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ABSTRACT 

Purpose 

A 31P-MR inversion transfer method (IT) with a short adiabatic inversion pulse is proposed 

and its test-retest reliability was evaluated for two spectral fitting strategies. 

Methods 

Assessment in a test-retest design (3 Tesla, vastus muscles, 12 healthy volunteers, 14 

inversion times, 22ms asymmetric adiabatic inversion pulse, adiabatic excitation); spectral 

fitting in FitAID and jMRUI; least squares solution of the Bloch–McConnell–Solomon ma-

trix formalism including all 14 measured time-points with equal weighting. 

Results 

The cohort averages of k[PCr→γ-ATP] are 0.246±0.050s-1 vs. 0.254±0.050s-1, and 

k[Pi→γ-ATP] 0.086±0.033s-1 vs. 0.066±0.034s-1 (average±standard deviation, jMRUI vs. 

FitAID). Coefficients of variation of the differences between test and retest are lowest 

(9.5%) for k[PCr→γ-ATP] fitted in FitAID, larger (15.2%) for the fit in jMRUI, and consider-

ably larger for k[Pi→γ-ATP] fitted in FitAID (43.4%) or jMRUI (47.9%). The beginning of 

the IT effect can be observed with magnetizations above 92% for non-inverted lines while 

inversion of the ATP resonances is better than -72%.  

Conclusion 

The performance of the asymmetric adiabatic pulse allows an accurate observation of IT 

effects even in the early phase; the least squares fit of the Bloch–McConnell–Solomon 

matrix formalism is robust; and the type of spectral fitting can influence the results signifi-

cantly. 

 

Keywords: 31P MRS; inversion transfer; ATP synthesis; creatine kinase; skeletal muscle
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ABBREVIATIONS 

ADP adenosine diphosphate 

ATP adenosine triphosphate (α−, β−, γ−) 
B1 radio frequency field produced by the radio frequency coil 
BMI body mass index 
CK creatine kinase 
CRMVB Cramer Rao Minimum Variance Bounds 
CV coefficient of variation 
FID free induction decay  
IT inversion transfer 
jMRUI Java Magnetic Resonance User Interface 
kAB exchange rate constant of pool A > pool B (other indices accordingly) 
MATLAB matrix laboratory, a high-performance language for technical computing 
MRS magnetic resonance spectroscopy 
MT magnetization transfer 
MzA(t) longitudinal magnetization of pool A at time t (other pools accordingly) 
MzA

0 equilibrium longitudinal magnetization of pool A (other pools accordingly) 
NADH nicotinamide adenine dinucleotide 
NOEDE Nuclear Overhauser Effect from pool D to E (other indices accordingly) 
PCr phosphocreatine 
Pi inorganic phosphate 
[Pi] concentration of inorganic phosphate 
R1,A apparent longitudinal relaxation rate of pool A (other pools accordingly) 
 in the presence of magnetization transfer 
SNR signal-to-noise-ratio 
T1 longitudinal relaxation time 
T1,A longitudinal relaxation time of pool A (other pools accordingly) 
T2 transverse relaxation time 
TI inversion time 
TR repetition time 
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INTRODUCTION 

 

Magnetization transfer in 31P-MR spectroscopy (31P-MT) is a non-invasive method to de-

termine biochemical reaction constants in-vivo (1,2). The majority of 31P-MT experiments 

use saturation transfer methods (31P-ST) with long selective saturation pulses to measure 

ATP synthesis (Pi→γ-ATP) and the creatine kinase reaction (PCr→γ-ATP) separately. As 

an alternative to ST, inversion transfer (IT) techniques introduce a perturbation of the 

equilibrium magnetization by an inversion of one or more resonances using short pulses. 

This prevents potential transfer of saturation from very small metabolite pools (3) and also 

offers a simultaneous determination of multiple reactions with one type of experiment. 

While the interpretation of 31P-MT findings is generally discussed (3-9), ST and IT shed 

light on different aspects and could be combined in the same subjects to study the under-

lying mechanisms. However, a back-to-back application of ST and IT is time-consuming 

and in particular IT has still the potential to be improved as shown by an increasing num-

ber of publications (10-23). 

Our motivation for this study was to improve IT experiments on three levels: 1) data ac-

quisition (shortened inversion pulse to better observe the initial MT phase), 2) spectral fit-

ting (simultaneous fit of all spectra), 3) mathematical modeling of the time-evolution (sta-

tistically correct treatment of the noise in all spectra). 

