The prognostic and predictive value of sstr$_2$-immunohistochemistry and sstr$_2$-targeted imaging in neuroendocrine tumors

Philippe Brunner 1,2, Ann-Catherine Jörg 2, Katharina Glatz 1, Lukas Bubendorf 1, Piotr Radojewski 3, Maria Umlauf 3, Nicolas Marineck 2,3, Petar-Marko Spanjol 3, Thomas Krause 3, Rebecca A. Dumont 3, Helmut R. Maecke 4, Jan Müller-Brand 2, Matthias Briel 5,6, Anja Schmitt 7, Aurel Perren 7, and Martin A. Walter 3

1 Institute of Pathology, University Hospital Basel, CH
2 Institute of Nuclear Medicine, University Hospital Basel, CH
3 Institute of Nuclear Medicine, University Hospital Bern, CH
4 Division of Radiological Chemistry, University Hospital Basel, CH
5 Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, CH
6 Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, CA
7 Institute of Pathology, University Bern, CH

*PB and ACJ contributed equally to the manuscript.

Short Title: sstr$_2$ in NET
Abstract: 182 words
Text: 2033 words, 2 tables, 4 figures, 15 references
Support: HRM, MB, AP and MAW were supported by the Swiss National Science Foundation

Address for correspondence and reprint requests:
Martin A. Walter
Institute of Nuclear Medicine
University Hospital
CH-3010 Bern
Phone: +41.31.6323542
Fax: +41.31.6323137
Email: m.a.walter@gmx.net
ABSTRACT

Purpose: Our aim was to assess the prognostic and predictive value of somatostatin receptor 2 (sstr2) in neuroendocrine tumors (NET).

Methods: We established a tissue microarray and imaging database from NET patients that received sstr2-targeted radiopeptide therapy with yttrium-90-DOTATOC, lutetium-177-DOTATOC or alternative treatment. We used univariate and multivariate analyses to identify prognostic and predictive markers for overall survival, including sstr2-imaging and sstr2-immunohistochemistry.

Results: We included a total of 279 patients. In these patients, sstr2-immunohistochemistry was an independent prognostic marker for overall survival (HR: 0.82, 95%CI: 0.67 - 0.99, n = 279, p = 0.037). In DOTATOC patients, sstr2-expression on immunohistochemistry correlated with tumor uptake on sstr2-imaging (n = 170, p < 0.001); however, sstr2-imaging showed a higher prognostic accuracy (positive predictive value: +27%, 95%CI: 3 - 56%, p = 0.025). Sstr2-expression did not predict a benefit of DOTATOC over alternative treatment (p = 0.93).

Conclusions: Our results suggest sstr2 as independent prognostic marker in NET. Sstr2-immunohistochemistry correlates with sstr2-imaging; however, sstr2-imaging is more accurate for determining the individual prognosis.

Key words: PRRT, targeted therapy, metabolic therapy, tailored therapy, individualized therapy
INTRODUCTION

Prognostic markers offer insight into the biology and natural course of a disease. They provide useful information about the aggressiveness of the disease and the risk of recurrence or death. Predictive markers, on the other hand, indicate a benefit of a certain therapy over alternative treatments, and allow physicians to tailor therapeutic interventions to achieve the most favorable outcome.

Such favorable outcomes have been found after somatostatin receptor 2 (sstr$_2$)-targeted radiopeptide therapy in patients with neuroendocrine tumors (NET) that express high levels of sstr$_2$ [1]. However, it is unclear whether these outcomes reflect treatment effects or favorable prognosis. In other words, is high sstr$_2$-expression a predictive marker for successful sstr$_2$-targeted therapy or a prognostic marker for a benign course of disease?

To answer this question, and to provide a framework for improved patient management and meaningful interpretation of treatment effects in NET, we investigated the prognostic and predictive value of sstr$_2$-imaging and sstr$_2$-immunohistochemistry.
METHODS

Patients

We included patients with histologically confirmed NET who had been enrolled in a prospective trial investigating the benefit of treatment with radiolabeled DOTATOC (tetraazacyclododecane-tetraacetic acid modified somatostatin analog Tyr3-octreotide). This study was designed and carried out according to good clinical practice, Swiss drug laws, and the Declaration of Helsinki. Its protocol was registered (ClinicalTrials.gov identifier: NCT00978211) and approved by the Basel ethics committee for human studies (#120/1997). Written informed consent was obtained from all participants or their legal representatives. Patients were enrolled and treated with yttrium-90-DOTATOC and lutetium-177-DOTATOC at the University Hospital Basel, Switzerland as previously described [2-4].

