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 Gaussian Process (GP) regression was proposed to obtain the stress-free 
configuration of soft tissuesmeasured under physiological loads 

 Application on the human cornea was based on more than 1000 datasets 

 Determination of the stress-free configuration is instantaneous 

 The stress-free configuration was at least five 5 times more accurate than the clinical 
requirements 
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Abstract 30 

Image-based modeling is a popular approach to perform patient-specific biomechanical 31 

simulations. One constraint of this technique is that the shape of soft tissues acquired in-vivo 32 

isdeformed by thephysiologicalloads. Accurate simulations require determining the existing 33 

stress in the tissues or their stress-free configurations. This process is time consuming, 34 

which is a limitation to the dissemination of numerical planning solutions to clinical practice. 35 

In this study, we propose a method to determine the stress-free configuration of soft tissues 36 

using a Gaussian Process (GP) regression. The prediction relies on a database of pre-37 

calculated results to enable real time predictions. The application of this technique to the 38 

human cornea showed a level of accuracyfive to ten times higher than the accuracy of the 39 

topographic device used to obtain the patients‟ anatomy. In this context, we believe that GP 40 

models are suitable for predicting the stress free configuration of the cornea and can be used 41 

in planning tools based on patient-specific finite element simulations. Due to the high level of 42 

accuracy required in ophthalmology, this approach is likely to be appropriate for other 43 

applicationsrequiring the definitionof the relaxed shape of soft tissues. 44 

  45 



 

 

1 Introduction 46 

The recent progress in medical image analysis and numerical simulation tools enabled 47 

thedevelopmentof patient-specific planning solutions based on biomechanical simulations. 48 

The anatomical information for each patient is derived from medical imaging and finite 49 

element simulations are used to evaluate the outcome of specific surgical interventions. 50 

Additionally, such simulationplatforms allow further understanding of the disease, its 51 

progression and on the efficacy of availabletreatments and procedures. 52 

One of the problems with this approach is that the medical images acquired in-vivo describe 53 

the tissue in its physiological situation, which is frequently under stress. This is typically the 54 

case for soft tissue such as ligaments, arteries or the human eye. However, the level of initial 55 

strain in the tissue cannot be directly measured on the patient,therefore the biomechanical 56 

models are considering an initially unloaded “stress-free” configuration[1].  Several methods 57 

were proposed to pre-stress the measured „initial‟ geometry[1-4]. Among these methods, 58 

some researchers proposed an inverse elastostatic approach centered on the reverse 59 

application of in-vivo conditions to explicitly estimate the stress-free configuration, hence one 60 

non-linear simulation step is required to update the deformation gradient tensor [5–7]. Others 61 

adopted a modified updated Lagrangian formulation [1,2,8], to estimate the stress in the 62 

tissue using a forward calculation, where the procedure continuously updates the 63 

deformation tensor during the simulation of the in-vivo state. Although these methods 64 

provided accurate results, they require complex implementations, and – especially when the 65 

tissue is considered incompressible –athorough knowledge of continuum mechanicsas well 66 

as the solution of a non-linear problem. By contrast, an easier approach has been proposed 67 

by Pandolfi [9], where a simple analytic calculation is combined with finite element analysis to 68 

obtain the stress-free configuration of the tissue. High accuracy can be achieved with this 69 

approach, but the solution requires the iterative solution of a finite element problem, which is 70 

time consuming[2,11,24]. 71 



 

 

Calculation time represents an important issue for the acceptability of the planning tool in 72 

clinical routine. Therefore, the stress-free configuration of the tissues should be obtained as 73 

efficiently as possible. For this reason, the aim of this study was to evaluate prediction of the 74 

relaxed shape of the tissue with a stochastic approach.The Gaussian process (GP) is one of 75 

the most widely used stochastic and non-parametric processes for modeling dependent data 76 

observed over space or time. It has been used for several biomechanical applications to 77 

predict human gait kinematics [15], abdominal aortic aneurysms [16] or for the estimation of 78 

swimming velocity [17]. Our hypothesis was that this method could also be suitable to 79 

estimate the patient-specific stress-free configuration starting from clinical images. In this 80 

work, the parameters describing the shape of the tissue were modeled as a Gaussian 81 

process, which was used to predict the stress-free configuration without any further finite-82 

element analysis. The method has been applied in ophthalmology for the prediction of the 83 

relaxed shape of the cornea that will be used in a planning solution for refractive surgeries. 84 

