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Abstract
149Tb represents a powerful alternative to currently used α-emitters: the relatively short
half-life (T1/2 = 4.1 h), low α-energy (3.97 MeV, Iα = 16.7 %), absence of α-emitting
daughters and stable coordination via DOTA are favorable features for potential clinical
application. In this letter, we wish to highlight the unique characteristics of 149Tb for
PET imaging, based on its positron emission (Eβ+mean = 730 keV, Iβ+ = 7.1 %) in addition to
it’s a therapeutic value. To this end, a preclinical study with a tumor-bearing mouse is
presented. The perspective of alpha-PET makes 149Tb highly appealing for radiotheragnostic
applications in future clinical trials.

Keywords: 149Tb, radiolanthanide, mass separation, PET imaging, α-radionuclide
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Dear Editor

Recently, α-radionuclide therapy has gained in popularity and attracted the interest

of physicians [1, 2]. One of the reasons is certainly the success of XofigoTM (223RaCl2),

which has been approved for the treatment of patients with symptomatic bone lesions

in castration-resistant prostate cancer [3]. The survival benefit after XofigoTM therapy,

combined with its low toxicity, make it undoubtedly very promising as a novel treat-

ment option for this type of disease and, in future, also possibly for patients suffering

from bone metastases of other cancer types [3]. Also, the power of targeted therapy

with other α-particle emitters, namely, 211At, 225Ac and 213Bi has been convincingly

demonstrated, mostly in combination with tumor-targeted antibodies [4].

α-Particles are positively-charged and have a shorter tissue range (~25–80 μm) and

much higher energies (~4-8 MeV), as compared to the negatively-charged β--particles of

clinically useful β--emitters [1]. In terms of radiobiological effects, it is important to men-

tion that the linear energy transfer (LET) of α-particles is with ~100 keV/μm very high

and may further increase up to 300 keV/μm towards the end of the track (Bragg peak)

[5]. This value is far above the LET (~0.2 keV/μm) of β--particles. High-LET radiation

generally causes more lethal cell damage than low-LET radiation due to the formation of

more irreparable double-strand DNA breaks [6]. All these characteristics make targeted

α-therapy best suited for specific tumor cell killing, without collateral damage of sur-

rounding healthy tissue [1, 7]. Single photon emission computed tomography (SPECT)
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may be used to image targeted α-particle therapy if the decay of the α-emitting radio-

nuclide results in photon emission of a suitable energy and sufficient intensity [4]. This is

the case for 223Ra (Eγ = 144 keV, 3.3 %; 154 keV, 5.7 %) [8], while 225Ac may potentially be

imaged via γ-ray emission of daughter radionuclides (e.g. 221Fr, Eγ = 218 keV, 11 %), as

shown in preclinical settings [9], and 211At through use of emitted X-rays [10]. The low

quantities of activity employed for α-therapy using these radionuclides, remain, however,

challenging for nuclear imaging using SPECT.
149Tb represents a powerful alternative to the currently-employed α-emitters. It

decays with a relatively short half-life of 4.1 h and emits α-particles of low energy

(Eα = 3.97 MeV, Iα = 16.7 %), resulting in a tissue range of ~25 μm and a LET of

140 keV/μm [11]. These physical properties make it particularly well suited for ap-

plication in combination with small-molecular-weight targeting agents, including

peptides, which are quickly cleared from the body [12]. The absence of α-emitting

daughters is regarded as an additional favorable feature of 149Tb, since toxicity of

α-emitters with multiple α-emitting daughters has been identified as an issue for

clinical application [2]. In vivo application of 149Tb may, thus, be feasible without

the risk of unspecific emission of harmful α-particles in the body as a consequence

of released daughter radionuclides. The decay scheme of 149Tb is, nevertheless,

complex [7] and potential radiotoxicity of the resulting radiolanthanides remains to

be determined. As a radiolanthanide 149Tb can be stably coordinated with the

conventional macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

(DOTA) chelator [13, 14]. These circumstances allow the use of 149Tb with

DOTA-functionalized compounds that are (pre)clinically established for 177Lu-based

radionuclide therapy.

Beyer et al. reported on a preclinical immunotherapy with 149Tb-labeled rituximab

(5.5 MBq/mouse) in a mouse model of Daudi cell-based lymphoma [15]. In this

case, the open-chained cyclohexane diethylene triamine pentaacetic acid (CHX-A”-

DTPA) chelator was used for radiometal coordination. The majority (89 %) of

treated mice showed tumor-free survival over >120 days, while all untreated con-

trols and mice which received unlabeled rituximab developed lymphoma disease

[15]. Our group has previously reported on a preclinical pilot study using a 149Tb-

labeled folate conjugate for therapy of mice bearing folate receptor-positive KB

tumor xenografts [14]. In treated mice (2.2 MBq and 3.0 MBq/mouse, respectively),

the tumor growth was significantly delayed which prolonged the average survival

time to 30.5 days and 43 days, respectively, compared to untreated controls which

survived only 21 days on average [14].

