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Abstract

Objectives Dimensional changes of the alveolar bone follow-
ing tooth extraction are a major challenge in daily dental prac-
tice. To limit bone loss, a variety of biomaterials including
bone grafts, barrier membranes, and growth factors have been
utilized either alone or in combination therapies to increase the
speed and quality of new bone formation. The aim of the
present in vitro study was to investigate the regenerative po-
tential of Osteogain®, a new liquid carrier system of enamel
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matrix derivative (EMD) in combination with an absorbable
collagen sponge (ACS) specifically designed for extraction
socket healing.

Materials and methods The potential of ACS was first inves-
tigated using ELISA to quantify total amelogenin adsorption
and release from 0 to 10 days. Thereafter, the cellular effects
of ST2 pre-osteoblasts were investigated for cellular attach-
ment at 8 h and cell proliferation at 1, 3, and 5 days as well as
osteoblast differentiation by real-time PCR and alizarin red
staining for cells seeded on (1) tissue culture plastic, (2)
ACS alone, and (3) ACS + Osteogain®.

Results ACS efficiently loaded nearly 100% of the
amelogenin proteins found in Osteogain® which were gradu-
ally released up to a 10-day period. Osteogain® also signifi-
cantly induced a 1.5-fold increase in cell attachment and re-
sulted in a 2—6-fold increase in mRNA levels of osteoblast
differentiation markers including runt-related transcription
factor 2 (Runx2), collagenla2, alkaline phosphatase, and bone
sialoprotein as well as induced alizarin red staining when
combined with ACS.

Conclusions In summary, these findings suggest that
Osteogain® is capable of inducing osteoblast attachment
and differentiation when combined with ACS. Future animal
studies and randomized human clinical trials are necessary to
further support these findings.

Clinical relevance The use of Osteogain® in combination
with ACS may provide a valuable means to limit dimensional
changes following tooth extraction.

Keywords Enamel matrix derivative - Enamel matrix
proteins - Tooth loss - Tooth extraction - Regenerative
therapy - Bone regeneration - Growth factor - Absorbable
collagen sponge
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Introduction

Dimensional changes of the alveolar bone following tooth ex-
traction have been a reported clinical challenge documented in
the literature for over 50 years [1]. Over the past decade, much
research has been performed since Aratijo and Lindhe clearly
demonstrated the negative effects of tooth loss on bone remode-
ling in a canine model following an 8-week healing period [2].
While most studies characterizing dimensional changes are rou-
tinely performed in animal models, recent advancements in
technology have facilitated the evaluation of ridge alterations
in humans by using super-imposed cone-beam CT images [3].
Chappuis et al. recently investigated changes in alveolar bone
around maxillary teeth in the esthetic zone where a facial wall
thickness less than 1 mm was reported in 69% of cases and an
average vertical bone loss of 5.2 mm was reported following an
8-week healing period [3]. These changes were deemed 2.5 to 3
times more severe than previously found in animal models, thus
necessitating alternative strategies to prevent the observed dras-
tic changes in bone volume faced following tooth loss.

Over the past 10 years, a variety of methods have since
been utilized to minimize dimensional changes with varying
degrees of success including the use of collagen barrier mem-
branes [4—7], bone grafting materials [5, 7-9], and growth
factor therapies [10—13]. Despite the numerous attempts that
have been investigated to prevent dimensional changes fol-
lowing tooth loss, no single therapy has been able to predict-
ably prevent bone loss following extraction [14-19].

One low-cost method for improving the healing of extrac-
tion sockets is by placing a collagen sponge into fresh
sockets [10]. Collagen sponges are stable and moldable
cone-shaped biomaterials made from natural collagen capa-
ble of facilitating blood clot formation through hemostatic
wound coverage yet remain fully resorbable over time [10].
Furthermore, they bear the advantage of serving as excellent
carriers for growth factors as the natural collagen structure of
the biomaterial is ideal for surface coating of growth factors
such as bone morphogenetic proteins [10, 17, 20, 21].

One osteopromotive agent recently receiving attention due
to its regenerative potential is a liquid carrier system for
enamel matrix derivative (EMD) [22—-24]. EMD has been uti-
lized primarily as a bioactive agent for the regeneration of
periodontal intrabony defects for over 20 years [25]. Despite
this, Boyan et al. have demonstrated over a decade ago that
EMD contains osteopromotive potential capable of supporting
new bone formation when combined with a bone grafting
material (demineralized freeze-dried bone allograft (DFDBA))
[26]. Furthermore, EMD has been shown to induce the
proliferation of microvascular endothelial cells and speed early
angiogenesis in vivo, key events necessary for wound healing
of both soft and hard tissues [27-30].