2 Material & Methods 85 

In order to compute the stress free configuration of the cornea using aGaussian 86 

Processapproach, several steps were necessary. First,the corneal geometrical information 87 

was acquired with a topography device (Section 2.1); the geometrical information thus 88 

obtained was used to deform a spherical cornea template to create patient-specific finite 89 

element meshes(Section 2.2).Patient specific models were then pre-stressed with an 90 

iterative approach (Section2.3) and the resulting stressed corneas were divided into training 91 

and test data (Section 2.4.1). The training data was used to build the Gaussian process 92 

model (Section 2.4.2) and the test datawas used to assess the quality of the 93 

predictionobtained with the fitted Gaussian process model(Section 2.4.3). 94 

2.1 Patient Data 95 

Theshape of 1738 patients corneas were acquired with a Pentacam HR Scheimpflug 96 

camera.This topography device allows an accurate measurement of the anterior and 97 



 

 

posterior surface of the cornea (accuracy of a few microns) and to export the geometric 98 

measurements as Zernike[18] polynomials. The Zernike coefficients 𝑊 𝑟, 𝜃 describe the 99 

elevation data of both the anterior and the posterior corneal surfaces. This decomposition is 100 

frequently used to describe the shape of the corneal surface, because the Zernike 101 

polynomials𝑍𝑛
𝑚 represent an orthonormal basis where each polynomial function describes a 102 

distinct optical property of the refractive surface (i.e. defocus, astigmatism, coma, trefoil, 103 

quadrafoil).Therefore, any points on the corneal surface can be defined in a polar coordinate 104 

system 𝑟, 𝜃 as: 105 

𝑊 𝑟, 𝜃 =   𝑊𝑛
𝑚𝑍𝑛

𝑚  𝑟, 𝜃 

𝑛

𝑀=−𝑛

𝑘

𝑛=0

 

where𝑊𝑛
𝑚  are the Zernike coefficients defining the weights, 𝑛 and 𝑚 are respectively the 106 

order and phase of the polynomial. Zernike polynomials up to order 𝑘 ≤ 6 have been 107 

considered in this study. 108 

2.2 Finite element model 109 

Patient-specific models of the cornea where obtained by morphing a template finite element 110 

mesh to the topographic measurements.The three-dimensional template mesh included both 111 

the cornea and sclera(Figure 1), which were meshed with about 40000 linear hexahedral 112 

elements [20]. A no-displacement boundary condition has been applied to the nodes located 113 

on the cut-section through the sclera. A normal intraocular pressure of 15 mmHg has been 114 

applied on the internal surface of the mesh.  115 

A mechanical model previously published and validated has been used to describe the 116 

mechanical behavior of the tissue[19,20].Briefly, the strain energy function of the constitutive 117 

material model is given below:  118 

𝛹 = 𝑈 + 𝛹 𝑚 +
1

𝜋
 𝛷(𝜃) ∙  𝛹 𝑓1 + 𝛹 𝑓2 𝑑𝜃 



 

 

where𝑈describesa penalty function to ensure incompressibilityof the material, Ψ 𝑚  is a neo-119 

Hookean material representing the tissue matrix, Ψ 𝑓1 andΨ 𝑓2  are modified Ogden materials 120 

[21] modeling the main collagen fibers and the collagen cross-linking, respectively. The 121 

probability distribution function Φ defines a realistic fiber distribution [22] by assigning 122 

weights to each fiber direction. Material constants were determined using three sets of 123 

experimental data obtained on button inflation tests [23] and strip extensiometry [14]. 124 

