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Abstract
In many cultural landscapes, the abandonment of traditional grazing leads to encroachment

of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity

typical of semi-open habitats. We developed a framework of mutually interacting spatial

models to locate areas where shrub encroachment in Alpine treeline ecosystems deterio-

rates vulnerable species’ habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as

a study model. Combining field observations and remote-sensing information we 1) identi-

fied and located the six predominant treeline vegetation types; 2) modelled current black

grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) sim-

ulated from these profiles the theoretical spatial extension of breeding habitat when assum-

ing optimal vegetation conditions throughout; and used the discrepancy between (2) and

(3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable

breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pas-

ture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-domi-

nated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black

grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50%

cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice

that fraction (29%) would potentially be suitable when assuming optimal shrub and ground

vegetation conditions throughout the study area. Yet, only 10% of this difference was attrib-

uted to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%)

and Alnus viridis (4.8%). The presented method provides both a general, large-scale

assessment of areas covered by dense shrub vegetation as well as specific target values

and priority areas for habitat restoration related to a selected target organism. This facili-

tates optimizing the spatial allocation of management resources in geographic regions

where shrub encroachment represents a major biodiversity conservation issue.
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Introduction

Over centuries the mountain ecosystems of Central Europe have been shaped by extensive agri-
cultural practices such as grazing and meadow harvesting, which have created semi-natural
open landscapes characterized by a highly heterogeneous, biodiversity-rich vegetation mosaic
[1]. The progressive abandonment of these traditional farming practices is now giving way to
widespread forest and shrub vegetation encroachment [2], which threatens biodiversity [3, 4].
The effects are particularly pronounced within the Alpine treeline altitudinal belt, which–due
to its highly diverse ecotone structure–harbours a great variety of plant and animal species [5].
Although this process is exacerbated by climate change, land use change still remains the major
driver of vegetation ingrowth below the natural treeline, notably contributing to most of the
observed woody plant upwards shifts [6]. To counter the erosion of habitat complexity and
associated biodiversity in Alpine timberline ecosystems targeted restoration measures are
required, which calls for methods that provide not only area-wide information about prevailing
vegetation conditions, but also quantitative target values for management interventions, while
spatially identifying priority areas for these interventions.

One of the primary focal species of habitat restoration management in Alpine timberline
ecosystems is the black grouse. It is considered as a key indicator of structural habitat diversity
[7]. Population declines have been recorded throughout its Central European range [8] with
habitat loss, habitat degradation [8, 9] and human disturbance [10–13] identified as the main
responsible factors. Black grouse reproductive success is primarily determined by habitat qual-
ity, notably availability of food and cover [14, 15]. Nesting on the ground, this precocial species
is particularly vulnerable during early life stages [14–16]. Breeding habitat must thus offer mul-
tiple resources simultaneously: open grassy areas–yielding abundant protein-rich arthropod
food for sustaining rapid chick growth–interspersed with woody vegetation that provides shel-
ter under adverse weather and against aerial or terrestrial predators [15]. Encroachment by
homogeneous shrub formations, particularly the expansion of green alder (Alnus viridis), has
been shown to reduce overall plant species richness and arthropod biomass, which in turn
decreases black grouse breeding habitat suitability [17]. Habitat restoration therefore often
consists of management interventions in patches of dense shrub formations so as to recreate an
heterogeneous mosaic of grassy areas and dwarf shrubs, associated with young and old conifer-
ous trees [7, 18].

Although species’ habitat requirements have been investigated at multiple spatial scales [7,
19] the lack of area-wide spatial information about degrading habitat–notably encroaching
shrub–represents an impediment to systematic planning of restoration action. Using the black
grouse as a model species, we therefore developed a method that not only identifies patches of
dense shrub formations at the landscape scale, but also allows locating where they deteriorate
otherwise suitable breeding habitat. We relied on a combination of remote sensing and spatial
modelling.

Given the classical trade-off between resolution and extent of digitally available data, spatial
predictions across large areas usually come at the expense of precision [20]. Species distribution
models therefore frequently rely on proxies, i.e. coarse-grained, but area-wide available data
(e.g. climate, topography or human land use), which correlate with crucial habitat features (e.g.
vegetation structure or habitat heterogeneity), without necessarily being functionally linked
[21]. While this approach can be sufficient for predicting broad-scale species distributions, it
fails to deliver appropriate information for on-site habitat management, which requires
detailed, fine-grained spatial and quantitative information on existing vegetation features and
their deviance from optimal conditions in relation to the management goal. The growing avail-
ability of area-wide, high-resolution remote sensing information, derived from satellite or
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aerial imagery, and airborne laser scanning (ALS), offers the potential to identify vegetation
characteristics across large areas with an unprecedented degree of precision [22, 23]. In this
study we combine different sources of remotely-sensed information with interlinked spatial
models into a framework (Fig 1) that allows to 1) identify and locate key shrub and ground veg-
etation types at the landscape scale; 2) analyze and predict black grouse breeding habitat selec-
tion as a function of these vegetation types; 3) derive species-specific target values for habitat
management; 4) locate areas that deviate from optimal vegetation conditions so as to derive
priority areas for intervention, notably zones with massive encroachment of dense shrub for-
mations into otherwise suitable black grouse breeding habitat. Our approach is readily transfer-
able to other contexts. It generates high-resolution, quantitative and spatially-explicit
information that allows broad-scale systematic planning of habitat management interventions
for combatting the detrimental consequences of land abandonment upon biodiversity.