A short asymmetric adiabatic pulse (24) enables the inversion of a part of the spectrum, 

e.g. of all ATP resonances without affecting PCr and Pi. This approach is similar to a pio-

neering publication at 7T (22); however, our study differs in three aspects: (i) the transition 

of the inverting pulse is placed such that PCr is not inverted; (ii) a shorter pulse of 22 ms 

duration is used, and (iii) all measured points with identical signal-to-noise-ratio (SNR) are 
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included in the least squares fit of the Bloch–McConnell–Solomon matrix equations while 

the equilibrium signal was used for normalization of all spectra in reference (22). 

Small MT effects require accurate spectral fitting of the time series, in particular at 3T  with 

limited SNR. Since the popular jMRUI software (25,26) does not allow for simultaneous 

fitting of multiple spectra, the potential benefits of an alternative package ("Fitting Tool for 

Interrelated Arrays of Datasets, FiTAID") (27) optimized for multi-dimensional fitting, was 

explored. 

MT effects in multiple reactions can be described in a matrix notation of the Bloch–

McConnell- (18,28) or Bloch–McConnell–Solomon-equations (21). Using a least squares 

fit of the matrix equations leads to a simultaneous estimation of all parameters.  

We evaluate the short pulse, fitting strategies, and simultaneous solution Bloch–

McConnell–Solomon-equations in a test-retest design at 3 Tesla in 12 subjects and de-

termine the coefficient of variation for the different approaches. 
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METHODS 

The proposed IT sequence consists of an adiabatic asymmetric inversion pulse (22 ms) 

(24), a tunable inversion time (TI between 0.1ms and 19500ms), an adiabatic excitation 

pulse (hyperbolic secant, 2.56 ms), followed by crusher gradients. All experiments were 

conducted on a 3T MR system (VERIO, SIEMENS, Germany) with a double-tuned 1H/31P 

flexible surface coil (31P coil diameter 11 cm, Rapid Biomedical, Germany). A work-in-

progress field mapping sequence (CV-shim-452, SIEMENS, Erlangen/Germany) was 

used for shimming. 

 

Phantom studies 

The performance of the adiabatic inversion pulse was evaluated (TR=5s, 2 averages, 2 

preparation scans) on a home-made phantom with 30mmol/l phosphate, 13mmol/l phenyl-

phosphate, 0.9% NaCl, and 10% AGAR (SIGMA Aldrich, Switzerland). The delay TI was 

set to its minimum and the carrier frequency offset swept from 0 to ±100Hz with intervals 

of 5Hz, from ±100 to ±505Hz with intervals of 15Hz, and from ±505 to ±1555Hz with inter-

vals of 50Hz (137 points, Fig.1). 

 

Human studies 

The sequence was applied on the right thigh muscles at rest in 12 healthy volunteers (6 

males, 6 females, age 35.3±13.3 y, BMI 23.7±2.8 kg/m2). Spectra from volunteers in two 

additional sessions were discarded due to hardware problems with the shim amplifier. The 

subjects were positioned feet-first and supine and the inferior edge of the coil was placed 

approximately 5 cm above the knee. Before each experiment the offset frequency of the 

pulse was adjusted to make sure that the inversion transition falls 60Hz upfield from the 
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PCr resonance (Fig.1). The IT experiment was performed twice in a test-retest design with 

a 10 min break while the subject left the scanner room and was repositioned (total exami-

nation time 42 min, 14 TI between 0.1ms and 19500ms, 8 averages, 1 preparation scan, 

repetition time TR 20s). Informed consent was obtained from all volunteers and the study 

was approved by the Cantonal Ethical Committee. 

 

Data processing, fitting of spectra 

The signal intensities of Pi, PCr, γ-ATP, α-ATP, and β-ATP were estimated using two dif-

ferent strategies (jMRUI and FitAID). Before fitting, the spectra were phased in jMRUI (0th 

order visually; 1st order with an experimentally determined 1ms delay). 

In the first approach each of the 14 acquired spectra was fitted separately using jMRUI 

(AMARES (25,26) with truncation of 1st point to avoid a baseline offset, and weighting of 

the 10 following points by a quarter sine-wave). Since jMRUI describes inverted reso-

nances by a 180° phase-shift, inverted (<-60Hz) and non-inverted (>-60Hz) regions of the 

spectra were fitted separately. Peak area, frequency offset and linewidth were fitted with 

constraints depending on the resonance: the frequency offset of PCr was free, Pi was re-

stricted to a range of 220-270Hz; all other resonances were fixed relative to PCr. All areas 

were free except for ATP within the multiplet structures. Except for NADH, no additional 

resonances (ADP etc.) were included in the model. The Lorentzian linewidths were free 

for PCr, limited by soft constraints for Pi (0-50Hz), and constrained to share the same lin-

ewidths for the ATP resonances. 

