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We present a fairly standard general equilibrium model of endogenous growth with
productive and nonproductive public goods and services. The former enhance private
productivity and the latter private utility. We study Ramsey second-best optimal policy,
where the latter is summarized by the paths of the income tax rate and the allocation of
collected tax revenues between productivity-enhancing and utility-enhancing public
expenditures. We show that the properties and macroeconomic implications of the
second-best optimal policy (a) are different from the benchmark case of the social
planner’s first-best allocation and (b) depend crucially on whether public goods and
services are subject to congestion.
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1. INTRODUCTION

Public expenditures on goods and services are traditionally classified as produc-
tive or nonproductive. The former, known also as productivity-enhancing, include
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expenditures on infrastructure, the law, education and training, etc. The latter,
known also as utility-enhancing, include expenditures on national defense, national
parks, social programs, etc. Although in practice what is productive or nonproduc-
tive is unclear, this classification has been very common in the theoretical growth
literature [see, e.g., Turnovsky (2000)].1

A natural question to ask is “what is the optimal allocation of government
scarce resources (i.e., tax revenues) between the above two categories of public
expenditures?” This is the main goal of this paper. It studies Ramsey second-best
optimal policy (where policy is summarized by the paths of the income tax rate
and the allocation of collected tax revenues between productivity-enhancing and
utility-enhancing public goods) in a fairly standard general equilibrium model of
endogenous growth. By Ramsey second-best optimal policy, we mean that the
paths of (non–lump sum) policy instruments are chosen by a benevolent govern-
ment that takes into account the competitive decentralized equilibrium, where the
latter includes the optimal reactions of private agents to policy instruments.

We show that solving for second-best optimal policy produces very different
normative results from the benchmark case of the social planner’s first-best allo-
cation, which is usually studied in the related literature. We also show that the
properties and macroeconomic implications of second-best optimal policy depend
crucially on whether productivity-enhancing public goods and services are subject
to congestion.

Congestion is a form of rivalry. It means that, for a given quantity of aggregate
public goods and services, the quantity available to an individual declines as
other individuals use the facilities. Examples of productivity-enhancing public
goods and services with congestion include highways, police and fire services,
courts, public schools, etc. Actually, much of the literature on the role of public
investment/capital in endogenous growth has assumed that productivity-enhancing
public goods and services are subject to congestion.2

We use a growth model that is a straightforward extension of the tractable model
introduced by Barro (1990). This is a commonly used model in the literature. We
distinguish between productivity-enhancing public goods and services (denoted
as PE and included as an externality in the private production function) and utility-
enhancing public goods and services (denoted as UE and included as an external
argument in private utility function). We allow public goods to be subject to
both absolute and relative congestion, where our modeling of congestion is as
in, e.g., Fisher and Turnovsky (1998) and Eicher and Turnovsky (2000). Within
this model, government expenditures on PE and UE are financed by income tax
revenues. Subject to the competitive decentralized equilibrium, the government
chooses its tax policy (the path of the income tax rate) and revenue allocation
policy (the path of allocation of collected tax revenues between PE and UE).

Our results are as follows. We focus on the long run, where the economy grows
at a constant balanced growth rate. We also find it interesting to focus on how
this long-run equilibrium is affected by a preference parameter that measures how
much the citizen values public consumption (UE) relative to private consumption.
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In all cases, the more the citizen values UE, the higher the required tax rate and
the higher the provision of UE as a share of private capital. But, beyond that
unsurprising result, the provision of PE as a share of private capital should also
increase. Thus, UE and PE should move in the same direction, meaning that higher
public consumption cannot be sustained without higher public infrastructure. All
these effects are monotonic and independent of congestion.

What is more interesting is the way the government allocates its tax revenues
and the resulting balanced growth rate. This crucially depends on the degree of
congestion (irrespectively of whether this takes the form of absolute or relative
congestion). Consider first the case in which PE is congested on a one-to-one
basis by private activity, in the sense that if a change in total private capital is
accompanied by an equal change in total public capital, public services remain
constant at the individual level. This case, which we call full or one-to-one con-
gestion, is popular in the growth literature [see, e.g., Barro and Sala-i-Martin
(2004, p. 223)]. Our numerical solutions show that the effect of the preference
parameter on the allocation decision and the resulting balanced growth rate is not
monotonic: above a critical value of the preference parameter (which coincides
with the empirically plausible region), the more the citizen values UE, the more
tax revenues the government should allocate to PE vis-à-vis UE, and the higher the
balanced growth rate is. This is different from the conventional recipe. Only below
the critical value of the preference parameter (which, however, looks empirically
implausible) do we get the conventional recipe; namely, the more the citizen values
UE, the more tax revenues the government should allocate to them vis-à-vis PE,
and the lower the balanced growth rate is. When PE is partially congested, or not
congested at all, by private activity, the results are monotonic and again obey the
conventional recipe.

In other words, the degree of congestion of productive public capital is crucial
to second-best policy and the resulting balanced growth rate. In all cases with
nonzero congestion, private agents’ decisions to expand their own capital reduce
the amount of public productive services (PE) available to each individual firm.
Because this is not internalized, the Ramsey government intervenes to restore
PE at its optimal ratio. In the presence of full or one-to-one congestion, such an
intervention requires that public capital grow at the same rate as private capital.
The higher the growth rate, the more tax revenue the Ramsey government should
allocate to productive public capital. All this turns out to be good for tax bases.
Large tax bases allow, in turn, the financing of all public services, including
nonproductive ones (UE). In contrast, when congestion is partial or zero, the
priority of the financing of PE is not necessary. Now, even if public capital grows
by less than private capital, PE can be at its optimal ratio. Hence, the Ramsey
government finds it optimal to follow the traditional recipe.

The above refers to second-best optimal policy. In sharp contrast, in the social
planner’s solution, the planner finds it optimal first to hit a relatively high growth
rate independent of preferences over various nonproductive uses, and in turn to
make the allocation choices among the latter. The degree of allocation among
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nonproductive uses depends simply on how much the society values one vis-à-vis
the others. For instance, if the citizen’s valuation of public consumption relative
to private consumption rises, the planner increases the resources allocated to the
former and decreases the resources allocated to the latter. Note that, in our model
economy, this first-best allocation cannot be implemented by the government of the
decentralized economy. Thus, as is generally recognized, the first-best optimum
may be unattainable3 and can thus serve as a reference case only.

Therefore, the properties of optimal fiscal (tax-spending) policy depend cru-
cially on whether (i) we are in a static or growing economy; (ii) a first-best
allocation is not attainable, so that the government needs to design a second-best
policy problem; and (iii) productivity-enhancing public goods are congested and
by how much.

Although the next section reviews the growth literature, here we wish to point
out that our main result (namely, that congestion should matter to policy) resembles
the result of Jones (1995) and Young (1998), who show that greater and greater
quantities of resources need to be devoted to innovative activities to sustain a
given growth rate. Our result is similar in the sense that, when there are congestion
problems, so that the share of productive public goods falls as the private economy
expands, the Ramsey government needs to devote more tax revenues to finance
those public goods.

The rest of the paper is as follows. Section 2 reviews the literature. Section
3 presents a model with congestion and solves for Ramsey second-best optimal
policy. Section 4 solves the associated social planner’s problem. Section 5 studies
extensions and transitional dynamics. Section 6 closes the paper.

2. RELATIONSHIP TO THE LITERATURE

Our work is related to several branches of the theoretical literature on growth
and fiscal policy. Eicher and Turnovsky (2000), Fisher and Turnovsky (1998) and
Turnovsky (1996; 2000, chap. 13) study growth models with a congested public
good (either productivity-enhancing or utility-enhancing). Chatterjee and Ghosh
(2009) also allow for congestion, where their single public capital provides both
productive and utility services. These authors use a rich production structure that
allows different degrees and types of congestion (e.g., absolute and relative con-
gestion), as well as different degrees of substitutability between private and public
capital. They study the effects of different ways of financing public expenditure
(e.g., income taxes, consumption taxes, lump-sum taxes) and how these effects
depend on the degree and type of congestion. But, when they analyze policy
choices, the above authors solve for policies that can replicate the associated
first-best optimum. Here, by contrast, we solve for Ramsey second-best policy.
Also, they do not study the policy allocation problem, namely how a government
allocates collected tax revenue to different types of public goods, and how this
problem is affected by the degree of congestion, which is the focus of our work.
Devarajan et al. (1996) include two types of public goods and study the effect of
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composition of public expenditure on economic growth, but policy is exogenous
and there is no congestion.