2.3 Iterative Pre-Stressing Process 125 

The in-vivo corneal shape measured by the Pentacamdevice was stressed by the 126 

physiologicalintraocular pressure. An iterativeapproach wasapplied to progressively move 127 

the nodes of the patient-specific finite element mesh toward their stress-free shape. In this 128 

study the iterative approach, proposed by Elsheikh et al. [24] and Pandolfi et al. [9], was 129 

used. 130 

Assuming the coordinates of the patient-specific model 𝑋0 as the target of the iterative 131 

process,𝑥𝑖describes the corneal geometry after each iteration𝑖resulting from the nodal 132 

displacement induced by theintraocular pressure(IOP). The computed nodal displacements𝑢𝑖  133 

are then used to estimate the stress-free form 𝑋𝑖  andthe error 𝑒𝑖 : 134 

𝑒𝑖 = 𝑥𝑖 − 𝑋0 =  𝑋𝑖 + 𝑢𝑖 − 𝑋0 

𝑋𝑖+1 = 𝑋0 − 𝑢𝑖  

The root mean square distance was used to monitor the convergence of the iterative process 135 

to the stress-free form. The iterative process was stopped when this error dropped below 136 

10−4 µm, which usually requires about 10 iterations. 137 

2.4 Gaussian Process 138 

A Gaussian process was defined to predict the stress-free configuration of the cornea. The 139 

model parameters were fitted to generate a functional mapping between the shape of the 140 

cornea measured experimentally and the corresponding stress-free configuration. In this 141 



 

 

study, the Matlabimplementationof Gaussian Process for Machine Learning proposed by 142 

Rasmussen[25] has been used. 143 

2.4.1 Training and Test Datasets 144 

This dataset consists oftraining input vectors𝑥𝑠, containing the Zernike coefficients describing 145 

the shape of each patient‟s corneaunder stress,as well astraining output vectors𝑦𝑠, 146 

containingthe Zernike coefficients describing the stress-free shape of these corneas. The 147 

parameters of the output matrix 𝑦𝑠were obtained with the pre-stressing techniquedescribed 148 

previously. 149 

The training dataset represents the pool of data that was used to determine the Gaussian 150 

Process. To evaluate the effect of the size of the training data on the predictions, several GP 151 

models were fitted on gradually increasing number of training data. Four GP models have 152 

been fitted to datasets containing 250, 500, 750 and 1663 corneas. In this evaluation the 153 

training dataset included of mix of healthy and pathological corneas, while the test dataset 154 

consisted of 75 healthy corneas. 155 

Further GP models were built to verify the effect ofdiscriminating healthy from pathological 156 

corneas within the training dataset. For this evaluation,we used twotraining datasets,each 157 

containing 700 corneas from healthy and pathologicalpatients,respectively. Separate 158 

datasets containing respectively75 pathological and 73 healthycorneas were used to 159 

evaluate the quality of the predictions. 160 

2.4.2 Design of Gaussian process model 161 

A GP can be considered as a collection of random variables indexed by a continuous 162 

variable: 𝑓 𝑥 .Suppose we define a particular finite subset of these random variables 163 

𝑓 𝑥 =  𝑓1, 𝑓2 , … , 𝑓𝑁 , with corresponding inputs𝑥 =  𝑥1, 𝑥2 , … , 𝑥𝑛 . In a GP, any such set of 164 

random function follow amultivariate Gaussian distribution, which means that every linear 165 

combination of its components f = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛  is normally distributed for any 166 



 

 

vector a ∈ ℛ𝑘 .A Gaussian process follows a normal distribution and is therefore completely 167 

defined by its mean and covariance functions [25]: 168 

𝑓 𝑥  ~ 𝒩 𝑚 𝑥 , 𝐾 𝑥, 𝑥′   

with mean 𝑚 𝑥  and covariance function 𝐾 𝑥, 𝑥′ . In this study, the mean function wasfixed 169 

to zero(𝑚 𝑥 = 0), which was not a strong limitation since the data can becentered in a pre-170 

processing step. A squared exponential covariance was used as covariance function: 171 