To assess the prognostic value of sstr2 in a broad patient spectrum, we also included patients with histologically confirmed pancreatic NET who had not been enrolled and had been systematically investigated at the University Hospital Bern, Switzerland as previously described [5]. Tumor samples were collected at the study center and the main referring centers. Tissue collection and analyses were approved by the Basel ethics committee for human studies (#17/2010) and the Bern ethics committee for human studies (#200/2014).

Follow-up data were obtained from referring physicians, the patients’ primary practitioners, or directly from the patient. All follow-up data were centrally collected and each case was reviewed and approved for completeness at the study center. Data were collected until the patient’s death, including survival and long-term toxicities.
Sstr₂-imaging

Sstr₂-imaging was performed in DOTATOC patients as previously described [6, 7]. Specifically, intra-therapeutic DOTATOC accumulation in the lesion with the highest uptake among all visible tumor lesions was scored by three nuclear medicine physicians, blinded to the patient’s baseline and follow-up data, and based on the following four-point scale: no uptake (score 0), or uptake lower (score 1), equal to (score 2), or higher than liver uptake (score 3). Cases of disagreement were re-assessed and scored by consensus.

Sstr₂-immunohistochemistry

Two to three NET tissue cores per patient were formalin-fixed and paraffin-embedded in a tissue microarray format. Subsequently, sstr₂-staining was performed using the UMB-1 antibody (Biotrend, Cologne, Germany) [8].

Sstr₂-expression was scored by two pathologists blinded to patient data using a four-point scale: absent staining (score 0), faint staining at 100x magnification (score 1), strong staining at 100x magnification not involving the entire circumference at 400x magnification (score 2), and strong staining at 100x magnification involving the entire circumference at 400x magnification (score 3). Only membranous sstr₂-staining was evaluated, and the highest score of the tissue cores for each patient was used. Cases of disagreement were re-assessed and scored by consensus.

Ki-67-staining was performed using the MIB1-clone antibody (Dako, Carpentaria, CA) [8]. Subsequently, tumors were graded using Ki-67-expression according to the 2010 WHO guidelines [9].

Statistical Analyses

Our primary hypothesis was an independent prognostic value of sstr\(_2\) in NET. The association of sstr\(_2\)-immunohistochemistry (score 0 vs. 1 vs. 2 vs. 3) and survival was examined by univariate generalized Wilcoxon test and multivariate Cox regression. Cox regression was performed with survival from time of diagnosis as dependent variable. Independent co-variables were age (per year), histology (carcinoid vs. pancreatic NET vs. rare NET), disease extent (metastases vs. no metastases), and Ki-67 expression or tumor grade (G\(_1\) vs. G\(_2\) vs. G\(_3\)).

Associations of sstr\(_2\)-immunohistochemistry with sstr\(_2\)-imaging and tumor grade were analyzed using Pearson’s \(X^2\) test. The prognostic value of positive sstr\(_2\)-imaging (score > 2) and positive sstr\(_2\)-immunohistochemistry (score \(\geq 2\)) were compared as described before [10].

Our secondary hypothesis was an independent predictive value of sstr\(_2\) for a benefit of DOTATOC over alternative treatment. The predictive value was tested using cox regression with an interaction test for sstr\(_2\)-immunohistochemistry and DOTATOC treatment. As all DOTATOC patients had metastasized disease and all controls had pancreatic NET, the predictive value of sstr\(_2\) was tested in metastasized pancreatic NET receiving DOTATOC or alternative treatment.

We had previously found a benefit of yttrium-90-DOTATOC plus lutetium-177-DOTATOC over yttrium-90-DOTATOC alone, without adjusting for tumor grade and sstr\(_2\)-expression [3]. Thus, we repeated this analysis additionally adjusting for both factors, and assessed the frequency of renal toxicity after DOTATOC taking into account the competing risk of death.