Methods

Ethics statement

Species observation data were adopted from existing databases, so no handling or disturbance
of endangered species was involved. Vegetation mapping was conducted on public grounds
where no permits for were required.

Fig 1. Conceptual framework underlying the approach applied in the present study, showing aims

(superscript), methodological steps (ovals) and outputs (rectangles). The modelled vegetation types

(1) are used as predictors in species habitat model (2). From the species response curves (3), target values

for optimal vegetation configuration are derived (4) which are used to evaluate the current vegetation

configuration (5) and simulate potentially suitable habitat when assuming optimal conditions (6). The

resulting areas with presently unsuitable conditions (7) within potentially suitable areas (8) are identified as

priority areas for management interventions (9). White symbols and dashed arrows illustrate the commonly

applied procedure of intersecting the outcome of two independent parallel models; novel interlinking steps

are illustrated in grey. Bold-framed symbols represent management-relevant outcomes.

doi:10.1371/journal.pone.0164318.g001
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Study area

The study was conducted in SW Switzerland (ca 46°10' N, 7°20' E), within an altitudinal belt
of 1600–2500 m a.s.l. covering 3117 km2 mainly located along the slopes of the Rhône valley
and its main tributaries (Fig 2). This altitudinal range encompasses the subalpine treeline,
which is dominated by larch Larix decidua (Miller), intermixed with Swiss stone pine Pinus
cembra (L.) and spruce Picea abies (L.). The ground layer is dominated by dwarf shrub forma-
tions (Rhododendron ferrugineum (L.), Juniperus communis (L.) and Calluna vulgaris (L.))
and grasslands (Nardus Stricta (L.), Calamagrostis villosa (Chaix)). Alpine pastures in this

Fig 2. Map of Southwestern Switzerland showing the main outcome of the spatial modelling. A:

Distribution of Black grouse breeding locations (red stars), that were used for modelling current (black) and

potential (light red) breeding habitat within the timberline belt (1600–2500 m altitude, grey). The black insert

in A depicts the region detailed in B and C. B: results of the vegetation classification showing the distribution

of alpine pasture (light blue), alder formations (yellow), as well as Juniperus-dominated (light green),

Rhododendron-dominated (medium green) and mixed (dark green) heathland vegetation. C: Patches of

homogeneous heathland (all three types, green) or alder (red) located in potentially suitable black grouse

breeding habitat (dark grey). The color intensity of the vegetation patches increases with size, with dark

colors indicating larger patches with higher priority for habitat management.

doi:10.1371/journal.pone.0164318.g002
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altitudinal range are mostly grazed by cattle and sheep. The study area includes two topo-
graphic and bioclimatic regions: the Pre-Alps and the Central Alps, characterised by subcon-
tinental to continental climate conditions, respectively, with warm and dry summers, and
cold, relatively wet winters [24].

Vegetation model

Vegetation data. Vegetation data were collected during field surveys in 2003, 2006 and
2009, focusing on 6 main vegetation types: Alpine pasture (1), three types of heathland (also
including Ericacea) dominated by either Rhododendron Rhododendron ferrugineum (2) or
Juniper Juniperus communis (3) or a mix of both (Rhododendron and Juniperus) (4), green
alder (Alnus vidiris) formations (5) and coniferous forest (6) (Table 1). Homogeneous patches
of these vegetation types that covered at least 625 m2 (25x25m) were identified while walking
along random transects (N = 28, average length: 2km) distributed along the timberline of the
main Rhône valley axis and its lateral tributaries (S1 Fig). Patches were delineated by taking the
circumscribing GPS coordinates, and drawn as polygons using ArcGIS 9.3. The resulting poly-
gons were then converted into a raster layer divided in 5x5m cells, which corresponds to the
maximum resolution of the predictor variables (see below). In order to avoid pseudoreplica-
tion, as some of the predictor variables were only available at a resolution of 25 x 25m, out of a
25x25m block only the most central 5x5m cell (hereafter referred to as “sampling plot”) was
retained for further analyses, which resulted in 516 vegetation plots.