Even though the number of preclinical studies in which 149Tb was investigated, is

very small, there is clear evidence of the potential to use 149Tb for targeted α-

radionuclide therapy. Other than the aforementioned favorable physical and chem-

ical characteristics it provides, it would also offer a unique opportunity for compar-

ing the effects of α-radionuclide therapy with β--radionuclide therapy through the

use of chemically identical radiopharmaceuticals labeled with 149Tb and 161Tb (T1/2 = 6.9 d,

Eβ-mean = 154 keV) [13]. As all of these features of 149Tb are so attractive from a

therapy perspective, the proposed possibility of positron emission tomography

(PET) provides an extra dimension. Alternatively, 149Tb may also be used for

SPECT imaging based on the emission of γ-radiation of a suitable energy and
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reasonable intensity (Eγ = 165 keV, Iγ = 26.4 %). This concept has been proposed

earlier [16], but has to date not been investigated in preclinical studies. The

current trend in nuclear medicine is, however, in favor of PET instead of SPECT

due to the higher sensitivity and resolution it provides [17].

In a recently-performed study, we focused on the potentially unique characteristic of
149Tb to be used for PET imaging, based on its positron emission (Eβ+mean = 730 keV,

Iβ+ = 7.1 %), in addition to its α-therapeutic value [16]. 149Tb was produced by proton-

induced spallation of a tantalum target, followed by an online isotope separation

process at ISOLDE/CERN (Geneva, Switzerland). The mass-separated ion beam was

implanted into a zinc-coated gold catcher foil, which was shipped to Paul Scherrer

Institut (PSI, Villigen-PSI, Switzerland) for processing. 149Tb was separated from isobar

and pseudo-isobar impurities by cation exchange chromatography, as previously re-

ported [13]. The separation yield was 100 MBq (~99 %) of highly pure 149Tb in α-

hydroxyisobutyric acid solution (pH 4.7), a quantity sufficient for preclinical applica-

tion. The radiolabeling was carried out directly in the eluent solution by addition of

DOTANOC and incubation of the reaction mixture for 15 min at 95 °C. 149Tb-DOTANOC

was obtained with >98 % radiochemical purity at a high specific activity (5 MBq/nmol), as

confirmed by high performance liquid chromatography (HPLC)-based quality

control. A nude mouse bearing AR42J tumor xenografts was intravenously injected

with ~7 MBq 149Tb-DOTANOC (~1.4 nmol). PET/CT scans were performed 2 h

later using a preclinical G8 bench-top scanner (Sofie Biosciences). During the PET

scan (30 min) and the following CT (1.5 min) the mouse was anesthesized using a

mixture of isoflurane and oxygen.

The quality of the obtained PET images was unexpectedly high (Fig. 1). The maximal

intensity projections allowed distinct visualization of the tumors located on each shoul-

der (Fig. 1a/b). Specific cross sections of the tumor showed homogenous distribution of

radioactivity accumulation (Fig. 1c). Residual radioactivity was found in the kidneys and

the urinary bladder as expected, based on the fast renal excretion of DOTANOC.
Fig. 1 PET/CT images of an AR42J tumor-bearing mouse 2 h after injection of 149Tb-DOTANOC (7 MBq).
(a, b) Maximal intensity projections (MIP) and (c) sections showed distinct accumulation of radioactivity in
tumor xenografts (Tu) and residual radioactivity in kidneys (Ki) and urinary bladder (Bl). The decay scheme
of 149Tb is shown as in the Karlsruhe Nuclide Chart (www.nucleonica.com)

http://www.nucleonica.com
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In this study, the possibility of being able to produce a PET image using a 149Tb-

labeled biomolecule was successfully demonstrated. It is, thus, indisputable that 149Tb

presents an exceptional potential to be used in clinics as it would allow combining α-

therapy with PET using a single radionuclide.

It has to be acknowledged, however, that the quantity of injected activity for patients

may be critical for PET imaging purposes. So far, it is unknown how much activity

would be required for a therapeutic application in the clinics. Among several parame-

ters, including the sensitivity of tumor type which should be treated, it will be critically

dependent on the targeting agent and the degree of its accumulation in the tumor

tissue. Whether the necessary quantity of radioactivity would allow for PET imaging

remains to be determined in patients.

The unconventional production of 149Tb appeared to be the main reason why 149Tb

did not yet reach clinical trials, as stated in several reports previously [12]. Currently,

endeavors all over the world are focused on the establishment of new radionuclide pro-

duction centers, clearly offering new perspectives for the production of radionuclides

like 149Tb, which are dependent on mass separation facilities. Such production centers,

which exploit spallation production combined with isotope separation on-line (ISOL),

are already in operation at the Isotope Separator and Accelerator (ISAC) at TRIUMF,

Canada’s National Laboratory for Particle and Nuclear Physics (Vancouver, Canada) and

at Investigation of Radioactive Isotopes on Synchrocyclotron (IRIS), at the Petersburg Nu-

clear Physics Institute (PNPI, Gatchina, Russia). Other facilities are in the planning stage

or under construction at Radioactive Isotope Beam Factory (RIBF, East Lansing, U.S.), at

the Belgium Nuclear Research Center’s ISOL facility (ISOL@MYRRHA, Mol, Belgium)

and at the Japan Proton Accelerator Research Complex (J-PARC ISOL, Tokai, Japan).

MEDICIS, a new radionuclide production center dedicated to medical applications, is

currently being built at CERN (Geneva, Switzerland) [12]. MEDICIS’ aim is to produce

medically interesting, but not yet fully investigated radionuclides, including 149Tb, in

quantities sufficient to address the requirements of pilot investigations in patients.

The perspective of overcoming the obstacle of production holds great promise for

more detailed preclinical investigations and first clinical trials in the near future using
149Tb for α-therapy, combined with PET.
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