Effect estimates were expressed as hazard ratios (HRs) with 95% confidence intervals (CIs). Two-sided p-values of < 0.05 were considered statistically significant. Results were reported according to the reporting recommendations for tumor marker prognostic studies (REMARK) [11].
RESULTS

Patients

Between October 1997 and February 2010, 170 patients with available tumor samples were enrolled for DOTATOC (Figure 1). Treatment prior to DOTATOC included surgery in 140 patients (82.4%), chemotherapy in 27 patients (15.9%), and radiation therapy in 16 patients (9.4%). In addition, 109 controls were included. All of them received surgery; those with metastasized disease additionally received somatostatin analogs (33.9%), chemotherapy (21.1%), selective arterial chemo-embolization (0.9%), and radiation therapy (0.9%). Patients’ characteristics are shown in Table 1.

The 279 NET comprised 150 (53.8%) pancreatic NET, 84 (30.1%) carcinoids, and 45 (16.1%) rare NET. The 84 carcinoids comprised 60 (71.4%) from the small intestine, 7 (8.3%) from the large intestine, 1 from the stomach (1.2%), 9 from the bronchus (10.7%), 3 (3.6%) from the thymus, and 4 (4.8%) from an unknown primary. The 45 rare NET comprised 9 (20.0%) medullary thyroid cancers, 7 (15.6%) Merkel Cell cancers, 6 (13.3%) paraganglioma, 1 (2.2%) pheochromocytoma, 1 (2.2%) NET of the kidney, 1 (2.2%) NET of the prostate, and 20 (44.4%) NET of unknown primary.

The 279 tumor tissues had a median Ki-67-expression of 1.4 (range: 0 - 95.8, Table 1). Sstr2-immunohistochemistry was feasible in 241 cases (86.4%). Staining was homogenous through all tissue cores in 202 cases (83.8%) and heterogeneous in 39 cases (16.2%). The assessment of sstr2 expression by two pathologists showed a high concordance. Scoring slightly diverged in 8 of 241 cases (3.3%), with one point difference in scoring, and the final score was assigned by consensus. Low tumor grades were correlated with high scores on sstr2-immunohistochemistry (n = 279, p = 0.012, Pearson's X^2 test).
Sstr$_2$-immunohistochemistry as prognostic marker in NET

Patients with score 3 tumor sstr$_2$-immunohistochemistry had a longer survival from diagnosis than patients with score 2, 1, or 0 (164.2 vs. 140.2 vs. 107.6 vs. 127.8 months; HR: 0.82, 95%CI: 0.67 - 0.99; n = 240, p = 0.037, multivariate cox regression, Figure 2A, Table 2). Similar results were found when adjusting for the actual Ki-67 expression instead of the tumor grade, or when using univariate analysis (n = 240; p = 0.024, generalized Wilcoxon test).

Additionally, carcinoid patients survived longer than patients with rare NET (184.9 vs. 82.6 months; HR: 0.37, 95%CI: 0.21 - 0.63; n = 129; p < 0.001, cox regression, Figure 2B), as did patients with pancreatic NET (164.0 vs. 82.6 months; HR: 0.40, 95%CI: 0.23 - 0.69; n = 195; p = 0.001, cox regression, Figure 2B). Patients with G$_1$ tumors survived longer than patients with G$_2$ or G$_3$ tumors (185.6 vs. 99.8 vs. 19.1 months; HR: 0.32, 95%CI: 0.23 - 0.4; n = 240; p < 0.001, cox regression, Figure 2C).

Sstr$_2$-imaging vs. sstr$_2$-immunohistochemistry

Tumor uptake on sstr$_2$-imaging correlated with sstr$_2$-expression on immunohistochemistry (n = 170, p < 0.001, Pearson’s X^2 test, Figure 3A).