A second fit was performed in FitAID (27) which allows for a combined fit of all 14 spectra 

(truncation of three first points without weighting). All areas were free and only constrained 

within multiplet structures. In contrast to jMRUI where either Lorentzian line or Gaussian 
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line shapes are available, FitAID allows also for a combination of Lorentzian and Gaussi-

an line shapes, i.e. Voigt lines. The Lorentzian term in the Voigt line was estimated sepa-

rately for each resonance but enforced not to change in time, whereas the Gaussian term 

was constrained to be the same for all resonances and allowed to vary through time to 

account for variations of the field homogeneity due to subject motion. A common phase 

was also assumed to be identical throughout the scans. Common frequency offsets were 

allowed for all peaks except for the Pi peak, which could vary due to potential pH shifts. 

To judge the benefit of simultaneous fitting of all spectra in FiTAID, the Cramer Rao Mini-

mum Variance Bounds (CRMVB) with and without simultaneous fitting were evaluated 

and compared to the variances found in the repeated exams. 

 
Inversion transfer and fitting of kinetic parameters 

31P-MT can be described by 5 Bloch equations for the Z-magnetization of (A) Pi, (B) PCr, 

(C) γ-ATP, (D) α-ATP, and (E) β-ATP including terms for the Pi→γ-ATP exchange (kAC 

and kCA), PCr→γ-ATP exchange (kBC and kCB), and NOE's within the ATP molecule 

(NOEDE, NOEED, NOECE, and NOEEC). This formalism is very similar to published studies 

(21,22); however, without the "normalization" which has to assume infinite accuracy of the 

(measured) equilibrium magnetization in the divisor: 
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In matrix notation, this can be written as: 
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and the values can be found by a numerical solution of the matrix equation [6]. 

 

Assuming steady-state, kCA and kCB were calculated from: 

 

 

 

 

and the forward and backward NOE's were assumed to be equal: 

 

 

 

This reduced the total of 23 independent parameters (kBC, kCB, kAC, kCA, T1,A, T1,B, T1,C, T1,D, 

T1,E, MzA
0, MzB

0, MzC
0, MzD

0, MzE
0, MzA(0), MzB(0), MzC(0), MzD(0), MzE(0), NOEDE, NOECE, 

NOEED, NOEEC) of the equation system [6] to 19 which were determined simultaneously 

by the least squares fitting "lsqcurvefit" in MATLAB (R2011b, MathWorks Inc., Natick MA, 

USA). 

 

Statistics 

Statistical illustrations (Coefficient of Variation, Bland-Altman plot) were calculated in EX-

CEL 2007 (Microsoft, Redmond WA, USA). 
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RESULTS 

Pulse characteristics in-vitro 

In a phantom, the characteristics of the inversion pulse were determined over the whole 

spectral range (Fig.1). If the excitations at the chemical shift positions in vivo are com-

pared, PCr is slightly reduced relative to Pi and the ATP-resonances are inverted incom-

pletely; however, the transition between PCr and γ-ATP is small enough to bring the two 

adjacent resonances PCr and γ-ATP into the desired states. 

 

Time development in-vivo 

Figure 2 illustrates a typical fit of the time development of Pi, PCr, γ-ATP, α-ATP, and β-

ATP. The ratio of the fitted values of MZ(0)/MZ
0, i.e. the ratio of magnetizations at the very 

beginning and the very end of the transfer are listed in Table 1. The starting values 

MZ(0)/MZ
0 for Pi and PCr are comparable in the jMRUI analysis (avg±sd 92.3%±7.7% and 

92.8%±1.6%) and even slightly better in the FitAID analysis (96.6%±2.9% and 

94.6%±1.6%). The inversion of the ATP resonances was between -72.4% and -78.5% for 

the jMRUI analysis with similar results from FitAID (-75.0% to -82.1%). 

 

Test-retest of the parameter fits 

Table 1 and Figures 3 and 4 show the least squares solution of matrix [7] based on spec-

tral fits from jMRUI and FitAID, respectively. The group averages of k[PCr→γ-ATP] and 

k[Pi→γ-ATP] are similar for the two fitting strategies. CV's of the differences between test 

and retest are lowest (9.5%) for k[PCr→γ-ATP] fitted in FitAID, larger (15.2%) for the fit in 

jMRUI, and considerably larger for k[Pi→γ-ATP] fitted in FitAID (43.4%) or jMRUI (47.9%). 