Barro and Sala-i-Martin (1992) and Glomm and Ravikumar (1994) have devel-
oped well-known growth models with congested public productive services treated
both as a flow and as a stock variable. But, because there is a single public good,
these papers do not study the policy allocation problem. Park and Philippopoulos
(2003, 2004) use two types of public goods and study second-best allocation
policies but, because they do not allow for congestion, they get the conventional
policy recipe only. Baier and Glomm (2001) present a rich model with various
types of public expenditures, but they do not have congestion or solve for growth-
maximizing policies and do not choose all categories of government expenditure
optimally. Futagami et al. (1993) extend Barro’s (1990) model by treating PE
public goods as a stock variable without congestion. Ghosh and Gregoriou (2008)
study a government’s optimal composition problem in a model with two types
of public goods but, because their focus is on the empirical side, they solve a
simplified government problem in which the government takes private decisions
as given; also, they do not allow for congestion. Our present paper is close in spirit
to Economides and Philippopoulos (2008); however, that paper is restricted to a
specific form of congestion effects that is found in environmental resources only.

To sum up, our work differs from the literature in that at the same time (a)
we study Ramsey second-best optimal policy in a general equilibrium model of
growth augmented with the two main categories of public goods and services
and (b) we allow for congestion effects and show their key role in the design of
second-best policy.

Finally, it is worth adding that Ott and Turnovsky (2006) study the role of
excludability of public goods, which means that individuals can have access to
them only if they pay user fees. Recall that rivalry and excludability are the key
features of impure public goods.

3. A GROWTH MODEL WITH PUBLIC GOODS
AND SECOND-BEST OPTIMAL POLICY

3.1. Individuals

There are a constant number of identical individuals indexed by the superscript
i = 1, 2, . . . , N . Each i maximizes intertemporal utility,

∞∫
0

u(Ci,Kc)e
−ρt dt, (1)

where Ci is i’s private consumption, Kc is the total stock of utility-enhancing
public capital (UE), and ρ > 0 is the rate of time preference. The utility function
u(.) is increasing and concave. For simplicity, we use an additively separable
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function,
u(Ci,Kc) = ν log Ci + (1 − ν)log Kc, (2)

where the parameter 0 < ν < 1 measures how much the agent values private
consumption relative to UE.

The flow budget constraint of each i is

Ci + I i = (1 − τ)Y i, (3)

where I i is i’s private investment, Y i is i’s output, and 0 ≤ τ < 1 is a distorting
tax rate. The motion of private capital is

•
Ki = −δkKi + I i, (4)

where Ki is i’s stock of private capital and δk ≥ 0 is the depreciation rate. The
initial stock Ki(0) is given. A dot over a variable denotes its time derivative.

Production is modeled as in, e.g., Fisher and Turnovsky (1998) and Eicher and
Turnovsky (2000). Thus, i’s production function is

Y i = A(Ki)α
(
Ki

g

)β
, (5)

where Ki
g is the services derived by each individual i from productivity-enhancing

public capital. These services are defined as

Ki
g ≡ Kg

(K)θ

(
Ki

K

)ξ

, (6)

where Kg is the total stock of productivity-enhancing public capital (PE), K ≡
NKi is the total stock of private capital, A > 0, 0 < α, β < 1 are productivity
parameters, and θ, ξ ≥ 0 are parameters measuring the degree of absolute and
relative congestion, respectively.4

Using (6), the individual production function (5) can be reexpressed as Y i =
A(Ki)α+βξ−β(Ki(Kg/(K)θ+ξ ))β . Thus, if the elasticities of absolute and relative
congestion sum to unity, θ + ξ = 1, total public capital, Kg , and total private
capital, K , must increase at the same rate for public services to remain constant at
the individual firm level. This is what we call full, or one-to-one, congestion. The
case 0 ≤ θ + ξ < 1 describes what we call partial and zero congestion. The case
θ + ξ > 1 implies that public capital must grow more than the private economy
for public services to remain constant at the firm level. We distinguish between
these cases because they are important to what follows.

Summing (4) over the N identical individuals gives the aggregate production
function

Y = N1−α−βξA(K)α−βθ (Kg)
β,

where Y ≡ NY i . Thus, for constant population, the production function in (5)
and (6) yields a well-defined balanced growth rate if and only if it exhibits CRS in
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K and Kg , i.e., α + β(1 − θ) = 1. We assume that this condition holds [see also
Eicher and Turnovsky (2000, p. 329)].

Using the restriction α + β(1 − θ) = 1 in (5) and (6), we can get at least two
popular production functions in the literature. First, in the case without any type
of congestion, θ = ξ = 0, we get Y i = A(Ki)1−β(Kg)

β at the firm level. This is
the production function in, e.g., Barro and Sala-i-Martin (1992, p. 649). Second,
in the case of proportional congestion, θ + ξ = 1, we get Y i = AKi(Kg/K)β at
firm level. This is as in, e.g., Barro and Sala-i-Martin (1992, p. 650; 2004, p. 223).

3.2. Individual Optimization

Each agent i acts competitively by choosing the paths of Ci and Ki , while taking
policy and economywide variables as given. The first-order conditions include (3),
(4), and the Euler equation:

•
Ci = Ci

[
(1 − τ)A(α + βξ)(Ki)α−1+βξ

(
Kg

Kθ+ξ

)β

− δk − ρ

]
. (7)

3.3. Public Goods

The stock of productivity-enhancing public capital (PE) evolves according to

•
Kg = −δgKg + Gg, (8a)

where the parameter δg ≥ 0 is the depreciation rate and Gg is public investment
spending. The initial stock Kg(0) is given. If δg = 1, PE is a flow variable as in,
e.g., Barro (1990).

Similarly, the stock of utility-enhancing public capital (UE) evolves according
to

•
Kc = −δcKc + Gc, (8b)

where the parameter δc ≥ 0 is the depreciation rate and Gc is public consumption
spending. The initial stock Kc(0) is given. If δc = 1, we get the popular case in
which UE is a flow variable.

3.4. Government Budget Constraint

On the revenue side, the government taxes individuals’ income at a rate 0 ≤ τ < 1.
On the expenditure side, it spends Gg and Gc. Using a balanced budget within
each period

Gg + Gc = τY, (9a)

where, at each instant, only two out of the three instruments (τ,Gg,Gc) can be
set independently.5
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Equivalently, it is convenient for what follows to rewrite (9a) as

Gg = bτY, (9b)

Gc = (1 − b)τY, (9c)

where 0 ≤ b ≤ 1 is the fraction of tax revenues used to finance PE and 0 ≤
1 − b ≤ 1 is the fraction that finances UE. Thus, at each instant, fiscal policy can
be summarized by τ and b [see also, e.g., Devarajan et al. (1996)].

3.5. Decentralized Competitive Equilibrium

In a decentralized competitive equilibrium (DCE), (i) each individual maximizes
utility, (ii) all constraints are satisfied, and (iii) all markets clear. This holds for
any feasible policy, which is summarized by the paths of the two independent
policy instruments, 0 ≤ τ < 1 and 0 ≤ b ≤ 1. We solve for a symmetric
equilibrium (from now on we omit the superscript i) and for simplicity we set
N = 1.

Combining (1)–(9), it is straightforward to show that such a DCE is given
by

•
C = C

[
(1 − τ)A[1 − β(1 − θ − ξ)]

(
Kg

K

)β

− δk − ρ

]
, (10a)

•
K

K
= (1 − τ)A

(
Kg

K

)β

− δk − C

K
, (10b)

•
Kc

Kc

= −δc + (1 − b)τA

(
Kg

K

)β
K

Kc

, (10c)

•
Kg

Kg

= −δg + bτA

(
Kg

K

)β
K

Kg

, (10d)

which is a four-equation system in the paths of C,K,Kg,Kc. This gives the paths
of τ and b.