Sstr$_2$-imaging had higher accuracy than sstr$_2$-immunohistochemistry as prognostic marker for survival after DOTATOC (PPV (t): 27% higher, 95%CI: 3 - 56%; n = 170, p = 0.025; NPV (t): 32% higher, 95%CI: -21 - 121%; n = 170, p = 0.28). The positive and negative prognostic values of sstr$_2$-imaging were higher alone, compared with combining the results from sstr$_2$-imaging and sstr$_2$-immunohistochemistry (Figure 3B).
Sstr$_2$ as predictive marker for sstr$_2$-targeted radiopeptide therapy

A total of 61 patients with metastatic pancreatic NET were treated with DOTATOC (n = 41) or alternative treatment (n = 20), and had a median survival of 129.9 months from diagnosis.

There was a non-significant trend towards longer survival after DOTATOC vs. alternative treatment (142.5 vs. 95.5 months; HR: 0.70, 95%CI: 0.29 - 1.71; n = 61, p = 0.43, cox regression, Figure 4A). In tumors with sstr$_2$-expression (scores 1, 2 and 3), this trend was pronounced (139.2 vs. 73.9 months; HR: 0.61, 95%CI: 0.22 - 1.67; n = 50, p = 0.33, cox regression, Figure 4B). Conversely, in tumors without sstr$_2$-expression (score 0), no difference between survivals in the two groups was observed (103.3 vs. 113.7; HR: 1.01, 95%CI: 0.10 - 10.5, n = 11, p = 1.0, cox regression, Figure 4C).

The interaction test did not indicate a predictive value of sstr$_2$; the benefit of DOTATOC over alternative treatment was not significantly different in sstr$_2$-positive vs. sstr$_2$-negative cases (p = 0.93).
DISCUSSION

Our results suggest sstr$_2$-immunohistochemistry as a prognostic marker in NET that is independent from tumor histology, grade, stage, and patient age. While sstr$_2$-immunohistochemistry correlates with sstr$_2$-imaging, sstr$_2$-imaging has a higher prognostic accuracy. The superior prognostic accuracy might be due to the fact that sstr$_2$-imaging provides a whole-body read-out, while sstr$_2$-immunohistochemistry can be associated with a significant sampling error. The results did not confirm sstr$_2$-expression as predictive marker for sstr$_2$-targeted radiopeptide therapy, and suggest a trend towards longer survival with sstr$_2$-targeted radiopeptide therapy in sstr$_2$-positive cases.

Strengths and limitations

Strengths of the present study include the combination of tissue markers, molecular imaging, and long-term follow-up in a wide spectrum of NET patients. The tissue microarray format facilitated standardized marker analyses, the large number of patients and the completeness of follow-up facilitated comprehensive survival analyses, and the spectrum of tumor histologies, grades, and stages ensures general applicability of the present results. However, the present study was not a randomized trial, and has the known limitations of a non-randomized study. To assess the prognostic value of sstr$_2$ in a spectrum of NET patients, we included those that did or did not qualify for DOTATOC treatment. To assess the predictive value of sstr$_2$, we subsequently matched patients from these groups by tumor type (pancreatic NET) and tumor extent (metastasized disease). However, the analysis on the predictive value of sstr$_2$ was limited by the low number of patients with metastasized pancreatic NET, and the comparison of imaging and immunohistochemistry was limited to DOTATOC patients.
Comparison to other studies

The increasing availability of targeted therapies is generating an increasing demand for modalities that reliably assess target expression, its predictive value, and individual prognosis. Among such modalities, immunohistochemistry allows detailed assessment of specific tissue samples, while imaging allows a less detailed overview over the entire body. Studies that compare the accuracy of both modalities for clinically relevant molecular targets will be increasingly warranted in the future.

To the best of our knowledge, this is the first study to assess the prognostic value of sstr2-immunohistochemistry in a general NET cohort adjusted to tumor grade and type. Our results concur with other studies, in which sstr2-immunohistochemistry was found to be prognostic in patients with carcinoids [12] and sstr2-imaging was shown to be prognostic in NET patients [13], although analyses were not adjusted to important prognostic factors like tumor grade in the latter study. Furthermore, the present study is the first to compare the prognostic value of sstr2-imaging vs. sstr2-immunohistochemistry. Its results support the current clinical practice of favoring sstr2-imaging.