Environmental predictors. Predictors for modelling vegetation types were extracted from
satellite images, supplemented with digital topographical information (Table 2). High-resolu-
tion information was obtained from SPOT5 satellite images of 2007, which had been corrected
for illumination and atmospheric effects using ATCOR3 [25] implemented in PCI Geomatics
Geomatica (Version 10.0.3). Radiative transfer in ATCOR3 was calculated using the MOD-
TRAN4 model [26, 27]

In addition, to capture general vegetation and land use pattern across the study area we
used Landsat images of different seasons summarizing the information embedded in the four
bands (red, blue, green, near-infrared) for each of three months representative of the vegetation
period (April, May, August) by means of a principal component analysis, retaining only the
first component (PC1) for subsequent analyses. Moreover, we calculated the Normalized Dif-
ferentiated Vegetation Index NDVI [28, 29], based on the relation of spectral information in
both the red and near-infrared range. Additional information on slope, exposition (i.e. north-
ness and eastness, defined as cosine and sine of aspect) as well as the annual amount of incom-
ing solar energy were derived from a digital elevation model. Moreover, we extracted the
proportion of forest and bushes within a radius of 50m around the focal cell based on the digi-
tal landscape map of Switzerland (Vector 25; precision: 8m; Swisstopo 2007).

Table 1. Definition and description of the six vegetation types characterized in the field and used in predictive modelling.

Habitat type Code Classification (Delarze et al. 1999) Definition

1 Alpine pasture PASTURE Nardion strictae, Festucion variae, Poion alinae > 75% herbaceous plants

2 Rhododendron

heathland

RHODO Rhododendro-Vaccinion > 75% Rhododendron ferrugineum

3 Juniper heatland JUNI Juniperion nanae > 75% Juniperus communis

4 Mixed heathland MIXED Juniperion nanae + Rhododendro-Vaccinion > 75% area covered by a mix of R. ferrugineum and J.

communis, but each species <75%

5 Alder ALNUS Alnenion viridis > 75% of Alnus viridis

6 Forest FOREST Vaccinio-Piceon, Juniperio-Laricetum, Larici-

Pinetum cembrae, Abieti-Piceon

>75% of conferous forest

doi:10.1371/journal.pone.0164318.t001
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Statistical approach. We used a multinomial logit model to predict the relative probability
of presence of each of the six habitat types as a function of the environmental variables, based
on all sampling points. First, from among pairs of highly correlated predictors (Spearman’s |rs|
> 0.7), we retained the one with the higher explanatory power in univariate models. Subse-
quently, starting with the full set of retained predictors, the most parsimonious model was
identified by applying a stepwise backward selection procedure [30] based on Akaike’s Infor-
mation Criteria (AIC) [31]. The multinomial logit model assigned to each sampling plot a
probability of presence of each of the six habitat types, i.e. six probability values in total. We
assessed the predictive accuracy for each habitat type separately based on Cohen’s Kappa maxi-
mum (K_max) and the area under the receiver operating characteristics curve (AUC). More-
over, applying the threshold at K_max, dichotomous maps of presence and absence for each of
the six habitat types were generated and the sensitivity (i.e. the proportion of correctly pre-
dicted presences) was calculated. In a first step, we evaluated the model fit on all sampling
plots; secondly, we simulated an independent evaluation by means of three-fold cross valida-
tion. Finally, the model was extrapolated to the entire study area (25x25m resolution), exclud-
ing “irrelevant” locations, i.e. areas covered by lakes, glaciers, rocks or dense forest as
delineated from the Vector25 map.

Black grouse breeding habitat model

Species data. Evidence of breeding black grouse included observations of nests and incu-
bating hens as well as hens leading chicks, recorded between 2000 and 2011. Since breeding

Table 2. Predictors used for modelling vegetation types, based on satellite imagery (Landsat7 and SPOT5) as well as topography and land-cover

characteristics.

Code Description Unit Data source Resolution

PCA04 PC1 of four colour bands (RGB+NIR) in April 1998 index Landsat71 25x25m

PCA05 PC1 of four colour bands (RGB+NIR) in May 1998 index Landsat7 25x25m

PCA08 PC1 of four colour bands (RGB+NIR) in August 1998 index Landsat7 25x25m

NDVI04 NDVI in April 1998 index Landsat7 25x25m

NDVI05 NDVI in May 1998 index Landsat7 25x25m

NDVI08 NDVI in August 1998 index Landsat7 25x25m

BAND1 1st Reflectance band (red) from August 2007 index SPOT2 5x5m

BAND2 2nd Reflectance band (blue) from August 2007 index SPOT 5x5m

BAND3 3rd Reflectance band (green) from August 2007 index SPOT 5x5m

BAND4 4th reflectance band (near infrared) August 2007 index SPOT 10x10m

NDVI8_5m NDVI in August 2007 index SPOT 10x10m

SLOPE Slope degree DEM3 25x25m

NORTH Northness (cosine of aspect) -1!1 DEM 25x25m

EAST Eastness (sine of aspect) -1g1 DEM 25x25m

SOLR Average annual solar energy per area Kwh/m2 DEM 25x25m

DFOR Proportion of dense forest % Vector254 Vector (~8m)

SHRUB Proportion of area with bushes % Vector25 Vector (~8m)

1 ETM+ (Enhanced Thematic Mapper plus) sensor
2 HRG (High Geometric Resolution) sensor
3DEM: Digital elevation model (SWISSTOPO): http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height.html
4Vector25: Digital landscape model of Switzerland (SWISSTOPO): http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/landscape/

vector25.html

doi:10.1371/journal.pone.0164318.t002
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events are quite elusive and systematic surveys of reproduction across the whole study area was
out of scope, we relied on casual information gathered at the Swiss Ornithological Institute
(notably via www.ornitho.ch), supplemented by observations compiled by the Cantonal Game
Service as well as data from our own long-lasting research programme. Only presence points
with a minimum precision of 100m were included, which resulted in N = 67 data points dis-
tributed all over the study area (Fig 2).