3.6. Second-Best Optimal Policy

We now endogenize policy as summarized by the paths of the income tax rate,
0 ≤ τ < 1, and the allocation of tax revenues between the two types of public
goods, 0 ≤ b ≤ 1. The government chooses the paths of τ and b to maximize the
household’s utility subject to the DCE in (10a)–(10d). In doing so, the government
will try to control for congestion externalities and raise funds optimally to finance
its public good activities. Solving for a commitment (Ramsey) equilibrium, the
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current-value Hamiltonian, H , of this second-best problem is

H = ν log C + (1 − ν)log Kc

+ λcC

[
[1 − β(1 − θ − ξ)](1 − τ)A

(
Kg

K

)β

− δk − ρ

]

+ λk

[
(1 − τ)A

(
Kg

K

)β

K − δkK − C

]

+ λkg

[
−δgKg + bτA

(
Kg

K

)β

K

]
+ λkc

[
− δcKc + (1 − b)τA

(
Kg

K

)β

K

]
,

(11)

where λc, λk , λkc, and λkg are dynamic multipliers associated with (10a), (10b),
(10c), and (10d), respectively.

The first-order conditions include the constraints (10a)–(10d) and the optimality
conditions with respect to τ, b, C,K,Kc, and Kg , which are, respectively,6

[1 − β(1 − θ − ξ)]λcC + λkK = λkcK, (12a)

λkc = λkg, (12b)

•
λc = − ν

C
−λc

[
[1 − β(1−θ − ξ)](1 − τ)A

(
Kg

K

)β

− δk − ρ

]
+ λk + ρλc,

(12c)

•
λk = β[1 − β(1 − θ − ξ)](1 − τ)A

(
Kg

K

)β

K−1λcC

− (1 − β)(1 − τ)A

(
Kg

K

)β

λk + δkλk − (1 − β)τA

(
Kg

K

)β

λkc + ρλk,

(12d)

•
λkc = − (1 − ν)

Kc

+ δcλkc + ρλkc, (12e)

•
λkg = −β[1 − β(1 − θ − ξ)](1 − τ)A

(
Kg

K

)β

K−1
g λcC

−β(1 − τ)A

(
Kg

K

)β−1

λk − βτA

(
Kg

K

)β−1

λkg + δgλkg + ρλkg. (12f)
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Thus, (12a)–(12f), jointly with the constraints (10a)–(10d), constitute a ten-
equation system in the paths of τ, b, C,K,Kc,Kg, λc, λk, λkc,λkg . This is a gen-
eral equilibrium with second-best optimal policy.

3.7. Stationary Second-Best General Equilibrium

Because the model allows long-term growth, we transform variables to make them
stationary. We define the auxiliary variables c ≡ C/K , kc ≡ Kc/K , kg ≡ Kg/K ,

c ≡ λcC, 
k ≡ λkK , 
kc ≡ λkcKc, and 
kg ≡ λkgKg . Thus, c, kc, and kg are
the ratios of private consumption to private capital, nonproductive public capital
to private capital, and productive public capital to private capital, respectively,
where 
c, 
k , 
kc, and 
kg measure respectively the social value of private
consumption, nonproductive public capital, and productive public capital. It is
then straightforward to show that the dynamics of (10a)–(10d) and (12a)–(12f)
are equivalent to the dynamics of

•
c = c2 − ρc − β(1 − θ − ξ)(1 − τ)Akβ

g c, (13a)

•
kc = −δckc + (1 − b)τAkβ

g − (1 − τ)Akβ
g kc + ckc + δkkc, (13b)

•
kg = −δgkg + bτAkβ

g − (1 − τ)Ak1+β
g + ckg + δkkg, (13c)

•

c = −ν + ρ
c + 
kc, (13d)

•

k = β[1 − β(1 − θ − ξ)](1 − τ)Akβ

g 
c

+β(1 − τ)Akβ
g 
k − (1 − β)τAkβ

g


kc

kc

+ (ρ − c)
k, (13e)

•

kc = −(1 − ν) + ρ
kc + (1 − b)τAkβ

g


kc

kc

, (13f)

•

kg = −β[1 − β(1 − θ − ξ)](1 − τ)Akβ

g 
c − β(1 − τ)Akβ
g 
k

−βτAkβ−1
g 
kg + bτAkβ−1

g 
kg + ρ
kg, (13g)

[1 − β(1 − θ − ξ)]
c + 
k = 
kc

kc

, (13h)


kckg = 
kgkc, (13i)

which constitute a nine-equation system in the paths of τ , b, c, kc, kg , 
c, 
k ,

kc, and 
kg . This is a stationary general equilibrium with second-best optimal
policy. We next study the long run of this economy.
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3.8. Long-Run Second-Best General Equilibrium

In the long run, variables do not change in (13a)–(13i). We denote the resulting
long-run values as τ̃ , b̃, c̃, k̃c, k̃g, 
̃c, 
̃k, 
̃kc, and 
̃kg . In this long run, all com-
ponents of national income grow at the same nonnegative balanced growth rate,
denoted as γ̃ , and policy instruments do not change. The long-run solution is given
by the system

c̃ = ρ + β(1 − θ − ξ)(1 − τ̃ )Ak̃β
g , (14a)

k̃c = (1 − b̃)τ̃Ak̃
β
g

(1 − τ̃ )Ak̃
β
g + δc − δk − c̃

, (14b)

(1 − τ̃ )Ak̃β
g + δg = b̃τ̃Ak̃β−1

g + δk + c̃, (14c)


̃kc̃ + ρ
̃c = ν, (14d)

(1 − b̃)τ̃Ak̃β−1
g 
̃kg − ρ
̃kg + (c̃ − ρ)
̃k = 0, (14e)

β(1 − τ̃ )[1 − β(1 − θ − ξ)]Ak̃β
g 
̃c + β(1 − τ̃ )Ak̃β

g 
̃k

− (1 − β)τ̃Ak̃β
g


̃kc

k̃c

− (c̃ − ρ)
̃k = 0, (14f)


̃kc = 1 − ν

(1 − τ̃ )Ak̃
β
g + δc − δk − c̃ + ρ

, (14g)

[1 − β(1 − θ − ξ)]
̃c + 
̃k = 
̃kc

k̃c

, (14h)


̃kck̃g = 
̃kgk̃c. (14i)

The above nonlinear system is solved numerically. We use the following baseline
parameter values:7 β = 0.15 (where β ≥ 0 is the productivity of public capital
in the production function), A = 0.25 (where A > 0 is total factor productivity
in the production function), δk = δc = δg = 0.06 (which are the depreciation
rates of private capital, nonproductive public capital, and productive public capital,
respectively), and ρ = 0.04 (where ρ > 0 is the rate of time preference). Regarding
the values of θ (the degree of absolute congestion) and ξ (the degree of relative
congestion) in (5), we choose to report results for three cases: (a) The case of full,
or one-to-one, congestion, θ + ξ = 1. Note that this also captures the subcases
in which either θ = 1 and ξ = 0 (i.e., absolute full congestion), or θ = 0 and
ξ = 1 (i.e., relative full congestion). (b) The case of positive but partial congestion,
0 < θ + ξ < 1. (c) The case without any type of congestion, θ = ξ = 0.8

Tables 1, 2, and 3 report the long-run solution for varying values of the parameter
ν in a wide range, 0.1 ≤ ν ≤ 0.95, in all three cases. We focus on the values of
ν because it is an important parameter in our setup; it measures how much the
household values its own private consumption vis-à-vis public consumption (see
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TABLE 1. Effect of ν on long-run second-best equilibrium when θ + ξ = 1

ν τ̃ b̃ c̃ k̃c k̃g 
̃c + 
̃k 
̃kc 
̃kg G̃g/Ỹ G̃c/Ỹ γ̃

0.10
0.20
0.30 0.594 0.627 0.04 0.868 1.464 7.50 6.516 10.983 0.372 0.221 0.007
0.40 0.504 0.678 0.04 0.482 1.017 10.00 4.828 10.171 0.341 0.162 0.024
0.50 0.415 0.711 0.04 0.288 0.711 12.50 3.602 8.897 0.295 0.119 0.038
0.60 0.328 0.734 0.04 0.176 0.489 15.00 2.653 7.346 0.241 0.087 0.050
0.70 0.243 0.749 0.04 0.107 0.321 17.50 1.879 5.620 0.182 0.060 0.059
0.80 0.158 0.755 0.04 0.061 0.188 20.00 1.221 3.778 0.120 0.038 0.063
0.85 0.117 0.754 0.04 0.043 0.133 21.25 0.919 2.830 0.088 0.028 0.063
0.90 0.076 0.748 0.04 0.027 0.083 22.50 0.629 1.870 0.057 0.019 0.058
0.95 0.036 0.729 0.04 0.014 0.038 23.75 0.338 0.911 0.026 0.010 0.047

Notes: A = 0.25, β = 0.15, δk = 0.06, δg = 0.06, δc = 0.06, and ρ = 0.04. Entries without numbers imply
ill-defined solutions, e.g., negative long-run growth rates.

equation (2)). The tables will also report the resulting equilibrium values of the
balanced growth rate, γ̃ , as well as the government resources earmarked for PE
and UE as shares of output, denoted as G̃g/Ỹ and G̃c/Ỹ , respectively.