Our results also show a trend towards longer overall survival after sstr2-targeted radiopptide therapy over alternative treatment, which is in line with the overall survival benefit of sstr2-targeted radiopptide therapy over somatostatin analogue treatment found in the preliminary analysis of the ongoing NETTER-1 trial [14].

Finally, previous studies in NET with unknown sstr2-expression and tumor grade indicated superiority of sstr2-targeted radiopptide therapy with combined radioisotopes over single radioisotopes [3, 15]. This superiority might be due to lutetium-177 being more effective in irradiating small tumor lesions and yttrium-90 being more effective in irradiating large tumor
lesions. The present study confirmed these results, when adjusting for sstr$_2$-expression and tumor grade.

Implications

Our results have implications for patient management and further research. Prognostic markers have particular value for tumors with a wide spectrum of courses, such as NET [11]. Based on our results, sstr$_2$ can serve as prognostic marker and decision aid in determining whether a NET patient should receive treatment and how aggressive the treatment should be.

Furthermore, immunohistochemistry and imaging can be used to assess tumor sstr$_2$-expression. However, our results suggest that, in cases of discrepancies, imaging is more accurate for determining the patient’s individual prognosis.

Finally, studies that stratify patients according to sstr$_2$-expression, e.g. surgical resection of NET visible in sstr$_2$-imaging, are prone to bias favoring interventions in sstr$_2$-positive cases, and need to be interpreted cautiously. Moreover, upcoming studies to evaluate prognostic factors in NET should take sstr$_2$-expression into account for all analyses.

Conclusions

Our results suggest sstr$_2$ as independent prognostic marker in NET. Sstr$_2$-immunohistochemistry correlates with sstr$_2$-imaging; however, sstr$_2$-imaging is more accurate for determining the individual prognosis. Studies exploring prognostic factors in NET should include sstr$_2$-expression in all analyses.
COMPLIANCE WITH ETHICAL STANDARDS

The authors declare no potential conflicts of interest. All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

ACKNOWLEDGEMENTS

We are grateful to our nursing, laboratory, and technical staff for their support in patient care, preparation of radiopharmaceuticals, and acquisition of scans. Furthermore, we would like to thank Christoph Stettler for his valuable input on the manuscript. All authors declare no potential conflict of interest.
REFERENCES

Tables

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All patients (n = 279)</th>
<th>DOTATOC patients (n = 170)</th>
<th>Controls (n = 109)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>females</td>
<td>118 (42.3%)</td>
<td>68 (40.0%)</td>
<td>50 (45.9%)</td>
</tr>
<tr>
<td>males</td>
<td>161 (57.7%)</td>
<td>102 (60.0%)</td>
<td>59 (54.1%)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median</td>
<td>59.6</td>
<td>59.5</td>
<td>59.7</td>
</tr>
<tr>
<td>range</td>
<td>16.9 - 95.1</td>
<td>16.9 - 81.4</td>
<td>26.4 - 95.1</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pancreatic NET</td>
<td>150 (53.8%)</td>
<td>41 (24.1%)</td>
<td>109 (100%)</td>
</tr>
<tr>
<td>carcinoid</td>
<td>84 (30.1%)</td>
<td>84 (49.4%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>rare NET</td>
<td>45 (16.1%)</td>
<td>45 (26.5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Extent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no metastases</td>
<td>57 (20.4%)</td>
<td>0 (0%)</td>
<td>57 (52.3%)</td>
</tr>
<tr>
<td>metastases</td>
<td>222 (79.6%)</td>
<td>170 (100%)</td>
<td>52 (47.7%)</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G₁</td>
<td>175 (62.7%)</td>
<td>109 (64.1%)</td>
<td>66 (60.6%)</td>
</tr>
<tr>
<td>G₂</td>
<td>74 (26.5%)</td>
<td>43 (25.3%)</td>
<td>31 (28.4%)</td>
</tr>
<tr>
<td>G₃</td>
<td>26 (9.3%)</td>
<td>15 (8.8%)</td>
<td>11 (10.1%)</td>
</tr>
<tr>
<td>unknown</td>
<td>4 (1.4%)</td>
<td>3 (1.8%)</td>
<td>1 (0.9%)</td>
</tr>
<tr>
<td>Ki₆⁷ expression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median</td>
<td>1.4%</td>
<td>1.2%</td>
<td>1.8%</td>
</tr>
<tr>
<td>range</td>
<td>0 - 95.8%</td>
<td>0% - 85.0%</td>
<td>0% - 95.8%</td>
</tr>
<tr>
<td>Sstr₂ expression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>score 0</td>
<td>72 (25.8%)</td>
<td>45 (26.5%)</td>
<td>27 (24.8%)</td>
</tr>
<tr>
<td>score 1</td>
<td>49 (17.6%)</td>
<td>38 (22.4%)</td>
<td>11 (10.1%)</td>
</tr>
<tr>
<td>score 2</td>
<td>57 (20.4%)</td>
<td>39 (22.9%)</td>
<td>18 (16.5%)</td>
</tr>
<tr>
<td>score 3</td>
<td>63 (22.6%)</td>
<td>47 (27.6%)</td>
<td>16 (14.7%)</td>
</tr>
<tr>
<td>unknown</td>
<td>38 (13.6%)</td>
<td>1 (0.8%)</td>
<td>37 (33.9%)</td>
</tr>
</tbody>
</table>
Table 2. Prognostic Factors in NET