Environmental predictors. As environmental predictors for modelling black grouse
breeding habitat we used information on vegetation, climate, topography and human infra-
structure (Table 3). All predictor variables were prepared as raster maps (cell size: 25x25m). In
order to both capture the environmental conditions prevailing around these observation points
and to account for the sampling accuracy of species locations, we calculated means (continuous
variables), proportions (Boolean and categorical variables) or densities (for both point and lin-
ear features) within a circular moving window with a radius 100m.

Information on tree vegetation, i.e. the proportion of open and closed forest as well as the
number of isolated trees per hectare, was drawn from the Vector 25 map. Information about
above-timberline ground and shrub vegetation (all vegetation types listed in Table 1, except
forest) was taken from the vegetation model. In addition, as an indicator of vegetation hetero-
geneity, we calculated Simpson’s diversity index [32] from the same five vegetation types, again
excluding forest, within a 100m radius.

Climate information included the average temperature and precipitation in June, as
obtained from the worldclim-dataset [33] (www.worldclim.org), downscaled to a 100m resolu-
tion based on the SRTM-V4 digital elevation model (DEM) and the method described in [34].
We also calculated the mean amount of incoming solar energy per m2 and the mean sunshine
duration in June according to Fu and Rich [35], and based on the DEM. Topography was
described by slope, exposition (i.e. northness and eastness, defined as cosine and sine of aspect)
as well as the standard deviation of elevation within a 100m radius [36] as an index of terrain
roughness. The proportion of rocks served to assess micro-topographic conditions. Informa-
tion on infrastructure finally comprised the density of roads and the proportion of buildings
and settlements.

Statistical approach. As only “presence data” were available, we used Maxent, a machine-
learning approach based on the principle of maximum entropy [37], adapted for predictive
species distribution modelling [38, 39]. The method compares the environmental conditions at
the observed species locations with 10’000 locations randomly sampled across the study area.
The environmental variables and functions thereof are used as predictors [39]. Each predictor
is weighted by a coefficient, which–starting with a uniform probability distribution–is itera-
tively changed to converge to the probability distribution that maximises the likelihood of the
occurrence data, while remaining as close as possible to a uniform distribution (principle of
maximum entropy). The algorithm stops after a predetermined maximum number of itera-
tions or when the increase in log likelihood falls below a minimum value. To avoid overfitting,
a smoothing algorithm (regularisation) was employed, that constrains the average value for a
given predictor to be within the confidence intervals of its empirical average (for detailed infor-
mation see [38–41]).

Given the number of presence data (N�80) we used linear, quadratic and hinge features
[41], a maximum of 500 iterations and a convergence threshold of 10-5. First we ran a model
including all predictors with collinearity based on Spearman’s |rs|< 0.7. Subsequently, to
reduce and optimise the predictor set, we conducted a leave-one out stepwise jack-knife proce-
dure by systematically excluding one predictor at a time, thereby discarding all predictors that
reduced the models’ predictive accuracy [42, 43]. Model accuracy was determined by the area
under the receiver operating characteristics curve AUC [44, 45], calculating the mean across 5
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cross validation partitions. The final model was converted into a binary map predicting breed-
ing habitat presence and absence, using the threshold that maximized sensitivity plus specific-
ity of the test data, averaged across the cross-validation partitions.

Priority areas for breeding habitat restoration

In order to identify currently unsuitable breeding habitats that would be suitable if optimal
ground and shrub vegetation composition would be given, since all other environmental
requirements are met, breeding habitat suitability was recalculated simulating optimal vegeta-
tion composition throughout the study area. Therefore we set the ground and shrub layer

Table 3. Variables used for predicting black grouse breeding locations. The species’ response to the variables retained in the best model are indicated

with (+) for a positive, (-) for a negative and (o) for a unimodal response. The variables’ contributions to the model are provided as average and standard devi-

ation across 5 cross-validation replicates.

Variable

code

Description Unit Source Response

type

Contribution

(%)

Permutation

importance

Topography

SLOPE Slope degree DEM1 o 7.5 (2.6) 16.6 (7.9)

NORTH Northness (cosine of aspect) -1!1 DEM

EAST Eastness (sine of aspect) -1g1 DEM

ROUGH Relief roughness (SD of altitude) m DEM

ROCK Proportion of rocks % Vector 252 - 10.0 (1.7) 18.0 (1.4)

Climate

TAVE6 Mean Temperature in June ˚C Worldclim3 o 18.7 (0.7) 23.6 (4.0)

PREC6 Mean Precipitation in June mm Worldclim o 0.7 (0.6) 1.0 (0.9)

SOLR6 Mean solar energy per area in June Kwh/

m2
DEM

SOLD6 Mean monthly sunshine duration in June h DEM + 2.7 (0.6) 3.2 (3.2)

Human infrastructure

ROAD Density of roads m/ha Vector 25 - 0.5 (0.2) 0.5 (0.4)

SETTLE Proportion of settlements % Vector 25

Vegetation

OFOREST Proportion of open forest % Vector 25 + 18.3 (4.6) 3.6 (2.0)

DFOREST Proportion of dense forest % Vector 25 o 14.9 (2.3) 18.5 (5.0)

TREE Number of single trees N/ha Vector 25 + 9.4 (2.6) 7.0 (3.0)

MEADOW Proportion of alpine meadow % Veg.

