√

VarF

)4

− 3

with a constant Ck > 0 only depending on k.

5 Proof of Theorem 4.2

In our proof of Theorem 4.2, we make use of the following property of U-statistics:

Lemma 5.1 For a U-statistic F ∈ L2(Pη) of order k the inverse of the Ornstein-
Uhlenbeck generator has a representation

− L−1(F − EF )

=
k∑

m=1

1

m

∑
(x1,...,xm)∈ηm6=

∫
Xk−m

f(x1, . . . , xm, y1, . . . , yk−m)µk−m(d(y1, . . . , yk−m))

−
k∑

m=1

1

m

∫
Xk

f(y1, . . . , yk)µ
k(d(y1, . . . , yk)).

(24)

Proof: We define f̂i : X i → R by f̂i(x1, . . . , xi) =
(
k
i

)−1
fi(x1, . . . , xi) for i = 1, . . . , k.

Using this notation and formula (20) for the kernels of a U-statistic, we obtain the
chaos expansion∑

(x1,...,xm)∈ηm6=

∫
Xk−m

f(x1, . . . , xm, y1, . . . , yk−m)µk−m(d(y1, . . . , yk−m))

=

∫
Xk

f(y1, . . . , yk)µ
k(d(y1, . . . , yk)) +

m∑
i=1

(
m

i

)
Ii(f̂i)

15



for m = 1, . . . , k. Combining this with an identity for binomial coefficients, we see that
the right-hand side in (24) equals

k∑
m=1

1

m

m∑
i=1

(
m

i

)
Ii(f̂i) =

k∑
m=1

k∑
i=1

1

m

(
m

i

)
Ii(f̂i) =

k∑
i=1

k∑
m=1

1

m

(
m

i

)
Ii(f̂i)

=
k∑
i=1

1

i

(
k

i

)
Ii(f̂i) =

k∑
i=1

1

i
Ii(fi),

which is the chaos expansion of −L−1(F − EF ) by definition. �

In order to deal with expressions as Rij and R̃i in the previous section, one needs
to compute the expectation of products of multiple Wiener-Itô integrals. This can be
done by using Proposition 6.1 in [6] (see also [19, Theorem 3.1], [13, Proposition 4.5.6],
[12, Proposition 6.5.1], or [9, Theorem 3.1]). This so-called product formula gives
us the Wiener-Itô chaos expansion of a product of two multiple Wiener-Itô integrals.
Together with (4), one obtains that the expectation of a product of four multiple
Wiener-Itô integrals is a sum of deterministic integrals depending on the integrands of
the stochastic integrals and partitions of their variables as used for the definition of
Mij(f).

By using this product formula, one can prove in a similar way as in [14, Subsection
4.2] that

Rij ≤Mij(f) and

∫
X

EIi−1(fi(z, ·))2Ij−1(fj(z, ·))2 µ(dz) ≤Mij(f) (25)

for i, j = 1, . . . , k. Moreover, we prepare the proof of Theorem 4.2 by the following two
lemmas:

Lemma 5.2 Let F ∈ L2(Pη) be an absolutely convergent U-statistic with Mij(f) <∞
for i, j = 1, . . . , k. Then

E(F − EF )4 ≤ k2

k∑
i,j=1

Mij(f) + 3k2(VarF )2.

Proof: Using the Wiener-Itô chaos expansion of F and the Cauchy-Schwarz inequality,
we obtain

E(F − EF )4 = E

(
k∑
i=1

Ii(fi)

)2( k∑
j=1

Ij(fj)

)2

≤ k2 E
k∑
i=1

Ii(fi)
2

k∑
j=1

Ij(fj)
2.

Now the previously mentioned product formula for multiple Wiener-Itô integrals and
VarF =

∑k
n=1 n! ‖fn‖2

n yield that

EIi(fi)2Ij(fj)
2 ≤Mij(f) + 3 i! ||fi||2i j! ||fj||2j ≤Mij(f) + 3(VarF )2.

In the first inequality, we have equality for i = j and f ≥ 0. �
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Lemma 5.3 Let F ∈ L2(Pη) be an absolutely convergent U-statistic with Mij(f) <∞
for i, j = 1, . . . , k. Then

sup
s∈R

E〈D1I(F > s), DF |DL−1(F − EF )|〉L2(µ)

≤
√

(2k − 1)E〈(DF )2, (DL−1
(
F − EF

)
)2〉L2(µ).

Proof: We can write the U-statistic F as

F =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk) =
∑

(x1,...,xk)∈ηk6=

f+(x1, . . . , xk)

︸ ︷︷ ︸
=F+

−
∑

(x1,...,xk)∈ηk6=

f−(x1, . . . , xk)

︸ ︷︷ ︸
=F−

with f+ = max {f, 0} and f− = max {−f, 0} and have F = F++F−. As a consequence
of (6), we know that DzV ≥ 0 for a U-statistic V with non-negative summands.
Combining this with f+, f− ≥ 0 and Lemma 5.1, we see that

−DzL
−1
(
F+ − EF+

)
≥ 0 and −DzL

−1
(
F− − EF−

)
≥ 0.