<table>
<thead>
<tr>
<th>Survival from diagnosis (n = 279)</th>
<th>Hazard ratio (95%CI) *</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoid (vs. rare NET)</td>
<td>0.37 (0.21 - 0.63)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Pancreatic NET (vs. rare NET)</td>
<td>0.40 (0.23 - 0.69)</td>
<td>0.001</td>
</tr>
<tr>
<td>Sstr2 expression (per score)</td>
<td>0.82 (0.67 - 0.99)</td>
<td>0.037</td>
</tr>
<tr>
<td>Age (per year)</td>
<td>1.03 (1.01 - 1.05)</td>
<td>0.005</td>
</tr>
<tr>
<td>Metastases (vs. no metastases)</td>
<td>1.90 (0.93 - 3.88)</td>
<td>0.078</td>
</tr>
<tr>
<td>Tumor grade (per grade)</td>
<td>3.15 (2.24 - 4.44)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Survival from DOTATOC (n = 170)</th>
<th>Hazard ratio (95%CI) *</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y- plus Lu-DOTATOC (vs. Y-DOTATOC)</td>
<td>0.43 (0.25 - 0.74)</td>
<td>0.02</td>
</tr>
<tr>
<td>Y- plus Lu-DOTATOC (vs. Lu-DOTATOC)</td>
<td>0.71 (0.28 - 1.85)</td>
<td>0.48</td>
</tr>
<tr>
<td>Sstr2 expression (per score)</td>
<td>0.80 (0.65 - 0.98)</td>
<td>0.031</td>
</tr>
<tr>
<td>Age (per year)</td>
<td>1.01 (0.99 - 1.02)</td>
<td>0.42</td>
</tr>
<tr>
<td>Tumor grade (per grade)</td>
<td>2.70 (1.91 - 3.82)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

*Estimates for each variable have been adjusted for all other variables listed. Similar results are found for all variables listed when adjusting for Ki-67 expression instead of the tumor grade.
FIGURES

Figure 1. Patient flow.
Figure 2. Sstr2-immunohistochemistry as prognostic marker in NET. Cox regression plots demonstrating the survival of NET patients by tumor sstr2-immunohistochemistry (A), tumor type (B) and tumor grade (C).
Figure 3. Sstr$_2$-imaging vs. sstr$_2$-immunohistochemistry. Distribution of sstr$_2$-immunohistochemistry results (score 0, 1, 2, and 3) and sstr$_2$-imaging results (score 1, 2, and 3; A). Positive and negative prognostic values for survival after DOTATOC of positive sstr$_2$-immunohistochemistry (score ≥ 2), positive sstr$_2$-imaging (score > 2) and their combination (B, IHC = immunohistochemistry).
Figure 4. Sstr₂ as predictive marker for sstr₂-targeted radiopeptide therapy. Cox regression plots demonstrating the survival of DOTATOC patients and controls, for all patients (A), patients with positive sstr₂-immunohistochemistry (B), and patients with negative sstr₂-immunohistochemistry (C).