Model

o 0.5 (0.3) 0.4 (0.8)

RHODO Proportion of Rhododendro-Vaccinion % Veg.

Model

o 0.7 (0.3) 0.4 (0.5)

JUNI Proportion of Juniperion nanae % Veg.

Model

o 1.7 (0.6) 0.3 (0.5)

MIXED Proportion of mixed Rhododendro and Juniperion

heathland

% Veg.

Model

o 10.5 (3.0) 2.2 (1.8)

ALNUS Proportion of Alnion viridae % Veg.

Model

o 3.3 (0.3) 4.1 (1.8)

SIDI Simpson’s diversity index of MEADOW, JUNI, RHODO,

MIXED and ALNUS

% Veg.

Model

+ 0.6 (0.2) 0.6 (0.6)

1DEM: Digital elevation model (SWISSTOPO): http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height.html
2Vector25: Digital landscape model of Switzerland (SWISSTOPO): http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/landscape/

vector25.html
3Worldclim: www.worldclim.org, downscaled.

doi:10.1371/journal.pone.0164318.t003
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variables (i.e. RHODO, JUNI, MIXED, ALNUS and PASTURE, as well as the diversity thereof,
SIDI, see Table 3) to their average sampling values at the breeding locations.

In a second step, to identify areas unsuitable due to dense shrub encroachment, the fre-
quency of homogeneously vegetated patches of heathland (all three types grouped) and alder,
respectively, within a radius of 100m, was calculated. Aggregations of cells containing more
than 50% of the same habitat type within this radius, and thus turning unfavourable as drawn
from the breeding habitat model’s response curves, were selected and classified according to
patch size. Priority areas for management interventions were finally located by intersecting
both types of information, i.e. large, homogeneous shrub vegetation patches overlapping with
potential breeding habitat. The resulting map thus shows currently unsuitable, encroached
patches that would turn suitable if properly managed.

Results

Vegetation model

In the 516 plots the most frequently mapped vegetation types were, in decreasing order: Alpine
pasture (n = 174 plots, 34%), Alnion viridae (27%), Juniperus–(13%) and Rhodendro–heath-
land (12%), coniferous forest (10%). With only 20 sampling plots (4%), mixed heathland was
the least abundant (Table 4). The multinomial model showed a good to excellent fit in predict-
ing the six vegetation types, with from 75% (for rhododendron-dominated heathland) up to
100% (for forest) correctly classified presence-plots, Kappa-values ranging between 0.73 and
1.00 and AUC-values always exceeding 0.9 (Table 4). Cross validation generally indicated a
good predictive performance on independent data, but was inherently less accurate for vegeta-
tion types with small sample sizes, such as mixed heathland (Table 4). Aggregations of dense
shrub heathland and alder formations occurred on 94.9 km2 and 253.3 km2, respectively, corre-
sponding to 3.0 and 8.1% of the study area. Patch size varied greatly within and between vege-
tation types. The majority of the identified patches of the two above mentioned types were less
than 1 ha in size (58% and 56%, respectively). Among the larger (> 1 ha) patches those domi-
nated by aggregations of dense shrub-heathland were on average smaller (median M: 3.3,

Table 4. Performance of the multinomial model for vegetation classification. (A) Number of correctly and erroneously classified vegetation plots

belonging to the six habitat types when applying the threshold at maximum Kappa (K_max) for binary classification; (B) model fit indicated by K_max and the

area under the receiver operating characteristics curve (AUC); and (C) predictive accuracy over 3 cross-validation replicates.

(A) PASTURE RHODO JUNI MIXED ALNUS FOREST

PASTURE 151

RHODO 48

JUNI 57

MIXED 16

ALNUS 130

FOREST 53

Erroneous classification 23 16 9 4 9 0

Total 174 64 66 20 139 53

(B) Model fit

Kappa max 0.81 ± 0.03 0.73 ± 0.05 0.85 ± 0.04 0.77 ± 0.07 0.90 ± 0.02 1

Threshold at K_max 0.52 0.475 0.45 0.34 0.465 0.05

AUC 0.97 ± 0.006 0.97 ± 0.007 0.98 ± 0.007 0.99 ± 0.008 0.99 ± 0.004 1

(C) Predictive accuracy

Kappa max 0.69 ± 0.09 0.54 ± 0.02 0.71 ± 0.14 0.47 ± 0.08 0.86 ± 0.02 0.87 ± 0.04

AUC 0.90 ± 0.05 0.91 ± 0.01 0.92 ± 0.08 0.81 ± 0.11 0.96 ± 0.02 0.96 ± 0.02

doi:10.1371/journal.pone.0164318.t004
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interquartile range IR: 1.8–6.7) than patches of green alder (M: 4.3, IR: 2.1–11.1). The variables
retained in the multinomial for predicting the vegetation types are presented in S1 Table.