𝐾 𝑥, 𝑥′ = 𝜎𝑓
2𝑒

− 
(x−x′ )2

2𝑙2  

where𝑙is the characteristic length-scale and 𝜎𝑓
2controls the overall variance of the process. 172 

In realistic modeling situations, only noisy data are availableof the output function 173 

values.Therefore a Gaussian noise ε was added to the data such as:𝑦 = 𝑓 𝑥 +  𝜀,having a 174 

zero meanand a variance 𝜎𝑛
2.The parameters 𝑙,  𝜎𝑓

2 and 𝜎𝑛
2correspond to the 175 

hyperparameter𝜃characterizing the GP model.Thehyperparametersthat best represent all 176 

data in the training set are obtained by maximizing the Gaussian likelihood amongst the 177 

training dataset: 178 

log 𝑝 𝑦|𝑋, θ = −
1

2
𝑦𝑇𝐶−1y −

1

2
log C −

𝑛

2
log 2𝜋 

where 𝐶 = 𝐾 𝑥, 𝑥′ + 𝜎𝑛
2𝐼 is the covariance function for the noisy targets𝑦. The first term can 179 

be interpreted as a data-fit term, the secondterm is a complexity penalty and the last term is 180 

a normalizing constant. 181 

2.4.3 Gaussian Process Prediction 182 

In order to make predictions,the Zernike coefficients estimated for the test dataset were 183 

compared with the stress-free shape resulting from the iterative process. The prediction 𝑦𝑡𝑝𝑚  184 

of the 𝑚𝑡ℎ  Zernike coefficient defined in the output of test dataset 𝑦𝑡 is obtained as:  185 

𝑚𝑒𝑎𝑛 𝑦𝑡𝑝𝑚  =  𝐾 𝑥𝑡 , 𝑥𝑠  𝐾 𝑥𝑠 , 𝑥𝑠 + 𝜎𝑛
2𝐼 −1𝑦𝑠𝑚 = 𝐾 𝑥𝑡 , 𝑥𝑠 𝛼𝑚  



 

 

𝑐𝑜𝑣 𝑦𝑡𝑝𝑚  = 𝐾 𝑥𝑡 , 𝑥𝑡 − 𝐾 𝑥𝑡 , 𝑥𝑠  𝐾 𝑥𝑠 , 𝑥𝑠 + 𝜎𝑛
2𝐼 −1𝐾 𝑥𝑠 , 𝑥𝑡  

where𝐾 is the covariance function, 𝑥𝑠 and 𝑥𝑡  are the training and the test input 186 

respectively,and 𝑦𝑠𝑚 is theoutput of the training data.The first formula establishes that alinear 187 

predictor of the test output 𝑦𝑡𝑝𝑚 obtainedby multiplication of the covariance between training 188 

and test input by a pre-computed vector 𝛼𝑚 , which only depends on training data. 189 

Several optical parameters have been used to quantify the error of the GP predictions. These 190 

parameters included the keratometricindices, average curvature indices and wavefront 191 

aberration parameters. Keratometricindices are based on the average curvature of the 192 

steepest (SimKs) and flattest (SimKf) meridian on the corneal surface (given in diopters). 193 

They are calculated over a central corneal annulus of 0.5 to 2.5mm radius. The keratometric 194 

indices are the induced cylinder (SimKs – SimKf) and the induced change in average K 195 

(SimKs+SimKf)/2.0. Averaged axial curvature indices describe corneal shape in three 196 

important regions; the central, paracentral, and peripheral zones. Central average curvature 197 

is calculated over the central annulus of 0.0 to 2.0mm radius, the paracentral average 198 

curvature is calculated over an annulus of 2.0 to 3.5mm radius and the peripheral average 199 

curvature is calculated over an annulus of 3.5 to 5.0mm radius.Wavefront aberration is 200 

calculated from surfaces andis described by the following indices given as the average of the 201 

coefficients obtained by Zernike decomposition of the anterior cornea; the spherical 202 

aberration 𝑍4
0 , coma (𝑍3

−1 + 𝑍3
1) 2 , trefoil (𝑍3

−3 + 𝑍3
3) 2 , tetrafoil(𝑍4

−4 + 𝑍4
4) 2 and the root 203 

mean square (RMS) of the aberrations of order 4 and higher (>𝑍3
𝑥 ). 204 

3 Results 205 

The Gaussian process has been run to predict each Zernike coefficient required for the 206 

description of the anterior and posterior surfaces of every patients‟ stress-free shapes. The 207 

output of the GP includes the mean of the predicted variable as well as the variance 208 

associated with this parameter (Figure2).  209 



 