Due to the reported clinical variability following the use of
EMD when combined with a bone grafting material, our
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group recently characterized protein adsorption of EMD to
various bone grafting materials including a bovine-derived
natural bone mineral (NBM), DFDBA, and a synthetic
calcium phosphate with the clinically utilized EMD-gel
(Emdogain®, Straumann AG, Switzerland) and EMD-liquid
(Osteogain®, Straumann AG) [22]. The results from that
study routinely observed that the liquid formulation of EMD
(Osteogain®) markedly improved protein adsorption of
amelogenin to the surface of grafting materials when com-
pared to Emdogain® [22]. Furthermore, Osteogain® present-
ed additional advantages including better overall surface coat-
ing and penetration of enamel matrix proteins throughout the
bone grafting material [22]. It was further shown in an animal
model that Osteogain® in combination with NBM was able to
promote new bone formation at early and late time points
when compared to bone grafting material utilized alone [24].

Since collagen sponges are low-cost, ideally designed car-
riers for growth factors, the aim of the present study was to
compare the potential of collagen sponges loaded with
Osteogain® when compared to collagen sponge alone for
the future preservation of extraction sockets following tooth
loss. In a first-step study, the kinetics was investigated in vitro
on the adsorption and release of amelogenins onto collagen
cylindrical sponges designed for extraction sockets, and
thereafter, pre-osteoblasts were investigated for their ability
to attach, proliferate, and differentiate when Osteogain® was
combined with collagen sponges.

Methods
Osteogain® and absorbable collagen sponges

For all in vitro experiments, Osteogain® (0.3-ml vials,
starting concentration 30 mg/ml) was kindly provided by
Straumann AG, Basel, Switzerland. In order to reach the
in vitro working concentration of 100 pg/mL for cell biol-
ogy experiments, Osteogain® was diluted in cell culture
media containing 10% fetal bovine serum (FBS, Gibco,
Life technologies, Carlsbad, CA) and 1% antibiotics includ-
ing 10,000 units/mL of penicillin, 10,000 pg/mL of strep-
tomycin, and 25 pug/mL of amphotericin B (catalog number
15240062, Invitrogen, Carlsbad, CA, USA). An absorbable
collagen sponge (ACS: Collacone®, Botiss, Berlin,
Germany) was utilized as the material of choice due to its
utilization in extraction sockets as a low-cost material with
the ability to efficiently adsorb growth factors due to its
three-dimensional collagen scaffold [10]. For in vitro exper-
iments with cells, cylindrical scaffolds were cut into cylin-
drical disks about 1 mm in thickness and inserted into the
bottom of 24-well dishes (Invitrogen). Samples were coated
with Osteogain® for 5 min prior to protein quantification
experiments as well as cell seeding experiments.
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ELISA protein quantification of Osteogain® adsorption
to collagen sponges

To determine the quantity of Osteogain® adsorption to the sur-
face of ACSs, ELISA quantification assay was utilized for
amelogenins, the main protein found in EMD representing
90-95% of the total protein content. Briefly, after the coating
period incubation of 0.3 mL of Osteogain® onto one full-sized
ACS at 4 °C, the remaining PBS solution, containing unat-
tached enamel matrix proteins, was collected and quantified
by a Quantikine Colorimetric Sandwich ELISA (Gene
301200, MyBioSource Inc., San Diego, CA, USA) for the re-
maining amount of amelogenin protein unadsorbed to ACS
according to the manufacturer’s protocol. Substraction of total
coated protein from the amount of un-adsorbed protein was
used to determine the amount of adsorbed material to the sur-
face of ACS as previously described [22]. Furthermore, in order
to determine the quantity of amelogenin protein being released
from ACS over time, coated collagen sponges were soaked in
1 mL of PBS and samples were collected at various time points
including 15 min, 1 h, 8 h, 1 day, 3 days, and 10 days. All
samples were quantified in triplicate, and three independent
experiments were performed.