Case A: Full or one-to-one congestion, θ + ξ = 1. Inspection of results in
Table 1 implies the following: (a) The solution is well defined.9 For instance,
0 < τ̃ < 1, 0 < b̃ ≤ 1, c̃ > 0, k̃c > 0, and k̃g > 0. Also, for ν > 0.2, the balanced
growth rate—along which all national income quantities grow at the same constant
rate—is positive, γ̃ > 0 (for ν ≤ 0.2, the economy is shrinking— hence there are
no entries in the corresponding rows). (b) As ν falls (i.e., as we care more about UE
relative to private consumption), it is optimal to tax more (τ̃ rises monotonically).
(c) The relationship between ν and the fraction of tax revenues allocated to PE
relative to UE (b̃) is not monotonic. Specifically, in the region 0.8 ≤ ν < 1.0, as ν

falls, b̃ rises; in the region 0.2 < ν < 0.8, as ν falls, b̃ falls. (d) The balanced growth
rate, γ̃ , behaves like b̃; i.e., its behavior is nonmonotonic. (e) Both G̃c/Ỹ and G̃g/Ỹ ,
and their associated stocks k̃c and k̃g , all increase monotonically as ν falls.

In other words, there is a critical value of ν, denoted as ν∗, above which the
more the citizen values UE, the more tax revenues the government should allocate
to PE relative to UE; i.e., for ν ≥ ν∗, ∂b̃/∂ν < 0. This policy allocation effect,
in combination with the monotonic increase in k̃g as ν falls, more than offsets the
adverse effect from higher tax rates (∂τ̃/∂ν < 0), so that the balanced growth rate
rises in this region (i.e., for ν ≥ ν∗, ∂γ̃ /∂ν < 0).

By contrast, in the region ν < ν∗, ∂b̃/∂ν > 0. That is, in this region, we get the
conventional policy recipe: the more the citizen values UE, the more tax revenues
the government should allocate to them relative to PE. Now the allocation effect
works in the same direction as the adverse effect from higher tax rates (∂τ̃ /∂ν < 0),
so that the balanced growth rate falls; i.e., for ν < ν∗, ∂γ̃ /∂ν > 0.
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TABLE 2. Effect of ν on long-run second-best equilibrium when θ + ξ < 1

ν τ̃ b̃ c̃ k̃c k̃g 
̃c 
̃k 
̃kc 
̃kg G̃g/Ỹ G̃c/Ỹ γ̃

0.10 0.395 0.247 0.049 0.817 0.268 66.531 −51.948 7.842 2.573 0.097 0.297 0.014
0.20 0.337 0.301 0.050 0.566 0.244 58.585 −42.814 6.445 2.783 0.101 0.235 0.024
0.30 0.292 0.355 0.050 0.415 0.229 51.374 −34.662 5.339 2.949 0.104 0.188 0.031
0.40 0.256 0.413 0.051 0.309 0.218 44.648 −27.126 4.386 3.092 0.106 0.150 0.036
0.50 0.225 0.477 0.051 0.229 0.209 38.274 −20.025 3.530 3.220 0.107 0.117 0.041
0.60 0.198 0.549 0.052 0.166 0.202 32.173 −13.254 2.742 3.338 0.108 0.089 0.045
0.70 0.173 0.632 0.052 0.114 0.196 26.290 −6.744 2.004 3.449 0.109 0.063 0.049
0.80 0.151 0.731 0.052 0.070 0.191 20.588 −0.449 1.306 3.554 0.110 0.040 0.053
0.85 0.141 0.787 0.052 0.050 0.188 17.796 2.629 0.969 3.604 0.111 0.029 0.054
0.90 0.131 0.850 0.052 0.032 0.186 15.039 5.666 0.640 3.653 0.111 0.019 0.056
0.95 0.121 0.921 0.052 0.015 0.184 12.314 8.665 0.317 3.702 0.111 0.001 0.057

Notes: A = 0.25, β = 0.15, δk = 0.06, δg = 0.06, δc = 0.06, ρ = 0.04, θ = 0.3, and ξ = 0.2.

https://doi.org/10.1017/S1365100510000052 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1365100510000052


H
O

W
SH

O
U

LD
TH

E
G

O
V

ER
N

M
EN

T
A

LLO
C

ATE
ITS

TA
X

R
EV

EN
U

ES?
349

TABLE 3. Effect of ν on long-run second-best equilibrium when θ = ξ = 0

ν τ̃ b̃ c̃ k̃c k̃g 
̃c 
̃k 
̃kc 
̃kg G̃g/Ỹ G̃c/Ỹ γ̃

0.10 0.420 0.218 0.058 1.089 0.304 28.739 −24.911 8.732 2.440 0.091 0.328 0.003
0.20 0.351 0.276 0.060 0.713 0.272 35.749 −20.498 7.057 2.691 0.097 0.254 0.013
0.30 0.302 0.331 0.061 0.509 0.252 32.885 −16.568 5.802 2.879 0.100 0.202 0.020
0.40 0.262 0.390 0.062 0.373 0.239 30.153 −12.937 4.745 3.038 0.102 0.160 0.026
0.50 0.229 0.454 0.063 0.274 0.228 27.530 −9.517 3.808 3.178 0.104 0.124 0.031
0.60 0.200 0.528 0.064 0.196 0.220 24.998 −6.257 2.951 3.307 0.105 0.094 0.035
0.70 0.174 0.613 0.064 0.134 0.213 22.541 −3.123 2.154 3.426 0.106 0.067 0.039
0.80 0.150 0.716 0.065 0.082 0.207 20.149 −0.091 1.402 3.539 0.107 0.042 0.042
0.85 0.139 0.775 0.065 0.059 0.205 18.974 1.390 1.040 3.593 0.108 0.031 0.044
0.90 0.129 0.841 0.065 0.038 0.202 17.812 2.853 0.686 3.647 0.108 0.020 0.045
0.95 0.119 0.915 0.065 0.018 0.200 16.662 4.298 0.340 3.698 0.109 0.010 0.047

Notes: A = 0.25, β = 0.15, δk = 0.06, δg = 0.06, δc = 0.06, and ρ = 0.04.
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Notice that most applied studies work in the region ν > 0.7 [see, e.g., Malley
et al. (2007, pp. 1067–1068), who also provide references]. Thus, the conventional
policy recipe can hold for values of ν that are too low relative to those commonly
used in the applied literature. This means that if we focus on the commonly used
parameter region, it is the striking new policy recipe that holds rather than the
conventional one.10

Let us discuss these results. The more the citizen values public consumption,
the more resources are eventually allocated to it (i.e., as ν falls, both G̃c/Ỹ and k̃c

rise). This is natural. But, at the same time and in the whole range of parameter
values, the stronger the preference over public consumption, the higher should also
be the public investment-to-output ratio and the public capital-to-private capital
ratio (i.e., as ν falls, G̃g/Ỹ and k̃g rise monotonically). This implies that higher
provision of public consumption should go hand in hand with higher provision
of public infrastructure, and this is achieved by the right mix of tax and spending
decisions on the part of the Ramsey government. Note that the property that G̃g/Ỹ

should increase as ν falls is due to the effort of the government to correct for
externalities by keeping k̃g at its desired ratio (as we shall see below, G̃g/Ỹ is
independent of ν in the absence of congestion problems and thus externalities to
be internalized by the government).

What is more striking is the optimal tax revenue allocation decision and the
resulting balanced growth rate. In the empirically plausible region, the more the
citizen values UE, the more tax revenues the government should allocate to PE vis-
à-vis UE, and the higher is the balanced growth rate. Only below the critical value
of the preference parameter (which, however, looks empirically implausible), we
get the traditional recipe, namely, the more the citizen values UE, the more tax
revenues the government should allocate to it vis-à-vis PE, and the lower is the
balanced growth rate. As we show below, the nonmonotonicity result for b and γ ,
as well as the striking policy recipe in the empirically plausible region, depend on
the presence and degree of congestion, and so their interpretation is deferred to
the next section.