 

Four GP models have been created by gradually increasing the number of training data 210 

respectively 250, 500, 750, 1663. For a quantitative analysis, optical indices describing the 211 

stress-free shape have been considered. Differences calculated between the optical indices 212 

of the stress-free shape obtained with the pre-stressing iterative approach and the optical 213 

indices of the stress-free shape predicted with the GP modelshowed that for almost all 214 

optical indices, the curvature error did not exceed 0.025 D, while the wavefront aberration 215 

percentage error did not overcome 5%. This limit has been chosen because 0.025D is ten 216 

times smaller than an optical error perceptible by the patient. Moreover, results showed that 217 

the mean error was always around zero while the standard deviation of the error decreased 218 

with increasing size of the training data, reaching a plateau at about 1000 Training Data 219 

(Figure 3).Additionally, the corneal surface predicted using the GP model were analyzed.The 220 

Instantaneous Curvature maps of the stress-free shape, obtained with the pre-stressing 221 

iterative approach were compared to the maps obtained using the Zernike coefficients 222 

predicted bythe Gaussian Model.The maps produced using the prediction model were 223 

qualitatively identical to the target corneal shape (Figure 4). 224 

TwoGP models were calculated to determine if separating healthy from pathological corneas 225 

in the training dataset could improve the predictions. For all the optical parameters, the mean 226 

error was always around zero. Results indicated that the training dataset including only 227 

healthy cornea provide slightly better predictions for healthy cornea than pathological ones. 228 

The opposite was also true; the pathological training dataset provide a better estimation of 229 

the stress-free shape of pathological corneas than of healthy ones (Table 1). However, the 230 

difference observed on the optical parameters remained small, which indicates that the 231 

model based on pathological training data is not able to significantly improve the 232 

predictionsin pathological situations. In addition, with the model built on healthy corneas, 233 

95% of the predictions remain within the boundaries of the targeted accuracy. 234 

The predicted stress-free configurations were then used to calculate the shape of the cornea 235 

after physiological loading.The comparison of the stressed shape with the target topographic 236 



 

 

measurements acquired on the patients, showed that thecurvature mean error differs from 237 

zero in almost all cases, indeedmost GP predictions lead to curvature errors exceeding 238 

therange of 0.025D (Table 2). Inthe worst case, the error could reach 0.05 D when theGP 239 

model wascreated by considering only pathological corneas.Besides,it seems that GP 240 

induced a slight underestimation of the central average curvature and a small overestimation 241 

of the peripheral average curvature in all cases. Overall, the results of the stressed shape 242 

showed that 80% of the patients had small predictionerrors(<0.025D and <5%) on all the 243 

shape parameters simultaneously and 93% of the patients in the test group had all the shape 244 

parameters below the accuracy acceptableclinically (<0.05D and<10%). 245 

4 Discussion 246 

Recently, numerical models have also been proposed as tools to better understand the effect 247 

of surgeries on the eye, to support surgical intervention and to predict the refractive outcome 248 

[9, 10]. To reach these goals, mechanical properties of cornea and sclera have been 249 

characterized [11,12,13,14] and an accurate description of the shape of the patients‟ corneas 250 

has been provided by ophthalmological measurement devices. Since the measured shape is 251 

under tension due to the intra-ocular eye pressure, this information cannot be directly used to 252 

perform patient-specific simulation; hence a pre-stressing approach is necessary. Simulation 253 

time is always a critical point for clinical application. Therefore, the pre-stressing calculation 254 

phase represents a strong limitation to the dissemination of biomechanical planning to 255 

clinical applications. A non-parametric approach has been used to predict the stress-free 256 

configuration of the cornea in real time. 257 

The results obtained with this method showed that the prediction accuracy could reach a 258 

level suitable for a clinical application. The current topographic devices used to measure the 259 

shape of the cornea reach an accuracy of ±0.25 D. In this work, we aimed at reaching an 260 

accuracy of 0.025 D for corneal shape stresses by the IOP, which is 10 times better than the 261 

accuracy of the input data.Results showed that for a GP model fitted on healthy data, the 262 