Black grouse breeding habitat

Black grouse breeding locations were predicted with a high accuracy with a model fit of
AUC = 0.925 (SD: 0.007) and an average AUC = 0.885 (SD: 0.042) over 5 cross validation repli-
cates. Breeding habitat suitability was mainly explained by early summer temperature and an
intermediate forest cover, i.e. the typical ecotone context of timberline habitats, while ground
and shrub vegetation cover contributed only marginally at that spatial scale (Table 3). Black
grouse showed a unimodal response towards all shrub vegetation types (i.e. Juniper-, Rhodo-
dendron- or mixed heathland as well as Alder formation, Fig 3), with the optimal cover varying
between 10% (Juniper-dominated heathland) and 50% (mixed heathland). Moreover, breeding
locations were positively associated with a high diversity of vegetation types (SIDI) within a
100m radius.

Fig 3. Modelled relative probability (and 95% confidence interval) of breeding black grouse presence

as a function of the cover and diversity of five of the six (forest excepted) main vegetation types

within a 100 m radius. A: alpine pasture (PASTURE), B green alder (ALNUS), C: Juniperus-dominated

(light grey), Rhododendro-dominated (medium grey) and mixed (dark grey) heathland. D: Simpson’s

diversity index drawn from the same vegetation typology.

doi:10.1371/journal.pone.0164318.g003
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Priority zones for habitat management

Under the currently prevailing vegetation conditions 46’947 ha (15%) of the study area pro-
vided suitable habitat for black grouse reproduction (Fig 2). In contrast, sites with suitable
landscape contexts, irrespective of the prevailing field layer vegetation composition, occurred
on a total area of 90’203 ha (29% of the study area). 10% thereof were covered by patches of
dense shrub formations, with 5.2% (4672 ha) pertaining to shrub-heathland and 4.8% (4359
ha) to alder formations. These patches, representing the zones where habitat management
should be envisioned in priority, corresponded to 49% (of a total of 9490 ha) and 17% (of a
total of 25’330 ha) of the area covered by dense shrub-heathland and alder formations, respec-
tively (Fig 2C).

Discussion

The encroachment of woody plants into progressively abandoned, mostly marginal mountain
pastures is a worldwide, large-scale phenomenon [2, 46, 47], often exacerbated by climate
change [48]. While resulting patterns of vegetation changes [49] and their impact on biodiver-
sity [4, 17, 50] have already been documented, we were still lacking a cost-effective method that
can deliver both spatially-explicit information about areas among the wide, often inaccessible
landscape where habitat interventions should be prioritized, and targeted species-specific habi-
tat management recommendations. Our approach fills this gap. It can be easily applied over
wide areas, is sufficiently precise to capture main vegetation types and configuration, reveals
the fine-grained mosaic requirements of exigent wildlife, and enables delineating areas under-
going habitat deterioration. Therefore we propose a generic conceptual framework for drawing
management-relevant information from two parallel, mutually feeding modelling lanes (Fig 1).

Vegetation model

Remotely-sensed characterization of vegetation has undergone a rapid development thanks to
modern satellite and aerial imagery [51]; yet, while there are abundant studies of Alpine ecosys-
tems relating to vegetation productivity [52–54], phenology [55, 56] and structural changes
[57, 58], classification of Alpine vegetation types remain scarce. Our model achieved a high
accuracy in predicting the six main vegetation associations typically occurring in Swiss Alpine
timberline ecosystems, despite the fact that vegetation sampling and satellite data spanned over
6 and 9 years, respectively. Time periods of that duration were chosen so as to be short enough
to avoid that vegetation dynamics substantially affects habitat typology at these altitudes [59];
and but long enough to cover the multiple years sampling of black grouse (S2 Fig). Although
dense shrub patches may have expanded at their periphery during this time lapse, the core
areas of the homogeneously vegetated patches, which we used for model calibration, were
unlikely to be altered. Our set of predictors not only consisted of contemporary, high-resolu-
tion satellite images (SPOT5), but also of derivate information (PCA, NDVI) drawn from the
spectral bands of older, coarse-grained images taken in different seasons, as well as from topog-
raphy and land-use data. The reason for this choice was that we were not focused on “pure”
spectral analysis methodology, but on obtaining wide-scale, cost-effective and accurate vegeta-
tion predictions by making best use of the available geo-data. In this respect, auxiliary data, i.e.
information that is not directly linked to the recorded vegetation characteristics but bears
information about variance in local plant growth conditions and development potential, can
enhance the predictive power [60, 61]. This for instance includes topographical features, such
as surface roughness, shadowing, slope and aspect which can have strong effects on both plant
associations and their reflectance values [62, 63]. We also used the two land cover classes “for-
est” and “bushes” (extracted from Swiss Vector 25) as predictors, despite the fact that forest
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was also one of the predicted vegetation types; this relativizes the model’s high discrimination
power with regard to forest. Note that—despite not belonging to the vegetation types of interest
with regard to our research question—we included “coniferous forest” in the vegetation model
to cover the spectral range of all main vegetation associations in the study area thereby achiev-
ing a more accurate discrimination of the focal types.