It is obvious that parameters which are strongly dependent on the behavior of PCr (e.g. 
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k[PCr→γ-ATP], T1 of PCr, or the MT-influenced recovery-curve of γ-ATP) are better de-

fined, i.e. result in a lower CV than parameters with little dependence on this large signal 

(e.g. T1 and NOE of α- and β-ATP). In general, the ratios of amplitudes (MZ(0)/MZ
0) which 

describe the pulse behavior are defined with CV's well below 10%. 

 

Influence of the spectral fitting algorithms 

The two fitting strategies agree very well for k[PCr→γ-ATP] (0.246±0.050s-1 vs. 

0.254±0.050s-1, avg±sd, jMRUI vs. FitAID), which is primarily determined by the strong 

signal of PCr; however, there is a considerable difference for k[→γ-ATP] (0.086±0.033s-1 

vs. 0.066±0.034s-1) between the two algorithms (Table 1). 

The CRMVB for the Pi area parameter was found to be about 41% higher if individual 

spectra were fitted compared to fitting the series as a whole. In addition, the CV between 

the Pi-amplitudes in repeated exams (4.1%) was very similar to the CV expected based 

on CRMVB (3.6%), confirming that the SNR was limiting the precision of the Pi evaluation. 
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DISCUSSION 

This test-retest study had 3 distinct targets: 

(1) The evaluation of a relatively short (22ms) adiabatic inversion pulse allowing observa-

tion of the IT early after initiation. 

(2) Evaluation of a least-squares solution of the Bloch–McConnell–Solomon matrix formal-

ism which includes all error-prone M(t) measurements in the fitting algorithm with the cor-

rect weighting. 

(3) Evaluation of the influence of two spectral fitting algorithms (jMRUI vs. FitAID) that dif-

fer in their capabilities for simultaneous fitting of multiple spectra. 

 

Pulse performance and early time-evolution 

The pulse used in this study (24) is similar to the one used by Ren et al. (22) at 7 Tesla, 

however, the shorter duration (22 vs. 42ms) allows for earlier observation of the IT effect 

and reduces relaxation during the pulse (29,30). The MZ(0)/MZ
0 ratios (Table 1) of >92% 

for Pi and PCr help to define the time-evolution at an early phase. This part of the curve is 

particularly important for the fitting algorithm since it helps to define those parameters of 

the MT effect which have less influence in a later phase of the time-evolution. The pulse 

inverts the ATP-resonances adequately while the sharpness of the pulse transition is suf-

ficient to leave PCr almost untouched (Table 1). A shift of the pulse transition to the left of 

PCr (22) amplifies the effect on Pi beneficially; however, at the costs of a considerably lim-

ited accuracy for the creatine-kinase reaction. 

 

Determination of k-, T1, and NOE-values 
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The test-retest accuracy of the creatine kinase reaction constant k[PCr→γ-ATP] yields ex-

cellent CV's and the measured values are well in the range of published literature 

(21,22,31-35). In turn, the small Pi resonance defines the signal development less accu-

rately for k[Pi→γ-ATP], resulting in a much larger variance; however, the average cohort 

values are well in the range of published literature (4,7,20-23,33,34). For the determina-

tion of k[Pi→γ-ATP], inversion of the PCr resonance (22) is beneficial; however, at the 

cost of limited accuracy for k[PCr→γ-ATP]. 

The number of 19 fitted parameters seems large; however, 70 data points are available to 

fit 19 parameters (5 resonances measured 14 times). In particular, we include the meas-

ured value M(19500 ms) in the fit. A reduction of the number of parameters by a "normali-

zation" (22) mz(t) = M(t)/M(equilibrium) would require an infinitely accurate measured 

M(equilibrium). Otherwise, this "normalization" propagates the measurement error of 

M(equilibrium) to all fitted values and leads to bias since the fitting algorithm assumes 

mz(t->equilibrium)=1. Including the measured M(19500 ms) in our fitting algorithm treats 

all error-prone measurements equally without a bias for M(equilibrium). 

T1 values determined in this study were perfectly in line with literature values at 3T for 

PCr (36,37), yet considerably smaller than those published for the ATP resonances and 

larger than those published for Pi. The major reason for the discrepancy might be the dif-

ferent types of measurements (IT vs. inversion/saturation recovery only) which weight in-

terfering effects like MT, NOE, summation over different pools etc. differently. 