Cell culture system

Undifferentiated mouse cell line ST2 stromal bone marrow
cells were obtained from RIKEN Cell Bank (Tsukuba,
Japan). No ethical approval was required for this study because
of the cell source utilized. Cells were detached from the tissue
culture plastic using 0.25% EDTA-Trypsin prior to reaching
confluency (Invitrogen). During cell seeding for differentiation
experiments, Dulbecco’s modified Eagle medium (DMEM)
(Gibco) was supplemented with 10% FBS, 50 pg/mL ascorbic
acid (Sigma, St. Louis, MO, USA), and 10 mM f3-
glycerophosphate (Sigma) to promote osteoblast differentiation
as previously described [31]. ST2 cells were seeded on either
(1) tissue culture plastic (TCP) alone, (2) ACS alone, and (3)
ACS + 100 pg/mL of Osteogain® at a density of 10,000 cells
in 24-well culture plates for cell adhesion and proliferation
experiments and 50,000 cells per well in 24-well dishes for
real-time PCR and alizarin red experiments. For experiments
lasting longer than 5 days, the medium was replaced twice
weekly containing osteoblast differentiation media accordingly.

Adhesion and proliferation assay

Cells were quantified using an MTS assay (Promega,
Madison, WI, USA) at 8 h for cell adhesion and at 1, 3, and
5 days for cell proliferation according to the manufacturer’s
protocol. At desired time points, cells were washed with PBS
and quantified using an ELx808 Absorbance Reader (BioTek,
Winooski, VT, USA). Experiments were performed in

triplicate with three independent experiments for each condi-
tion. Data were analyzed for statistical significance using
Student ¢ test for adhesion assay and two-way analysis of
variance with Turkey test for proliferation assay (*p values
<0.05 were considered significant).

Real-time PCR for osteoblast differentiation markers

Real-time RT-PCR was used to investigate the expression of
genes encoding osteoblast differentiation markers. Total RNA
was isolated using High Pure RNA Isolation Kit (Roche,
Basel, Switzerland) at 3 and 14 days. Primer and probe se-
quences for genes encoding runt-related transcription factor 2
(Runx2), collagenl a2 (COL1A2), alkaline phosphatase
(ALP), bone sialoprotein (BSP), and glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) were fabricated with
primer sequences according to Table 1. Reverse transcription
was performed with Transcriptor Universal cDNA Master.
Real-time RT-PCR was performed using Roche FastStart
Universal SYBR Green Master and quantified on an
Applied Biosystems 7500 Real-Time PCR Machine
(Biosystems, Life Technologies Corporation, Carlsbad, CA).
A NanoDrop 2000c (Thermo, Wilmington, DE, USA) was
used to quantify total RNA levels. All samples were assayed
in triplicate with three independent experiments performed.
The AACt method was used to calculate gene expression
levels normalized to total RNA values and calibrated to con-
trol samples [32]. Data were analyzed for statistical signifi-
cance using two-way analysis of variance with Tukey test (*p-
values <0.05 were considered significant).

Alizarin red staining

Alizarin red staining was performed to determine the presence
of extracellular matrix mineralization. After 14 days, cells
were fixed in 96% ethanol for 15 min and stained with 0.2%
alizarin red (Alizarin Red S, Sigma) solution in water (pH 6.4)
at room temperature for 1 h. Alizarin red quantification was

Table 1 PCR primers

for genes encoding Gene Primer sequence

Runx2, ALP, COL1a2,

BSP, and GAPDH mRUNX2 F agggactatggcegtcaaaca
mRUNX2 R ggctcacgtegctcatett
mCOLa2 F gagctggtgtaatgggtect
mCOLa2 R gagacccaggaagacctctg
mALP F ggacaggacacacacacaca
mALP R caaacaggagagccacttca
mBSP F gcactccaactgeccaaga
mBSP R ttttggagecctgcetttetg
mGAPDH F aggtcggtgtgaacggatttg
mGAPDH R tgtagaccatgtagttgaggtca
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performed using images captured on a Nikon D610 camera
with a Heerbrugg M400 Zoom microscope (Wild Heerbrugg,
Switzerland). ImageJ software was used to quantify data using
set parameters for color intensity staining of red using a color
threshold including parameters for hue (0 to 255), saturation
(50 to 255), and brightness (100 to 255). The same threshold
values were used for all analyzed samples. Alizarin red exper-
iments were performed in triplicate with three independent
experiments. Means and standard errors (SE) were calculated,
and the statistical significance of differences was examined by
one-way analysis with Turkey test between all groups (*p-
values <0.05 were considered significant).

Statistical analysis

Statistical analyses were performed using one- or two-way
ANOVA and the Student-Newman-Keuls test, and statistical
significance was considered at p < 0.05. All the in vitro ex-
periments were performed in triplicate and from three inde-
pendent experiments unless otherwise mentioned. All statisti-
cal analysis and display of figures were performed using
GraphPad Prism software version 7.0 (La Jolla, CA, USA).