Our method has some drawbacks, though: calibrated using data from homogeneous vegeta-
tion patches, the model may be less efficient to localize and delineate mixed vegetation types
(e.g. mixed heathland): generally, calibration data that rely on categories (e.g. vegetation types)
should be both mutually exclusive and exhaustive, i.e. selected so as to maximize the separabil-
ity between vegetation types while capturing the full variability within each vegetation type
[61]. Given this trade-off, we put more emphasis on separability, since we primarily aimed at
detecting homogeneous patches of dwarf woody vegetation. As a consequence, the major
patches of homogeneous heathland or alder formations identified by the model may also con-
tain parts of intermixed vegetation. This limitation will have to be compensated by in situ
adjusted management during the interventions.

Black grouse breeding habitat model

Shrub removal is a costly operation due to both the difficult if not inaccessible Alpine terrain,
and the scarcity of ad hoc machinery. Combining spatially-explicit information about massive
encroachment zones with information about the habitat requirements and potential distribu-
tion of vulnerable wildlife allows confining measures key functional areas. Assessing black
grouse breeding over a large spatial extent is a challenging task, however: the species is elusive
and the female particularly cryptic. We had thus to rely on casual observations and a presence-
only modelling approach. Yet, reliable inference from Maxent requires that presence-only sam-
ples stem from random or representative sampling [6]. In our case the fraction of the breeding
locations collected with radio tracking were unbiased, whereas casual visual observations might
have been biased towards sites with high accessibility or birdwatching hotspots. We consider
this a minor issue for three reasons: first, black grouse observations were evenly distributed
across the study area, with no spatial aggregation; second, they were negatively associated with
the presence of human infrastructure; and third, known black grouse hotspots are likely to
reflect suitable breeding areas.

Although we used brood locations with a spatial precision of 100m and characterized envi-
ronmental conditions within a 100m radius, the species’ response curves we obtained for the
field layer vegetation types largely coincided with those obtained from radio tracking at a much
finer scale [7]. This independently corroborates the good predictive accuracy of our model, in
line with cross-validation and confirms that breeding black grouse hens require a fine-grained,
patchy mosaic of different vegetation types, with none of them really dominating the landscape
(<50% cover each), not only at the local foraging site scale [7] but also in the wider habitat
matrix (this study).

Black grouse response curves provide not only direct target values for habitat management,
but can also be used to evaluate the discrepancies between currently prevailing and potential
optimal vegetation conditions, with the objective to prioritize sites for management interven-
tions (Fig 1). Although shrub and field-layer formations accounted together for only 17% of
model gain (8% permutation importance, Table 3), model extrapolation–under the assumption
of suitable field-layer conditions across the entire study area–the amount of suitable breeding
habitat doubled. Yet, this difference between current and potential breeding habitat could only
partially be attributed to shrub encroachment: only 10% of the potential breeding habitat was
in fact covered by large patches of homogeneous shrub vegetation. These 10% represent the
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zones where management interventions should be prioritized. The remaining fraction may be
attributed to an unfavourable constellation of vegetation types, and/or wide non-vegetated, i.e.
unsuitable areas (e.g. screes and rocky outcrops).

Conclusions and management implications

The approach developed here allows a rapid and objective appraisal of zones covered by dense
heathland and extended alder formations across wide areas. It furthermore provides both a
tool for spatially prioritizing interventions and target values for in situ vegetation management
measures. This will facilitate the allocation of the scarce resources available for wildlife manage-
ment. The benefits of confining interventions to areas potentially suitable for the target species
become particularly obvious when considering that less than half of the wider, homogeneous
heathland patches and only 17% of dense alder formations were indeed located in areas which
are potentially suitable for black grouse reproduction.

Despite operated at different spatial scales, all models ([7, 17], this study) so far converge in
their target values for improving black grouse breeding habitat. Among heathland dominated
matrices, an ideal breeding habitat would consist of dwarf shrub formations (not exceeding
50% cover) and alpine pastures (10–40%), interspersed with single, isolated conifer trees (10
per ha) and small dense groups of rejuvenating conifers (< 3m, 30 per ha). In green alder dom-
inated matrices, the cover of Alnus should ideally not exceed 25–30% within a 100m radius
(Fig 3; corroborating [17]). Targeted interventions should optimally be implemented over
areas of at least 12 ha, which corresponds to the average home range of a chick-rearing hen
(13.5 ha; [7]). The selection of encroachment patches for interventions may thus be modulated
according to the available financial resources: if budget is too low to efficiently modify the habi-
tat over sufficient areas (at least 12ha) of wide homogenous patches, interventions in smaller
patches within a matrix of still fairly good heterogeneity may be more efficient.