Thus, summarizing the above:

RESULT 1. Along the second-best (Ramsey) balanced growth path, when there
is full or one-to-one congestion, θ + ξ = 1, there is a critical value of ν, denoted as
ν∗, where (i) for ν ≥ ν∗, ∂b̃/∂ν < 0 and ∂γ̃ /∂ν < 0; (ii) for ν < ν∗, ∂b̃/∂ν > 0
and ∂γ̃ /∂ν > 0.

Case B: partial congestion, 0 < θ + ξ < 1. Inspection of results in Table 2
implies the following: (a) The solution is again well defined. (b) As ν falls, τ̃ rises
monotonically. This is as in case A above. (c) As ν falls, b̃ falls monotonically.
This differs from case A. (d) As ν falls, γ̃ falls. Again this differs from case A.
(e) The stocks of both public goods, k̃c and k̃g , increase monotonically as ν falls.
This is as in case A.

Thus, when congestion is partial, there is no reason for the government to
allocate more resources to PE relative to UE when the citizen cares more about UE.
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In other words, we now get the traditional policy recipe and in turn the traditional
effect on the balanced growth rate over the whole range of ν (0 < ν < 1).

Therefore, the degree of congestion (absolute or relative) of productive public
capital is crucial to the nonmonotonic behavior of second-best tax revenue al-
location policy and the resulting balanced growth rate. In all cases with nonzero
congestion, private agents’ decision to expand their own capital reduces the amount
of public productive services (PE) available to each individual firm.11 Because this
is not internalized, the Ramsey government intervenes to restore PE at its optimal
ratio. In the presence of full or one-to-one congestion, θ +ξ = 1, such an interven-
tion requires that public capital grow at the same rate as private capital. The higher
the growth rate, the more tax revenue the Ramsey government should allocate to
productive public capital. All this turns out to be good for tax bases. Large tax
bases allow, in turn, the financing of all public services including nonproductive
ones (UE). This was the case in Table 1 in the empirically plausible region of ν.
In contrast, when congestion is only partial, 0 < θ + ξ < 1, the priority over the
financing of PE is not necessary. Now, public capital can grow by less than private
capital in order for PE to be at its optimal ratio. Hence, the Ramsey government
finds it optimal to follow the traditional recipe.

Case C: no congestion, θ = ξ = 0. Finally, we check the case of pure public
goods without any congestion, absolute or relative. The results, reported in Table
3, are qualitatively the same as those in Table 2. This is how it should be, because
the case without congestion belongs to the case with partial congestion.

Thus, summarizing cases B and C above, we have

RESULT 2. Along the second-best (Ramsey) balanced growth path, when there
is partial or zero congestion, 0 ≤ θ + ξ < 1, we get the conventional policy recipe
∂b̃/∂ν > 0 and thus ∂γ̃ /∂ν > 0.

Finally, we have

RESULT 3. Results 1 and 2 also hold in the popular special cases in which
δc = 1 and/or δg = 1, i.e., when public services are flow, rather than stock,
variables.

4. SOCIAL PLANNER’S SOLUTION

This section solves for the benchmark case of a first-best allocation (FBA). This
serves as a reference. Now a social planner internalizes externalities and chooses
directly the paths of C, K , Kg , Kc, Gg , and Gc (respectively, private consumption,
private capital, productive public capital, nonproductive public capital, resources
assigned to infrastructure, and resources assigned to public consumption) to max-
imize households’ utility subject to the resource constraints

•
K = AKβ

g K1−β − δkK − C − Gg − Gc, (15a)
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•
Kg = −δgKg + Gg, (15b)

•
Kc = −δcKc + Gc, (15c)

where (15a) is the economy’s resource constraint and (15b) and (15c) are the
motions of productive and nonproductive public capital, respectively.

4.1. Solution of Social Planner’s Problem

The current-value Hamiltonian, H , of this first-best problem is

H ≡ ν log C + (1 − ν)log Kc + λk

[
AKβ

g K1−β − δkK − C − Gg − Gc

]
+ λkg[−δgKg + Gg] + λkc[−δcKc + Gc], (16)

where λk , λkg , and λkc are new dynamic multipliers associated with (15a)–(15c).
Deriving the first-order conditions with respect to C,Gg,Gc, λk,K, λkg,

Kg, λkc, and Kc and using the new stationary auxiliary variables c ≡ C/K ,
kg ≡ Kg/K , kc ≡ Kc/K , gg ≡ Gg/K , and gc ≡ Gc/K , we have

•
c

c
= −βAkβ

g − ρ + c + gg + gc, (17a)

•
kc

kc

= −δc + gck
−1
c − Akβ

g + δk + c + gg + gc, (17b)

•
kg

kg

= −δg + ggk
−1
g − Akβ

g + δk + c + gg + gc, (17c)

βAkβ−1
g − (1 − β)Akβ

g = δg − δk, (17d)

c

kc

= ν
[
(1 − β)Ak

β
g + δc − δk

]
(1 − ν)

, (17e)

where (17a)–(17e) constitute a system of five equations in the paths of c, kc, kg ,
gg , and gc. In turn, the consumption growth rate can follow from

•
C

C
= (1 − β)Akβ

g − δk − ρ. (17f)

This is a stationary first-best allocation (FBA). We next study this economy in the
long run.
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TABLE 4. Effect of ν on long-run first-best equilibrium

ν c̄ k̄c k̄g ḡg ḡc G̃g/Ỹ G̃c/Ỹ γ̃

0.10 0.006 0.331 0.176 0.021 0.041 0.038 0.072 0.063
0.20 0.011 0.285 0.176 0.021 0.035 0.038 0.062 0.063
0.30 0.017 0.242 0.176 0.021 0.030 0.038 0.053 0.063
0.40 0.022 0.201 0.176 0.021 0.025 0.038 0.044 0.063
0.50 0.026 0.163 0.176 0.021 0.020 0.038 0.035 0.063
0.60 0.031 0.127 0.176 0.021 0.015 0.038 0.027 0.063
0.70 0.035 0.092 0.176 0.021 0.011 0.038 0.020 0.063
0.80 0.039 0.060 0.176 0.021 0.007 0.038 0.013 0.063
0.90 0.043 0.029 0.176 0.021 0.003 0.038 0.006 0.063

Notes:A = 0.25, β = 0.15, δk = 0.06, δg = 0.06, δc = 0.06, and ρ = 0.04.

4.2. Long-Run First-Best Allocation

In the long run, variables do not change in (17a)–(17e). We denote the resulting
long-run values as c̄, k̄c, k̄g, ḡg , and ḡc. Thus, variables with upper bars denote
long-run values in a first-best allocation. To make our results directly comparable
to those in the preceding section, we present numerical results in Table 4.12 The
parameter values used are the same as above. We also report the resulting solutions
of Ḡg/Ȳ , Ḡc/Ȳ , and γ̄ , as we did in Section 3.

Inspection of numerical results, again for varying values of ν, reveals the follow-
ing: (a) The solution is well defined. For instance, c̄ > 0, k̄c > 0, k̄g > 0, ḡg > 0,
ḡc > 0, Ḡg/Ȳ > 0, Ḡc/Ȳ > 0, and γ̄ ≥ 0. (b) The positive balanced growth
rate (γ̄ > 0) is independent of ν. This differs from the second-best equilibrium
above, where the balanced growth rate did depend on ν (compare Tables 1–3 with
Table 4). (c) Not only the growth rate, but also all variables associated with the
production side of the economy, are now independent of ν (see the flat values of
k̄g, ḡg , and Ḡg/Ȳ ). This differs from the second-best equilibrium, where the same
variables decreased with ν. (d) The social resources earmarked for nonproductive
uses do depend on ν. Specifically, c̄ increases, whereas k̄c, ḡc, and Ḡc/Ȳ decrease,
with ν. (e) The balanced growth rate is never smaller than that in a second-best
equilibrium (compare the long-run values of γ in Tables 1–3 with those in Table 4).

Therefore, in our model economy, the social planner finds it optimal to first hit a
relatively high growth rate independent of preferences over alternative nonproduc-
tive goods and services, and in turn to make the allocation choice among the latter.
Thus, we get a form of dichotomy. Having achieved an efficient use of productive
factors, the planner allocates social resources to various consumption uses by
following the conventional recipe: the more the citizen values public consumption
relative to private consumption, the more social resources the planner allocates to
the former relative to the latter.