Results
Ability of ACS to adsorb and release amelogenin over time

Analysis of the total amount of adsorbed amelogenin to ACS
after a 5-min pre-coating period with Osteogain® revealed a
near 100% adsorption of amelogenin proteins (Fig. 1).
Furthermore, after rinsing with PBS, the total remaining con-
tent contained within the ACS was reported close to 100%
with only an average 2% decrease in total amelogenin loss
(Fig. 1). The amount of amelogenin was slowly and gradually
released over time from 15 min up to 10 days (Fig. 1). After a
10-day period, nearly 70% of the initial protein content found
in EMD remained present on the surface and within the ACS
structure, thus demonstrating good protein adsorption proper-
ties of collagen sponges (Fig. 1).

Fig. 1 Amelogenin adsorption of
Osteogain® to absorbable
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absorbable collagen sponges (ACS), and (3) ACS + Osteogain®.
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Effect of ACS and Osteogain® on ST2 cell adhesion
and proliferation

Thereafter, the effects of ACS in combination with Osteogain®
were investigated on ST2 cell adhesion at 8 h and cell prolifer-
ation at 1, 3, and 5 days post seeding (Fig. 2). It was first
observed that while ACS did not induce ST2 cell attachment
relative to tissue culture plastic, the additional use of
Osteogain® significantly increased cell adhesion at 8 h by
50% (p < 0.05, Fig. 2a). Thereafter, the effects of ACS in
combination with Osteogain® were tested for their ability to
induce cell proliferation (Fig. 2b). While no significant differ-
ences were observed between tissue culture plastic and ACS,
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the additional coating with Osteogain® significantly decreased
cell numbers at 1, 3, and 5 days (p < 0.05, Fig. 2b).

Effect of ACS and Osteogain® on ST2 cell differentiation
to osteoblasts

We then investigated the effects of ACS and Osteogain® on
ST2 differentiation towards osteoblasts utilizing real-time
PCR (Fig. 3) as well as alizarin red staining (Fig. 4). It was
first observed that neither ACS nor Osteogain® had any in-
fluence on genes encoding Runx2, Colla2, ALP, and BSP at
an early time point of 3 days post seeding (Fig. 3). However, at
14 days post seeding, it was found that ACS significantly
increased Runx2 messenger RNA (mRNA) levels up to 2-
fold, and Osteogain® further significantly upregulated all os-
teoblast differentiation markers including Runx2, Colla2,
ALP, and BSP between 2- and 6-fold when compared to stan-
dard tissue culture plastic alone (Fig. 3). Furthermore, the
ability for cells to produce mineralized tissue was investigated
via alizarin red staining (Fig. 4). It was found that cells seeded
with ACS + Osteogain® significantly enhanced alizarin red
staining when compared to all other groups (Fig. 4).

Discussion

The aim of the present in vitro study was to investigate the
potential of Osteogain® in combination with ACS as a poten-
tial future regenerative strategy for extraction socket manage-
ment. While the effects of tooth loss have been reported in the
literature in numerous studies and review articles [2, 3,
14-19], the investigation of innovative strategies to prevent
dimensional changes following tooth extraction remains nec-
essary. Therefore, the combination of several bioactive factors
with bone biomaterials needs to be more accurately tested in
cell cultures before performing larger and more expensive
animal and human studies.

While it has been reported in the literature by numerous
investigators that absorbable collagen sponges serve as the
preferred carrier system for bone morphogenetic proteins
(BMPs) [10, 17, 20, 21], we investigated for the first time their
ability to load a novel carrier system for enamel matrix pro-
teins in a liquid carrier system (Osteogain®). Noteworthy,
amelogenin was chosen as the quantified protein in the
ELISA investigation as it represents over 90% of the total
protein found in the Osteogain® formulation. No other possi-
bility existed for quantification purposes as no ELISA exists
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Fig. 4 a Visual representation of alizarin red stained on (1) negative
control absorbable collagen sponges (ACS) without cells, (2) control
tissue culture plastic, (3) control ACS with cells, and (4) ACS with
Osteogain® at 14 days post seeding. Note the intensity of red staining
on ACS coated with Osteogain® in comparison to control samples. b
Quantified data of alizarin red staining from color thresholding software
(double asterisks denote significantly higher than all other treatment
modalities, p < 0.05)