As black grouse reproductive success is associated with a high structural and ecological
diversity [7, 15], interventions in its Alpine habitat are likely to improve conditions for biodi-
versity in general. In addition, the vegetation map we produced could also be used to prioritize
measures for other species and even other pressing conservation issues (e.g. identifying areas of
overgrazing). The method developed here is readily transferrable to any project that aims to
combat the negative impact of vegetation change upon rare species.

Supporting Information

S1 Fig. Sampling locations.Plots with homogeneous vegetation (white dots) that were used
for modelling the six vegetation types (Table 1) within the timberline belt (dark grey) of the
study area.
(PDF)

S2 Fig. Timescaleof the study. Black grouse breeding occurrences were sampled between
2000–2011 (grey bar). Vegetation sampling (black stars) took place in 2003, 2006 and 2009.
High resolution satellite (SPOT5) pictures and Vector25 land-use information were taken
from 2007, and amended by coarse-grained information on general landscape patterns
obtained from Satellite pics (Landsat7) of April, May and August 1998. The year 1998 was
selected as it was the only one for which cloud-free pictures were available for all relevant
months.
(PDF)

S1 Table. Variables retained in the multinomialmodel and coefficients for predicting the
vegetation types, with ALNUS being the reference category. For vegetation codes see Table 1,
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(XLSX)
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Les régions biogéographiques de la Suisse. Bern/Berne: BUWAL/OFEFP, 2001 Nr./n˚ 137.

25. Richter R. Atmospheric/Topographic Correction for Satellite Imagery—ATCOR-2/3 User Guide, Ver-

sion 6.3. DLR-IB 565-01/07: DLR; 2007.

26. Berk A, Bernstein LS, Anderson GP, Acharya PK, Robertson DC, Chetwynd JH, et al. MODTRAN

Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sensing of Environment.

1998; 65:367–75. doi: 10.1016/S0034-4257(98)00045-5

27. Berk A, Anderson GP, Acharya PK, Hoke ML, Bernstein LS, Chetwynd JH, et al. MODTRAN4 Version

3 Revision 1 User’s Manual. Air Force Research Laboratory} Hanscom MA. Hanscom MA: 2003.

Remote Sensing of Shrub Encroachment for Large-Scale Assessment of Habitat Degradation

PLOS ONE | DOI:10.1371/journal.pone.0164318 October 11, 2016 15 / 17

http://dx.doi.org/10.1007/s10344-011-0540-z
http://dx.doi.org/10.2981/0909-6396(2007)13%5B5:CSOGWA%5D2.0.CO;2
http://dx.doi.org/10.2981/0909-6396(2007)13%5B5:CSOGWA%5D2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2000)081%5B1985:LFAFCE%5D2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2000)081%5B1985:LFAFCE%5D2.0.CO;2
http://dx.doi.org/10.1098/rspb.2006.0434
http://www.ncbi.nlm.nih.gov/pubmed/17341459
http://dx.doi.org/10.1111/j.1365-2664.2008.01547.x
http://www.ncbi.nlm.nih.gov/pubmed/21639058
http://dx.doi.org/10.1890/14-1141.1
http://www.ncbi.nlm.nih.gov/pubmed/26485949
http://dx.doi.org/10.1111/j.1365-2664.2007.01396.x
http://dx.doi.org/10.1016/s0378-1127(00)00574-0
http://dx.doi.org/10.1111/j.1600-0587.2009.05891.x
http://dx.doi.org/10.1016/S0304-3800(00)00354-9
http://dx.doi.org/10.1016/S0169-5347(03)00070-3
http://dx.doi.org/10.1016/S0169-5347(03)00070-3
http://dx.doi.org/10.2111/07-141.1
http://dx.doi.org/10.1016/S0034-4257(98)00045-5


28. Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote

Sensing of Environment. 1979; 8:27–150. doi: 10.1016/0034-4257(79)90013-0

29. Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. Using the satellite-derived

NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution. 2005;

20:503–10. doi: 10.1016/j.tree.2005.05.011 PMID: 16701427

30. Faraway J. Extending the linear model with R: generalized linear, mixed effects and nonparametric

regression models: Chapman & Hall; 2006.

31. Burnham KP, Anderson DR. Model Selection and Inference. New York: Springer-Verlag; 1998. 353

p.; selected pages: 21–26*, 15–28# p. doi: 10.1007/978-1-4757-2917-7

32. Simpson EH. Measurement of diversity. Nature. 1949: 163:688. doi: 10.1038/163688a0

33. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate sur-

faces for global land areas. International Journal of Climatology. 2005; 25:1965–78. doi: 10.1002/joc.

1276

34. Zimmermann NE, Roberts DW. Final Report of the MLP climate and biophysical mapping project. Bir-

mensdorf: 2001.

35. Fu P, Rich PM. A geometric solar radiation model with applications in agriculture and forestry. Comput-

ers and Electronics in Agriculture. 2002; 37:25–35. PubMed Central PMCID: PMCvb. doi: 10.1016/

S0168-1699(02)00115-1
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