 

 

target accuracy has been achieved for most of the optical parameters, but the prediction 263 

accuracy always remained below 0.05 D, which is 5 times better than the accuracy provided 264 

by the input devices. Considering that curvature information is challenging to predict, the 265 

level of accuracy reached with the proposed approach is high and seems appropriate for 266 

surgical planning. In all cases, accuracy of the predictions was largely superior tothe 267 

precision of modern topography devices. 268 

Different prediction models can be used according to the patient demographic information 269 

such as age, sex or specific pathology. In this study, a rough separation of the data has been 270 

performed between healthy and pathological. The results indicated that models solely based 271 

on pathological datasets were not able to better predict the stress-free configuration of the 272 

pathological data. A possible explanation is that many different ophthalmic diseases were 273 

combined inside this pathological group, but with a small number of instances for each of the 274 

pathologies. There are many different corneal changes induced by pathology; for example a 275 

keratoconus shows completely different corneal shapes than a Fuchs-Endotheldystrophy. It 276 

is also clinically known that Laser-Assisted in situ Keratomileusis(LASIK)treated by tissue 277 

saving algorithms induces a spherical aberration. Due to the amount of patient information 278 

available, it was not possible to refine the analysis and propose disease-specific models, but 279 

we believe that such models would further improve the prediction accuracy. 280 

Under physiological loading, the stress-free configuration should match the shape of the 281 

Pentacam data acquired on the patients. Our calculations indicate that the minor deviations 282 

observed on the stress-free configuration were amplified by the application of the internal 283 

ocular pressure. However, the results achieved with this method remain close to the target 284 

accuracy for 95% of the samples. In addition, all the optical parameters have a mean 285 

prediction very close to the experimental data, but the standard deviation of the prediction 286 

error increased during pre-stressing. Again, when the GP model is built on healthy data, 287 

results showed that the predictions are acceptable for clinical applications and that the 288 



 

 

accuracy of the reconstructed shape remains at least five times better than the accuracy of 289 

current topographic tools. 290 

The GP process proved to be an efficient technique to quickly predict the stress-free shape 291 

of the cornea. However, the method relies on a large database of pre-calculated results. This 292 

means that computational resources required to run the finite element simulations was not 293 

suppressed, but shifted in a pre-processing step. Despite the burden to run a large number 294 

of FE simulations, this approach has some benefits. The calculations are performed offline 295 

and can be verified by simulation experts avoiding any potential problem with model 296 

configuration, simulation convergence or other simulation errors. Dedicated hardware can be 297 

used for this purpose and the nature of the problem makes it easily parallelizable. As a 298 

consequence, a verified model can be delivered to the clinician. In addition, a relatively low 299 

number of input data was required to establish accurate prediction models. Results indicated 300 

that 1000 patient datasets were sufficient to reach a plateau in the prediction accuracy. 301 

The proposed method relies on the Zernike coefficient for the prediction of the shape, which 302 

differs from the other pre-stressing approaches that rely on a finite element mesh. One of the 303 

benefits of the Zernike coefficient is that it is a direct representation of the refractive surface. 304 

The same approach based on finite element meshes would introduce inaccuracies from the 305 

discretization and from the mapping of the nodes on the surface. The establishment of 306 

correspondence on the corneal surface is difficult due to the lack of obvious landmarks. In 307 

addition, the Zernike coefficients enable an arbitrary meshing of the stress-free configuration, 308 

including eventual cut representing the surgical intervention. 309 

The GP predictions proposed in this study are fitted to numerical simulations, which were 310 

performed with a precise set of material parameters, boundary conditions and loads. 311 