We finally report that all the above results also hold in the popular special cases
in which δc = 1 and/or δg = 1, i.e., when public services are flow variables.
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5. ROBUSTNESS AND DYNAMICS

The aim of this section is to enrich the basic model and thus check robustness of
results (this is in Section 5.2), as well as to study transitional dynamics (this is in
Section 5.3). Throughout the section, we focus on the interesting case of full or
one-to-one congestion, θ + ξ = 1. But, before we do so, we examine whether the
first-best solution in Section 4 is implementable (this is in Section 5.1).

5.1. Implementation of First Best: Is It Possible?

We check whether the government in the decentralized economy can choose its
policy instruments to implement the first-best allocation—in other words, whether
it is possible to choose τ, b so that the long-run DCE solution from equations
(14a)–(14c)13 coincides with the long-run solution of the social planner. It is
straightforward to see that, in our model economy, this is not possible. This happens
because (in addition to the classic Tinbergen target-policy problem, which states
that the number of independent policy instruments should not be less than the
number of policy targets), the second-best equilibrium has the property c̃ = ρ

(see (14a) above if we set θ + ξ = 1), where ρ is the exogenous rate of time
preference. This means that the government does not have any freedom to affect
the consumption-to-capital ratio. Of course, this is a model-specific result; in
other economies, the first-best solution is attainable depending upon availability
of appropriate policy instruments [see, e.g., Turnovsky (2000, chap. 13)].

5.2. Adding Congested Utility-Enhancing Public Goods

We now present the more general case in which both categories of public goods,
productivity-enhancing and utility-enhancing ones, are subject to congestion. In
particular, we assume that the instantaneous utility function of each individual i

changes from equation (2) to

u(Ci,Kc) = ν log Ci + (1 − ν)log Ki
c, (18)

where Ki
c is the services derived by each individual from UE. Using the same

modeling as in equation (6), these services are defined as

Ki
c ≡ Kc

(K)π

(
Ki

K

)η

, (19)

where the parameters π, η ≥ 0 measure the degrees of absolute and relative
congestion, respectively.

Working as in Section 3,14 it can be shown that the qualitative results of Result
1 do not change. This is for any value of the new parameters π, η ≥ 0. The
new numerical solution is reported in Table 5 and delivers the same message as
Table 1.
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TABLE 5. Effect of ν on long-run second-best equilibrium when θ + ξ = 1 and there is congestion in UEPG

ν τ̃ b̃ c̃ k̃c k̃g 
̃c + 
̃k 
̃kc 
̃kg G̃g/Ỹ G̃c/Ỹ γ̃

0.10 0.619 0.436 0.014 1.086 0.841 7 7.607 5.892 0.270 0.349 0.018
0.20 0.517 0.491 0.022 0.678 0.654 9 6.105 5.894 0.254 0.263 0.031
0.30 0.429 0.528 0.027 0.449 0.504 11 4.947 5.552 0.227 0.202 0.041
0.40 0.350 0.554 0.030 0.308 0.384 13 4.005 4.994 0.194 0.156 0.049
0.50 0.279 0.572 0.033 0.213 0.286 15 3.206 4.293 0.160 0.119 0.055
0.60 0.214 0.582 0.035 0.147 0.205 17 2.505 3.494 0.124 0.089 0.059
0.70 0.153 0.584 0.037 0.078 0.138 19 1.568 2.181 0.072 0.052 0.059
0.80 0.097 0.575 0.038 0.060 0.082 21 1.273 1.726 0.055 0.041 0.057
0.85 0.070 0.563 0.038 0.044 0.057 22 0.981 1.268 0.039 0.030 0.052
0.90 0.045 0.541 0.039 0.029 0.035 23 0.687 0.812 0.024 0.020 0.045
0.95 0.021 0.491 0.039 0.015 0.015 24 0.381 0.368 0.010 0.010 0.031

Notes: A = 0.25, β = 0.15, δk = 0.06, δg = 0.06, δc = 0.06, ρ = 0.04, π = 0.2, and η = 0.2.
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5.3. Dynamics

We next study dynamic stability. For algebraic simplicity, we consider the popular
case in which only PE are a stock variable [as in (8a)], whereas UE are a flow
variable. Thus, with Gc denoting public consumption goods and services, the
instantaneous utility function of each individual is

u(Ci,Gc) = ν log Ci + (1 − ν)log Gc, (20)

so that the model is as in Section 3 except that equation (2) changes to (20) and
we omit equation (8b). This is a special case of the model solved in Section 3.

If we linearly approximate the equilibrium equations around the long-run so-
lution, we end up with a three-equation linear differential system. Studying the
properties of the associated Jacobian evaluated in the long run, we can show that
there are two positive roots and one negative root. Because there are two jump
variables and one predetermined, we have saddle-path stability.15

6. CONCLUSIONS

We have set up a dynamic general equilibrium model of endogenous growth in
which productive and nonproductive public goods are financed by distorting taxes,
and policy decisions are made by a Ramsey-type government that solves a second-
best optimal policy problem. We focused on the optimal allocation of collected
tax revenues between productive and nonproductive public goods and provided
some new results in the case of congested public goods.

Because specific results are in the Introduction, we close with a general policy
lesson. In a growing economy, the government realizes that it needs large tax
bases to finance the provision of public consumption goods and services. It thus
makes its allocation decision to boost economic growth and enlarge the tax base.
Having achieved this, it can afford to raise the tax rates to finance nonproductive
public spending. In other words, nongrowing societies cannot afford the provision
of public consumption goods and services. Actually, our results show that, when
PE are congested, the more “socialist” a society is, in the sense that it values more
public consumption goods and services, the more growth-promoting policies it
should choose, here in the form of giving priority to public investment. Only when
there are “unrealistically” strong preferences over public consumption is it optimal
to follow the conventional policy recipe; namely, not only to tax more but also to
allocate more tax revenues to public consumption.

NOTES

1. See also Glomm and Ravikumar (1994), Turnovsky and Fisher (1995), Turnovsky (1996),
Fisher and Turnovsky (1998), Eicher and Turnovsky (2000), Baier and Glomm (2001), Park and
Philippopoulos (2003, 2004), Ghosh and Gregoriou (2008), Chatterjee and Ghosh (2009), and many
others. On the other hand, see, e.g., Devarajan et al. (1996) and Kneller et al. (1999) for a practical
classification of government expenditures.
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2. See, e.g., Barro and Sala-i-Martin (1992, 2004), Glomm and Ravikumar (1994), Turnovsky
(1996, 2000, chap. 13), Fisher and Turnovsky (1998), Eicher and Turnovsky (2000), Ott and Turnovsky
(2006), and Chatterjee and Ghosh (2009).

3. See, e.g., Atkinson and Stiglitz (1980, p. 14) and Turnovsky (2000, p. 430).
4. When ξ > 0 and θ = 0, there is pure relative congestion, in the sense that the agent can maintain

a fixed level of government services, if and only if the usage of his own individual capital/activity
increases in proportion to the usage of the aggregate capital/activity. When θ > 0 and ξ = 0, there is
pure absolute congestion, in the sense that congestion is proportional to the aggregate level of private
capital/activity in the economy. Examples of public goods for each case can be found in Eicher and
Turnovsky (2000, pp. 327–328).

5. Here we use a single tax. As discussed in Section 2 above, several related papers have used more
than one tax (e.g., income, consumption, and lump-sum taxes). But these papers focus on how different
taxes can replicate the first-best optimum [see Turnovsky (2000, chap. 13) for a detailed analysis].
This is not the focus of our paper.

6. The transversality condition that guarantees utility is bounded is also satisfied. With a log-linear
utility function, this requires that ρ > 0.

7. Qualitative results are robust to the parameter values chosen, except as otherwise stated.
8. The case θ + ξ > 1 is omitted because it describes an extreme situation [see, e.g., Eicher and

Turnovsky (2000, p. 328)]. Results for this case are available upon request.
9. Throughout the paper, except as otherwise stated, for the parameter values used, there is only

one well-defined long-run solution, whose properties we discuss. For instance, solutions that imply a
shrinking economy in the long run (i.e., negative balanced growth rate) are not reported. Also, we do
not report solutions that become problematic in some popular special cases, e.g., when there are only
utility-enhancing public goods or only productivity-enhancing public goods (details are in Appendix
A).

10. It is reported that for relatively low values of β (in our numerical solutions, 0 ≤ β ≤ 0.1),
the conventional recipe holds over the whole range of ν. This makes sense because the role of public
capital must be high enough to affect policy choices.