to quantify the full range of proteins found in the enamel
matrix. In the present study, it was found that amelogenins
efficiently adsorbed onto collagen sponges and that a
0.3-mL volume of Osteogain® was sufficiently soaked up
by ACS following a 5-min coating period. A PBS rinse was
performed to determine if the proteins in EMD would be
dissolved/dissociated from the surface after this initial 5-min
coating period. It was however found that approximately 98%
of original content remained within ACSs and approximately
70% of the total amelogenin content remained present within
ACS even after a 10-day period, demonstrating excellent re-
tention of the loaded proteins over time. These results were
significantly better than previous reports performed by our
group demonstrating the ability for Osteogain® to adsorb to
bone grafting materials including NBM, DFDBA, and a syn-
thetic calcium phosphate material [22]. The results from the
present study demonstrate almost a 2-fold increase in
adsorbed amelogenin to the surface of collagen sponges after
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10 days when compared to synthetic bone grafts, confirming
the preferred potential of collagen to serve as an ideal matrix
for amelogenin adsorption.

Thereafter, the effect of combining Osteogain® to ACSs
was investigated on ST2 cell adhesion, proliferation, and dif-
ferentiation towards osteoblasts when compared to standard
tissue culture plastic (Fig. 2, 3, and 4). It was first found that
Osteogain® significantly induced a 50% increase in cell at-
tachment to ACSs. Previously, Hoang et al. reported that
amelogenin acts as a cell adhesion molecule capable of facil-
itating cell attachment [33]. The results from our study further
confirm the ability for amelogenin to improve cell adhesion
specifically when Osteogain® was coated to a biomaterial
surface. Thereafter, it was found that Osteogain® decreased
cell proliferation and increased cell differentiation. These find-
ings are in agreement with previous reports demonstrating that
as pre-osteoblasts undergo cell differentiation more rapidly,
typically a decrease in cell proliferation is observed in parallel
[34]. Interestingly, previous reports from our group have
found that Osteogain® (and EMD in general) is able to pro-
mote cell proliferation when compared to either control tissue
culture plastic alone or to biomaterial alone [23, 35-37]. One
potential reason for the observed differences in the present
study may be due to the difficulty of cells to migrate and
proliferate across a collagen fleece matrix when compared to
bone grafting materials or standard tissue culture plastic; how-
ever, future investigation is necessary to further clarify this
hypothesis.

The main important findings from the present study were
the ability for Osteogain® to significantly upregulate cell dif-
ferentiation of progenitor cells towards a more mature osteo-
blastic phenotype by 14 days (Figs. 3d and 4). These findings
are consistent with recent results from our group that have
shown the differentiation potential of Osteogain®/EMD on
various cell lines and human primary cells [23, 35-37]. In
the present study, we aimed to research a highly clinically
applicable clinical scenario by combining Osteogain® with a
more suitable biomaterial for clinical practice. Currently,
Osteogain® is being investigated for its combination with
ACS in two indications in both large animal studies
(monkeys) and humans for its potential to speed regeneration
of both extraction socket healing and intrabony/furcation peri-
odontal defect regeneration. This preliminary in vitro data
supports the fact that the combination of Osteogain with
ACS mainly induces cell activity of osteoblast progenitor cells
to differentiate towards mature osteoblasts by demonstrating
higher mRNA levels of osteoblast differentiation markers as
well as alizarin red staining.

Recent findings from our group have also demonstrated
that Osteogain® is able to stimulate new bone formation
in vivo in pure bone defects when combined with a bone
grafting material in small rodent animals [24]. The sum of
these previous in vitro and in vivo studies warrants more
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investigation of Osteogain® in large animal models. Future
strategies aimed directly at studying the regenerative potential
of Osteogain® in combination with an ACS in vivo are further
needed to fully characterize the potential to minimize ridge
alterations post extraction, utilizing the combination approach
used in this study.

Conclusion

The findings from the present study demonstrate that ACSs
are efficiently able to adsorb amelogenins, the main protein in
Osteogain®, and release them to the surrounding environment
over a 10-day period. Furthermore, the combination of
Osteogain® with ACS significantly upregulated cell adhesion
by 50%, increased mRNA levels of osteoblast differentiation
markers between 2- and 6-fold, and further supported the min-
eralization of osteoblast in vitro. Further animal and human
clinical trials are now necessary to evaluate the regenerative
potential of Osteogain® in combination with ACS in extrac-
tion sockets following tooth loss.
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