Although the finite element mesh selected doesn‟t affect the predictive model, alteration of 312 

any other parameter defining the finite element model implies rebuilding the complete model. 313 

This means that any improvement of the numerical model leads to heavy calculations since it 314 

requires re-establishing the database of pre-calculated results. This limitation is mitigated by 315 



 

 

the facts that the process can be mostly automated, that a relatively small number of input 316 

models is required and that proper validation of the initial finite element model should be 317 

performed before building this database. 318 

The application of the GP modelshas been limited to the prediction of the stress free shape 319 

of the cornea, because this corresponds to the most time consuming part of the overall 320 

planning procedure. However, the proposed technique can be extended to include more 321 

parameters representing the surgical intervention. Many refractive surgeries can be 322 

described with a small number of parameters describing the length, depth and position of the 323 

cut on the cornea. Of course, including the planning parameters in the predictive model is 324 

expected to significantly increase the size of the training data. On the other hand, such 325 

predictive model will provide the surgeon with real time prediction of the refractive outcome 326 

and opens the door to truly optimize the surgical parameters. 327 

Ophthalmology is very demanding in terms of accuracy, where surface topology is measured 328 

in microns and curvature changes of a fraction of a diopter affect the patient‟s vision. In 329 

addition, existing tools are available to quantify the shape of the tissue as part of clinical 330 

routine, which enables the collection of a database of patient data to build and validate 331 

prediction models. For these reasons, ophthalmology represents an ideal application for new 332 

techniques aiming at predicting the stress shape of soft tissues. Based on the prediction 333 

accuracy obtained on the stress-free prediction of the cornea, we conclude that this 334 

technique is suitable as a first step of refractive planning solution. In addition, the same 335 

approach could be used to predict the internal stresses of other soft tissue such as arteries 336 

or ligaments. 337 
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 413 

 

Figure1: Spherical finite element mesh of the cornea, which was used as a template to mesh the patients’ anatomy obtained 

in-vivo. The blue and the gray parts represent the cornea and the sclerarespectively. 
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Figure 2: A Gaussian Model has been created with 250 Training Data. The graphs represent the results of prediction for one 

Zernike coefficient for each of the of 75 test data. The circles indicate the test data while the crosses are the GP prediction. The 

gray area representstwo standard deviationsas estimated by the GP predictions. 
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Figure 3: Accuracy of the GP prediction on the optical parameters of the cornea. The absolute mean error has been calculated 

in diopter (top)and the mean error on the wavefront aberration has been reported in percent (bottom). For each optical 

parameter, the accuracy of the prediction was reported for different size of the training data (250, 500, 750 and 1663). The error 

bars represented the variability of the data in a confidence interval of 95%. For most of the cases, the prediction error remains 

below the limits acceptable for clinical applications indicated by the dashed lines. 
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Figure 4: Instantaneous curvature obtained for the stress-free configuration obtained using the pre-stressing process (left) 

and predicted by the Gaussian model (right) for one of the reconstructed instance. 
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Stress Free Configuration 

Healthy Training (700 datasets) Pathological Training (700 datasets) 

Healthy Test 

(72 Dataset) 

Pathological Test  

(71 datasets) 

Healthy Test 

(72 Dataset) 

Pathological Test  

(71 datasets) 

Curvature (D) 

Average K -0.0008 ± 0.0136 0.0015 ± 0.0247 -0.0006 ± 0.0155 -0.0005 ± 0.0178 

Cylinder  0.0061 ± 0.0245 0.0091 ± 0.0294 0.0059 ± 0.0220 0.0057 ± 0.0165 

Central Avg -0.0010 ± 0.0184 0.0038 ± 0.0399 -0.0007 ± 0.0194 0.0004 ± 0.0215 

ParacentralAvg -0.0013 ± 0.0111 -0.0003 ± 0.0101 -0.0008 ± 0.0145 -0.0004 ± 0.0164 

Peripheral Avg -0.0010 ± 0.0107 0.0008 ± 0.0100 -0.0024 ± 0.0200 -0.0001 ± 0.0145 