11. See, e.g., Turnovsky (2000, p. 408) for a more detailed discussion of how congestion leads
to inefficiencies in a decentralized equilibrium and how this provides arguments for (tax) policy
intervention.

12. An analytical solution for the first-best is in Appendix B.
13. We compare the long-run solution of these three equations to the long-run first-best solution

reported in Appendix B. Then, it is not possible to find values of τ, b that make these two solutions
equal.

14. The algebra is in Appendix C.
15. The algebra is in Appendix D.
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APPENDIX A: LONG-RUN
SECOND-BEST SOLUTION

(i) When θ + ξ = 1, equations (14a)–(14i) are simplified to

c̃ = ρ, (A.1a)

k̃c = (1 − b̃)τ̃Ak̃β
g

(1 − τ̃ )Ak̃
β
g + δc − δk − c̃

, (A.1b)

(1 − τ̃ )Ak̃β
g + δg = b̃τ̃Ak̃β−1

g + δk + c̃, (A.1c)

(
̃k + 
̃c)ρ = ν, (A.1d)

(1 − b̃)τ̃Ak̃β−1
g − ρ = 0, (A.1e)

β(1 − τ̃ )Ak̃β
g − (1 − β)τ̃Ak̃β

g = 0, (A.1f)


̃kc = 1 − ν

(1 − τ̃ )Ak̃
β
g + δc − δk − c̃ + ρ

, (A.1g)
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(
̃c + 
̃k) = 
̃kc

k̃c

, (A.1h)


̃kck̃g = 
̃kgk̃c, (A.1i)

Inspection of the above equations reveals that 
̃k and 
̃c do not enter separately but as
a sum, 
̃k + 
̃c. This happens because c = ρ (or C = ρK) along the whole optimal
path, including the long run, so that the first two dynamic constraints on the government’s
optimization problem coincide; namely,

•
C/C = •

K/K = (1−τ)A(Kg/K)β −δk −ρ. Thus,
the above nine equations are solved for eight variables, τ̃ , b̃, c̃, k̃c, k̃g, (
̃c + 
̃k), 
̃kc, and

̃kg . Thus there are two long-run solutions. One solution is the one studied in the main text.
The other solution implies that τ̃ = β, etc.; but this is not well defined because the model
breaks down when there are only UE (in this case, τ̃ = β = 0, which implies zero tax rates
and zero provision of public consumption). We report that in the popular special case in
which public consumption is a flow variable, there is only one solution whose properties
are those summarized in Result 1 and Table 1 (see also Appendix D for the solution of this
special case).

(ii) When 0 ≤ θ + 1, there is a single solution, as reported in the main text.

APPENDIX B: FIRST-BEST ALLOCATION
Inspection of (17d) reveals that this is an atemporal equation in kg only. Hence, kg is
constant along the optimal path. In turn, (17a), (17b), and (17c) in the long run give

c̄ + ḡg + ḡc = βAk̄β
g + ρ, (B.1a)

c̄ + ḡg + ḡc = Ak̄β
g − ḡck̄

−1
c + δc − δk, (B.1b)

c̄ + ḡg + ḡc = Ak̄β
g − ḡg k̄

−1
g + δg − δk. (B.1c)

Equations (B.1a) and (B.1b) together imply that

ḡg = k̄g

[
(1 − β)Ak̄β

g + δg − δk − ρ
]
. (B.1d)

Given the solution for k̄g from (17d), (B.1d) is an equation in ḡg only. Combining equations
(17e), (B.1a), and (B.1b), we get

k̄c = βAk̄β
g + ρ − ḡg

ν

(1 − ν)

[
(1 − β)Ak̄β

g + δc − δk
] + (1 − β)Ak̄β

g + δc − δk − ρ
, (B.1e)

ḡc = [
(1 − β)Ak̄β

g + +δc − δk − ρ
]
k̄c. (B.1f)

Given the solutions for k̄g and ḡg from (17d) and (B.1d), (B.1e) is an equation in k̄c

only. Once we solve for k̄c, (B.1f) gives ḡc. Given k̄g , ḡg , and ḡc from (17d), (B.1d),
and (B.1f), (B.1a) gives c̄. As said in the text, we solve (17d), (B.1d), (B.1e), (B.1f), and
(B.1a) numerically for k̄g, ḡg, k̄c, ḡc, and c̄ respectively. Finally, notice from (17d) that k̄g

is independent of ν. This implies that the first-best growth rate and ḡg , given by (17f) and
(B.1d), respectively, are also independent of ν. (B.1e) implies that ∂k̄c/∂ν < 0. Given that
∂k̄c/∂ν < 0, (B.1f) and (B.1a) imply that ∂ḡc/∂ν < 0 and ∂c̄/∂ν > 0, respectively.
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APPENDIX C: ADDING CONGESTED
UTILITY-ENHANCING PUBLIC GOODS

We now consider the more general case in which both types of public goods, PE and
UE, are subject to congestion. We focus on the interesting case in which θ + ξ = 1. The
instantaneous utility function of each individual i changes from (2) to

u(Ci, Kc) = ν log Ci + (1 − ν)log Ki
c, (C.1)

where

Ki
c ≡ Kc

(K)π

(
Ki

K

)η

, (C.2)

where the parameters π, η ≥ 0 measure the degrees of absolute and relative congestion,
respectively. It is straightforward to show that a DCE is given by

•
C = C

[
(1 − τ)A

(
Kg

K

)β

− δk − ρ + η(1 − ν)

ν

C

K

]
, (C.3a)

•
K

K
= (1 − τ)A

(
Kg

K

)β

− δk − C

K
, (C.3b)

•
Kc

Kc

= −δc + (1 − b)τA

(
Kg

K

)β
K

Kc

, (C.3c)

•
Kg

Kg

= −δg + bτA

(
Kg

K

)β
K

Kg

. (C.3d)

Working as in Section 3.6, and defining the same auxiliary variables as in Section 3.7, a
stationary general equilibrium with second-best policy is given by

•
c =

[
ν + η(1 − ν)

ν

]
c2 − ρc, (C.4a)

•
kc = −δckc + (1 − b)τAkβ

g − (1 − τ)Akβ
g kc + ckc + δkkc, (C.4b)

•
kg = −δgkg + bτAkβ

g − (1 − τ)Ak1+β
g + ckg + δkkg, (C.4c)

•

c = −ν −

[
η(1 − ν)

ν

]
c
c + ρ
c + 
kc, (C.4d)

•

k = (1 − ν)π +

[
η(1 − ν)

ν

]
c
c + β(1 − τ)Akβ

g 
c + β(1 − τ)Akβ
g 
k

− (1 − β)τAkβ
g


kc

kc

+ (ρ − c)
k, (C.4e)

•

kc = −(1 − ν) + ρ
kc + (1 − b)τAkβ

g


kc

kc

, (C.4f)
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•

kg = −β(1 − τ)Akβ

g 
c − β(1 − τ)Akβ
g 
k

−βτAkβ−1
g 
kg + bτAkβ−1

g 
kg + ρ
kg, (C.4g)


c + 
k = 
kc

kc

, (C.4h)


kckg = 
kgkc. (C.4i)

With dotted variables set to zero, equations (C.4a)–(C.4i) give in the long run

c̃ = ρν

ν + η(1 − ν)
, (C.5a)

k̃c = (1 − b̃)τ̃Ak̃β
g

(1 − τ̃ )Ak̃
β
g + δc − δk − c̃

, (C.5b)

(1 − τ̃ )Ak̃β
g + δg = b̃τ̃Ak̃β−1

g + δk + c̃, (C.5c)


̃k = 
̃c = ν + η(1 − ν)

2ρ
, (C.5d)


̃kc = 1 − ν

(1 − τ̃ )Ak̃
β
g + δc − δk − c̃ + ρ

, (C.5e)


̃kg = (1 − ν)(π + η)

(1 − b̃)τ̃Ak̃
β−1
g − ρ

, (C.5f)

[ν + η(1 − ν)](1 − b̃)τ̃Ak̃β
g

[
(1 − τ̃ )Ak̃β

g + δc − δk + ρη(1 − ν)

ν + η(1 − ν)

]

= ρ(1 − ν)

[
(1 − τ̃ )Ak̃β

g + δc − δk − ρν

ν + η(1 − ν)

]
, (C.5g)

ρ(1 − ν)(π + η) = [ν + η(1 − ν)][(1 − b̃)τ̃Ak̃β−1
g − ρ]k̃g. (C.5h)

This system is solved numerically by using the same parameter values as in Section 3.8.
Regarding π and η, we set π = 0.2 and η = 0.2. Results are presented in Table 5 and are
qualitatively similar to those in Table 1.