 

Influence of fitting strategies 

The differences between k[PCr→γ-ATP] and k[Pi→γ-ATP] as well as the comparison of 

the MZ(0)/MZ
0 ratios show that the results agree well between jMRUI and FitAID for peaks 
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with excellent SNR. However, the differences become larger if the resonances are smaller 

(e.g. Pi) and/or go through zero during the recovery process (i.e. γ-, α-, β-ATP). The dif-

ferences can mainly be explained by the different handling of prior knowledge over multi-

ple spectra by FitAID as compared to jMRUI. Specifically, the variance of the fitted Pi peak 

area was found to be 41% higher if the 14 spectra were fitted individually as compared to 

simultaneously (both CRMVB determined in FiTAID to prevent bias based on other differ-

ences in the programs or the other differences in fitting models). In addition, the two fitting 

algorithms have also other differences that might influence the fitting accuracy, e.g. 

FiTAID allows for a use of Voigt lines and thus a fixation of the T2 decay while the shim-

ming variation can be considered in the Gaussian term. We conclude that a fitting ap-

proach with simultaneous treatment of a time series (in our approach FiTAID) is clearly 

more robust than an individual spectrum fit approach. 

 

Limitations: 

The study has limitations; in particular that the fit of Pi in jMRUI was not very robust. Even 

though one expects that the fit would become more stable after the introduction of addi-

tional prior knowledge, we found in our approach that the algorithm seemed to get trapped 

in local minima more often if prior knowledge was enforced, resulting in obvious outliers 

(e.g. zero amplitude for a clearly visible Pi etc.). Increased SNR (more acquisitions, higher 

field strength, optimized coils) could have improved it. The study was performed at 3T 

while the higher SNR at 7T has been shown to promote excellent results (20-22,34,35). 

Since most clinical systems are at 3T, the presented data is nonetheless relevant for clini-

cal sites. Two compartments with different pH and T1 can be distinguished at higher field 

strength (38); however, this differentiation was not included in the presented formalism 
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since one of the compartments is only about 10% of the total signal and thus hardly quan-

tifiable at 3T. Only the resonances of ATP are in the model while ADP and other nucleo-

tides are omitted since we expect that their contributions are small and not determinable 

with sufficient precision. Only healthy volunteers have been enrolled, yielding an estima-

tion of the measurement error; however, inclusion of patients or subjects with different 

training status will be needed to estimate effect sizes in subsequent power analyses. Sev-

eral extensions and improvements of the study design can be envisioned, e.g. shortening 

of the very long TR or to shift the inversion pulse to include different resonances. 

 

Conclusions 

The suggested adiabatic asymmetric inversion pulse is short enough to observe the effect 

of magnetization inversion early on, while the pulse performance (inversion, transition 

bandwidth) is still very good. The reaction rates k[PCr→γ-ATP] can be determined with a 

CV of <10% (FitAID) while k[Pi→γ-ATP] suffers from the lower SNR of Pi, resulting in a 

CV of >40%. The least squares fit of the matrix description is robust; however, only those 

parameters that influence the shape of M(t) of major resonances significantly show a low 

CV. The simultaneous fit of all spectra in FitAID leads to smaller CV's for the kinetic con-

stants than independent spectral fits for all spectra in jMRUI. 
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Table 

Parameter Unit 

FitAID jMRUI 

Cohort ∆(∆(∆(∆(Test-Retest) Cohort ∆(∆(∆(∆(Test-Retest) 