Moreover, it holds that Dz1I(F > s)DzF ≥ 0. Proposition 6.1 in [6] implies that the
product DzF DzL

−1
(
F − EF

)
has a finite chaos expansion with an order less than

or equal to 2k − 2. Together with Lemma 2.3, the Cauchy-Schwarz inequality, and
Lemma 2.4, we obtain

sup
s∈R

E〈D1I(F > s), DF |DL−1(F − EF )|〉L2(µ)

= sup
s∈R

E〈D1I(F > s), DF |DL−1
(
F+ − EF+ − F− + EF−

)
|〉L2(µ)

≤ sup
s∈R

E〈D1I(F > s), DF
(
−DL−1(F+ − EF+)−DL−1(F− − EF−)

)
〉L2(µ)

≤ E
[
δ
(
DF DL−1

(
F − EF

))2
] 1

2

≤
√

(2k − 1)E〈(DF )2, (DL−1
(
F − EF

)
)2〉L2(µ).

Now the fact that (DzF )2 ≤ (DzF )2 concludes the proof. �

Proof of Theorem 4.2: In the following, we can assume that Mij(f) < ∞ for
i, j = 1, . . . , k since (23) is obviously true, otherwise. We consider the standardized
random variable G = (F − EF )/

√
VarF , whose Wiener-Itô chaos expansion has the

kernels gi = fi/
√

VarF for i = 1, . . . , k. In order to simplify our notation, we use the
abbreviation

S =
k∑

i,j=1

√
Mij(f)

VarF
.

Exactly as in the proof of Theorem 4.1 in [14], we obtain

E
∣∣1− 〈DG,−DL−1G〉L2(µ)

∣∣ ≤ k
k∑

i,j=1

√
Rij

VarF
≤ k

k∑
i,j=1

√
Mij(f)

VarF
= kS.
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From straightforward computations using Fubini’s Theorem, the Cauchy-Schwarz in-
equality, and (25), it follows that

E〈(DG)2, (DL−1G)2〉L2(µ) =

∫
X

E(DzG)2(DzL
−1G)2 µ(dz)

=

∫
X

E

(
k∑
i=1

i Ii−1(gi(z, ·))

)2( k∑
i=1

Ii−1(gi(z, ·))

)2

µ(dz)

≤ k4

∫
X

E
k∑
i=1

Ii−1(gi(z, ·))2

k∑
j=1

Ij−1(gj(z, ·))2 µ(dz)

≤ k4

k∑
i,j=1

Mij(f)

(VarF )2
≤ k4S2,

E〈(DG)2, (DG)2〉L2(µ) =

∫
X

E

(
k∑
i=1

i Ii−1(gi(z, ·))

)4

µ(dz)

≤ k6

∫
X

E
k∑
i=1

Ii−1(gi(z, ·))2

k∑
j=1

Ij−1(gj(z, ·))2 µ(dz)

≤ k6

k∑
i,j=1

Mij(f)

(VarF )2
≤ k6S2,

and

E〈DG,DG〉2L2(µ) = E

(
k∑

i,j=1

ij

∫
X

Ii−1(gi(z, ·))Ij−1(gj(z, ·))µ(dz)

)2

≤ k2

k∑
i,j=1

i2j2E
(∫

X

Ii−1(gi(z, ·))Ij−1(gj(z, ·))µ(dz)

)2

≤ k6

k∑
i,j=1

Rij

(VarF )2
+ k4

k∑
i=1

(i!)2||fi||4i
(VarF )2

≤ k6

k∑
i,j=1

Rij

(VarF )2
+ k4 ≤ k6

k∑
i,j=1

Mij(f)

(VarF )2
+ k4 ≤ k6S2 + k4.

As a consequence of Lemma 5.2, we have that

E
(
F − EF√

VarF

)4

≤ k2

k∑
i,j=1

Mij(f)

(VarF )2
+ 3k2 ≤ k2S2 + 3k2.

Combining the last three inequalities, we obtain

2
√
E〈(DG)2, (DG)2〉L2(µ) + 2

(
E〈DG,DG〉2L2(µ)

) 1
4
(

(EG4)
1
4 + 1

)
≤ 2k3S + 2(k

3
2

√
S + k)(

√
k
√
S + 3

1
4

√
k + 1) ≤ 16k3
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for S ≤ 1.
Lemma 5.3 together with a similar computation as for E〈(DG)2, (DL−1G)2〉L2(µ)

implies that

sup
s∈R

E〈D1I(G > s), DG |DL−1G|〉L2(µ) ≤

√√√√(2k − 1)k4

k∑
i,j=1

Mij(f)

(VarF )2
≤
√

2k
5
2S.

Thus, it follows from Theorem 1.1 that

dK

(
F − EF√

VarF
,N

)
≤ kS + 16k3 k2S +

√
2k

5
2S ≤ 19k5S

for S ≤ 1. Otherwise, this inequality still holds since the Kolmogorov distance is at
most one. �

In a similar way, one can also obtain an upper bound for the Kolmogorov distance
between a Gaussian random variable and a finite sum of Poisson U-statistics. This class
of Poisson functionals is interesting since Theorem 3.6 in [14] tells us that each Poisson
functional F ∈ L2(Pη) of order k with kernels fi ∈ L1

s(µ
i) ∩ L2

s(µ
i) for i = 1, . . . , k is a

finite sum of Poisson U-statistics (and a constant). For such a Poisson functional the
upper bounds for the inner products in the proof of Theorem 4.2 that depend on Rij

and ∫
X

EIi−1(fi(z, ·))2Ij−1(fj(z, ·))2µ(dz)

for i, j = 1, . . . , k still hold. Moreover, we can compute a similar bound as in Lemma
5.3 using the representation of F as a sum of Poisson U-statistics. Together with
the fourth centred moment of F , one can obtain an upper bound for the Kolmogorov
distance between (F − EF )/

√
VarF and a standard Gaussian random variable.
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