APPENDIX D: TRANSITIONAL DYNAMICS
We focus on the popular case in which public consumption services are a flow variable. We
also set δc = δg ≡ δ for expositional simplicity. The instantaneous utility function is

u(Ci, Gc) = ν log Ci + (1 − ν)log Gc, (D.1)

where Gc is public consumption. Then the DCE is simplified from (10a)–(10d) to

•
C = C

[
(1 − τ)A

(
Kg

K

)β

− δ − ρ

]
, (D.2a)
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•
K

K
= (1 − τ)A

(
Kg

K

)β

− δ − C

K
, (D.2b)

•
Kg

Kg

= −δ + bτA

(
Kg

K

)β
K

Kg

. (D.2c)

In turn, the stationary general equilibrium is simplified from (13a)–(13i) to

•
c = c2 − ρc, (D.3a)

•
kg = bτAkβ

g − (1 − τ)Ak1+β
g + ckg, (D.3b)

•

c = −ν + ρ
c + 
kc, (D.3c)

•

k = −(1−ν)(1−β)+β(1−τ)Akβ

g (
c +
k)−(1−β)bτAkβ
g


kg

kg

+(ρ−c)
k, (D.3d)

•

kg = −β(1 − ν) − β(1 − τ)Akβ

g (
c + 
k) + [(1 − β)bτAkβ−1
g + ρ]
kg, (D.3e)


c + 
k = (1 − ν)

τAk
β
g

+ b

kg

kg

, (D.3f)


kg = (1 − ν)

(1 − b)τAk
β−1
g

. (D.3g)

Equations (D.3a)–(D.3g) in the long run give

c̃ = ρ, (D.4a)

k̃g = τ̃

1 − τ̃
, (D.4b)


̃k + 
̃c = ν

ρ
, (D.4c)


̃kg = (1 − ν)

ρ
(D.4d)

(1 − ν)

τ̃
+ νAkβ

g

ρ
+ (1 − ν)bAkβ−1

g

ρ
= 0, (D.4e)

ρ = (1 − b̃)τ̃Ak̃β−1
g , (D.4f)

which is a simplified version of (A.1a)–(A.1i). This is solved numerically by using the
same parameter values as in Section 3.8 (of course, the solution carries the same qualitative
properties as the solution presented in the first part of Section 3.8).

We now study the transitional dynamics of (D.3a)–(D.3g) around (D.4a)–(D.4f). Notice
three things: (i) c = ρ along the optimal path. (ii) The last two equations, (D.3f) and (D.3g),
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are atemporal. These equations are the first-order conditions for τ and b. (iii) We define

 ≡ 
c + 
k .

We first work with the atemporal equations. Combining (D.3f) and (D.3g), we get

kg = 
kg . If we differentiate this expression with respect to time and use (D.3b), (D.3c),
(D.3d), and (D.3e), we get

∂τ

∂kg

= −
(1 − ν)(1 − β) + ντ(1 − b) − ρ(1 − ν)(1 − β)

Ak
β
g

ν(1 − b)kg

(D.5a)

∂b

∂kg

=
(1 − ν)(1 − β) + ντ(1 − b) − ρ(1 − ν)(1 − β)

Ak
β
g

ντkg

, (D.5b)

where derivatives are evaluated in the long run.
Thus, the dynamics of (D.3a)–(D.3g) are equivalent to the dynamics of the following

system of equations:
•
kg = bτAkβ

g − (1 − τ)Ak1+β
g + ckg, (D.6a)

•

 = −ν + ρ
 − (1 − ν)(1 − β) + β(1 − τ)Akβ

g 
 − (1 − β)bτAkβ
g


kg

kg

, (D.6b)

•

kg = −β(1 − ν) − β(1 − τ)Akβ

g 
 + [(1 − β)bτAkβ−1
g + ρ]
kg. (D.6c)

The Jacobian of (D.6a)–(D.6c) is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11 = ∂
•
kg

∂kg

∣∣∣∣∣∣
BGP

α12 = ∂
•
kg

∂


∣∣∣∣∣∣
BGP

α13 = ∂
•
kg

∂
kg

∣∣∣∣∣∣
BGP

α21 = ∂
•



∂kg

∣∣∣∣∣
BGP

α22 = ∂
•



∂


∣∣∣∣∣
BGP

α23 = ∂
•



∂
kg

∣∣∣∣∣
BGP

α31 = ∂
•

kg

∂kg

∣∣∣∣∣∣
BGP

α32 = ∂
•

kg

∂


∣∣∣∣∣∣
BGP

α33 = ∂
•

kg

∂
kg

∣∣∣∣∣∣
BGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D.7)

where the elements of Jacobian evaluated at the BGP are

α11 =
(1 − ν)(1 − β) + ντ̃ (1 − b̃) − ρ(1 − ν)(1 − β)

Ak̃
β
g

νk̃g

Ak̃β
g

(
1 − 2b̃ − k̃g

1 − b̃

)

+ βb̃τ̃Ak̃β−1
g + (1 + β)(1 − τ̃ )Ak̃β

g + ρ, α12 = 0, α13 = 0,

α21 =
(1 − ν)(1 − β) + ντ̃ (1 − b̃) − ρ(1 − ν)(1 − β)

Ak̃
β
g

ν(1 − b)k̃g

βAk̃β
g 
̃

+ (1 − β)2b̃τ̃Ak̃β−2
g 
̃kg + β2(1 − τ̃ )Ak̃β−1

g 
̃
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+ (1 − β)Ak̃β−1
g 
̃kg

(1 − ν)(1 − β) + ντ̃ (1 − b̃) − ρ(1 − ν)(1 − β)

Ak̃
β
g

νk̃g

(
2b̃ − 1

1 − b̃

)
,

α22 = ρ + β(1 − τ̃ )Ak̃β
g > 0, α23 = −(1 − β)b̃τ̃Ak̃β−1

g > 0,

α31 = −
(1 − ν)(1 − β) + ντ̃ (1 − b̃) − ρ(1 − ν)(1 − β)

Ak̃
β
g

ν(1 − b)k̃g

βAk̃β
g 
̃

− β2(1 − τ̃ )Ak̃β−1
g 
̃ − (1 − β)2b̃τ̃Ak̃β−2

g 
̃kg

+ (1 − β)Ak̃β−1
g 
̃kg

(1 − ν)(1 − β) + ντ̃ (1 − b̃) − ρ(1 − ν)(1 − β)

Ak̃
β
g

νk̃g

(
1

1 − b̃

)
,

α32 = −β(1 − τ̃ )Ak̃β
g < 0, α33 = (1 − β)b̃τ̃Ak̃β−1

g + ρ > 0.

The characteristic third-order polynomial of (D.7) is given by

λ3 − (α11 +α22 +α33)λ
2 + (α11α22 +α11α33 +α22α33 −α32α33)λ−α11α22α33 = 0, (D.8)

where λ is an eigenvalue of the characteristic polynomial. The determinant of the Jacobian
is given by

det J = α11α22α33 = λ1λ2λ3. (D.9)

Recall that there are two jump variables (
 and 
kg) and one predetermined variable
(kg). If the determinant is positive, there are either two negative roots and one positive root
(i.e., indeterminacy) or three positive roots (i.e., instability). If it is negative, there are
either two positive roots and one negative root (i.e., saddle-path stability) or three negative
roots (i.e., indeterminacy). Because α22 and α33 are unambiguously positive, the sign of
the determinant depends only on the sign of α11. Although we cannot specify analytically
the sign of α11, we can calculate it numerically using the same parameter values as in
Section 3.8. Thus, it follows that α11 is negative. Hence, the determinant of the Jacobian
is negative, which implies either saddle-path stability or indeterminacy. Inspection of the
characteristic polynomial in (D.8) reveals that because the constant term is positive, the
most we can have is two sign alterations. Hence, using Descartes’ theorem, which states
that the number of positive roots cannot be greater than the number of sign alterations,
we can have at most two positive roots. Next, we define λ′ = −λ. In this case, and after
calculating numerically the coefficients on λ′, we find that the most we can have is one
sign alteration. Thus, the most we can have is one negative root. Combining results, there
are two positive roots and one negative root. With two jump variables (
 and 
kg) and one
predetermined variable (kg), we have saddle-path stability.
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