Average SD SD CV Average SD SD CV 

k[Pi→→→→γγγγ-ATP] s
-1

 0.066 0.034 0.029 43.4% 0.086 0.033 0.041 47.9% 

k[PCr→→→→γγγγ-ATP] s
-1

 0.254 0.050 0.024 9.5% 0.246 0.050 0.037 15.2% 

MZ(0)/MZ
0
 [Pi] % 96.6 2.9 3.4 3.5% 92.3 7.7 6.7 7.3% 

MZ(0)/MZ
0
 [PCr] % 94.6 1.6 2.2 2.3% 92.8 1.6 1.8 2.0% 

MZ(0)/MZ
0
 [γγγγ-ATP] % -78.9 8.2 8.0 10.2% -73.8 5.0 3.5 4.8% 

MZ(0)/MZ
0
 [αααα-ATP] % -82.1 3.0 3.1 3.8% -78.5 3.3 3.1 3.9% 

MZ(0)/MZ
0
 [ββββ-ATP] % -75.0 3.4 2.6 3.5% -72.4 3.6 3.0 4.1% 

T1 [Pi] s 8.07 5.36 4.85 60.0% 12.90 6.38 8.86 68.7% 

T1 [PCr] s 6.76 1.20 1.63 24.1% 6.82 0.86 0.89 13.0% 

T1 [γγγγ-ATP] s 2.04 0.72 0.47 23.2% 2.03 0.64 0.66 32.4% 

T1 [αααα-ATP] s 1.19 0.69 1.08 90.4% 0.82 0.49 0.60 72.5% 

T1 [ββββ-ATP] s 0.64 0.37 0.57 88.9% 0.46 0.39 0.51 110.3% 

NOE [γγγγ-ATP →→→→ ββββ-ATP] - 0.32 0.10 0.15 48.1% 0.37 0.10 0.156 39.4% 

NOE [ββββ-ATP →→→→ αααα-ATP] - 1.00 0.69 1.06 105.5% 1.57 0.75 0.92 58.6% 

 

Table 1 shows the results from the test-retest experiments and the coefficients of variation (CV) for the differences between 

test and retest for the two fitting strategies. The standard deviations (SD) from the cohort include the variations between the 

individual subjects while the SD from the differences only include the variations between test and retest. The CV's are calculat-

ed as SD of the differences divided by the overall average. 
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Figure Captions 

 

Figure 1 (A) The pulse characteristics of the inversion pulse measured with a home-made 

phantom is illustrated by the resonance of PO4 (20 Hz apodization) which is shifted by an 

offset of the carrier frequency in a range of ±1005 Hz. The excitation at 0ppm (chemical 

shift position of PCr, 87%) is slightly reduced relative to 5.0ppm (position of Pi), and the 

inversion at the chemical shift positions of the ATP-resonances is not complete (γ-ATP -

73%, α-ATP -68%, β-ATP -55%). Of note: this reduces the signal-to-noise of the time-

evolution slightly yet does not influence the ratio of Mz(0)/Mz0 in Table 1. (B) For compar-

ison, a series of in-vivo spectra is shown to illustrate the time-evolution of the spectra on 

one hand and the sharp transition between PCr and γ-ATP on the other hand; the transi-

tion is placed at -60 Hz from the PCr resonance. 

 

Figure 2 Example of experimental and fitted data (jMRUI) of the IT development in one 

healthy volunteer. The excellent agreement between fit and experimental data is striking 

for PCr and the ATP resonances; however, the limited signal-to-noise of the small Pi res-

onance leads to considerable scattering of this data and subsequently to a less robust fit. 

 

Figure 3 Agreement of k[PCr→γ-ATP] for the two spectral fitting methods between test 

and retest, respectively. The upper trace shows a Bland-Altman analysis between test and 

retest; the lower trace shows the absolute values for each volunteer. 
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Figure 4 Agreement of k[Pi→γ-ATP] for the two spectral fitting methods between test and 

retest, respectively. The upper trace shows a Bland-Altman analysis between test and re-

test; the lower trace shows the absolute values for each volunteer. 
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Figure 1 (A) The pulse characteristics of the inversion pulse measured with a home-made phantom is 
illustrated by the resonance of PO4 (20 Hz apodization) which is shifted by an offset of the carrier frequency 

in a range of ±1005 Hz. The excitation at 0ppm (chemical shift position of PCr, 87%) is slightly reduced 
relative to 5.0ppm (position of Pi), and the inversion at the chemical shift positions of the ATP-resonances is 

not complete (γ-ATP -73%, α-ATP -68%, β-ATP -55%). Of note: this reduces the signal-to-noise of the 
time-evolution slightly yet does not influence the ratio of Mz(0)/Mz0 in Table 1. (B) For comparison, a series 

of in-vivo spectra is shown to illustrate the time-evolution of the spectra on one hand and the sharp 
transition between PCr and γ-ATP on the other hand; the transition is placed at -60 Hz from the PCr 

resonance.  
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Figure 2 Example of experimental and fitted data (jMRUI) of the IT development in one healthy volunteer. 
The excellent agreement between fit and experimental data is striking for PCr and the ATP resonances; 

however, the limited signal-to-noise of the small Pi res-onance leads to considerable scattering of this data 

and subsequently to a less robust fit.  
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Figure 3 Agreement of k[PCr→γ-ATP] for the two spectral fitting methods between test and retest, 

respectively. The upper trace shows a Bland-Altman analysis between test and re-test; the lower trace 
shows the absolute values for each volunteer.  
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