Wavefront 

aberration (%) 

Spherical  -0.21% ± 2.38% -0.30% ± 3.53% -0.11% ± 2.63% -0.30% ± 1.79% 

Astigmatism  0.06% ± 2.26% -0.07% 1.66% 0.17% ± 2.98% 0.10% ± 1.75% 

Coma 0.14% ± 6.26% -0.47% ±3.77% 0.25% ± 5.20% -0.26% ± 3.63% 

Trefoil  -0.24% ± 4.34% -0.07% ± 4.26% 0.03% ± 5.12% -0.05% ± 5.28% 

Quadrafoil -0.51% ± 3.54% 0.10% ± 7.76% -0.49% ± 3.51% 0.20% ± 7.43% 

RMS HOA  -0.33% ± 1.09% -0.21% ± 1.83% -0.42% ± 1.17% -0.32% ± 1.13% 

 

 

Table1: Prediction error for the stress-free configurations calculated based on the GP. The error is indicated in diopters for the 

curvature parameters and in percent for the error on thewavefront aberration. The color code indicates the suitability of the 

predictions for clinical applications; green shows small prediction errors (<0.025D or <5%), yellow moderate prediction errors 

(0.025 – 0.05D or 5 – 10%). The average values is shown as well the 95% confidence interval (i.e. two standard deviations). 
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Stressed Configuration 

Healthy Training (700 datasets) Pathological Training (700 datasets) 

Healthy Test 

(72 Dataset) 

Pathological Test  

(71 datasets) 

Healthy Test 

(72 Dataset) 

Pathological Test  

(71 datasets) 

Curvature (D) 

Average K -0.0065 ±0.0129 -0.0039 ± 0.0253 -0.066 ± 0.0151 -0.0050 ± 0.0165 

Cylinder  0.0050 ± 0.0153 0.0092 ± 0.0400 0.0066 ± 0.0204 0.0099± 0.0433 

Central Avg -0.0081 ± 0.0192 -0.0046 ± 0.0379 -0.0083± 0.0190 -0.0066 ± 0.0194 

ParacentralAvg -0.0011 ± 0.0124 -0.0007± 0.0109 -0.0008 ± 0.0153 -0.0010 ± 0.0155 

Peripheral Avg 0.0139 ± 0.0132 0.0139 ± 0.0133 0.0128 ± 0.0169 0.0130 ± 0.0145 

WavefrontAberratio

n (%) 

Spherical  0.73% ± 2.78% 0.55% ± 3.37% 0.86% ± 3.56% 0.53% ± 1.56% 

Astigmatism  0.04% ± 3.57% 0.15% ± 3.59% 0.08% ± 4.77% 0.20% ± 3.62% 

Coma 0.08% ± 4.66% 0.08% ± 3.26% 0.05% ± 7.17% 0.23% ± 2.67% 

Trefoil  -0.12% ± 4.36% 0.55% ± 5.19% 0.06% ± 3.89% 0.52% ± 4.39% 

Quadrafoil 0.19% ± 2.44% -0.16% ± 2.67% 0.39% ±2.76% 0.06% ± 2.67% 

RMS HOA  0.61% ± 0.86% 0.57% ± 1.41% 0.53% ± 0.92% 0.48% ± 0.89% 

 

 

Table2: Prediction error for the stressed shape of the cornea obtained by simulating the internal ocular pressure on the stress-

free configuration. The values reported in the table correspond to the difference between the prediction of the stressed shape 

using finite element simulation and the original topographic measurements. The error is indicated in diopters for the curvature 

parameters and in percent for the wavefront aberration errors. The color code indicates the suitability of the predictions for 

clinical applications; green shows small prediction errors (<0.025D or <5%), yellow moderate prediction errors (0.025 – 0.05D or 

5 – 10%) and red shows prediction error that are considered as too large to ensure reliable surgical planning (>0.05D or >10%). 

For each parameter, the value represents the mean as well the 95% confidence interval (i.e. two standard deviations). 
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