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Abstract 

The femoro-popliteal (FP) segment is the most commonly diseased artery of the peripheral 

circulation. Obstructions of these lower-limb arteries are frequent and even with the new 

generation Nitinol stents (drug-eluting or otherwise), long-term restenosis rates following 

endovascular procedures range from 15 to 40% and are much higher compared with the long-

term outcomes after coronary artery interventions.  

The major difference between peripheral and coronary arteries concerns their mechanical 

environments, with the FP arterial segments being subjected to repeated external 

deformations during leg flexion. It has been widely hypothesized that the high distortion of 

the tissues due to the un-physiological deformations of the arteries following stent 

implantation is the main cause for restenosis. However, there is very limited information on 

the FP artery deformations of patients with Peripheral Arterial Disease (PAD). Furthermore, 

the effects of endovascular therapy on the deformation behavior of the PAD-afflicted FP 

arteries are currently unknown. As such, further research on the deformations of the FP 

arteries is warranted to not only improve existing stent designs, but to also determine the 

correct interventional procedure. 

The main objectives of this thesis were to characterize the deformation behavior and 

mechanical response of the FP arterial tract through clinical and numerical investigations. The 

former was achieved by, first, investigating the pre-angioplasty deformations of the FP arteries 

during leg flexion in a pilot study of five patients with PAD and utilizing 3D rotational 

angiography. The methodology was then adapted to perform a clinical study of 35 patients 

with PAD, in which X-ray angiography was used to image the FP arteries in straight and flexed 

positions prior to endovascular therapy and following either Percutaneous Transluminal 

Angioplasty (PTA) or primary Nitinol stent implantation. The 3D models of the FP arteries were 

reconstructed from the 2D X-ray angiograms and the deformations of axial deformation and 



 

 

curvature were quantified. Both studies showed that the PAD-afflicted FP arterial segment 

undergoes significant shortening and an increase in curvature with leg flexion. Comparisons 

between the pre- and post-treatment deformations, as well as between the different 

treatment methods, suggested that the choice of the treatment method significantly affects 

the post-interventional axial deformations of the FP arteries (post-balloon: 7.6% ± 4.9%; post-

stent: 3.2% ± 2.9%; P: 0.004). As such, while PTA results in a more flexible artery, stents restrict 

the arteries’ shortening capabilities. Depending on the anatomical position of the stents, this 

axial stiffening of the arteries may lead to chronic kinking, which may cause occlusions and, 

consequently, impact the long-term success of the procedure. As current stent designs were 

found to conform to the curvature behavior of the FP arterial tract, improvements should be 

focused on reproducing the native axial stiffness of the artery to reduce the risk of restenosis 

for patients that will have to undergo stent implantation.  

The complexities caused by leg flexion are further exacerbated by controversial clinical 

practices, such as Nitinol stent oversizing. The procedure is frequently performed in peripheral 

arteries to ensure a desirable acute lumen gain and strong wall apposition, and to prevent 

stent migration. However, the increased radial force exerted onto the arterial walls by the 

oversized stents could lead to significant arterial damage and, in turn, restenosis. The 

contradictory findings between animal and clinical studies, in conjunction with the majority of 

the numerical studies focusing on balloon-expandable stents, suggests that the efficacy of the 

procedure remains as an issue to be answered. 

The mechanical behavior of the FP artery under Nitinol stent oversizing was investigated by 

creating a validated finite element (FE) framework, which included numerical models of 

healthy FP arteries with patient-specific geometries and idealized arteries with clinically 

relevant levels of PAD. Based on the artery model, either only stent implantation or the 

complete endovascular therapy (PTA + stent implantation) was simulated. Four different 

stent-to-artery ratios ranging from 1.0 to 1.8 were used in the simulations. For the healthy 

arteries, additional analyses, in the form of computational fluid dynamics (CFD) analyses and 

fatigue behavior of the stents, were performed to observe the hemodynamic behavior of the 

arteries with respect to increased oversizing ratios. For the calcified arteries, three different 

plaque types were modeled to report the influence of the plaque behaviors on the outcomes 

of endovascular therapy and stent oversizing. Regardless of the presence of a plaque tissue, 

results showed that Nitinol stent oversizing was found to produce a marginal lumen gain in 



 

ix 

contrast to a significant increase in arterial stresses. For the lightly and moderately calcified 

arteries, oversizing was found to be non-critical; whereas for healthy and heavily calcified 

arteries, the procedure should be avoided due to a risk of tissue failure. These adverse effects 

to both the artery walls and stents may create circumstances for restenosis. Although the ideal 

oversizing ratio is stent-specific, the studies showed that Nitinol stent oversizing has a very 

small impact on the immediate lumen gain, which contradicts the clinical motivations of the 

procedure.  

In order to predict the possibility of restenosis through mechanical markers that are 

associated with the effects of leg movement following stent implantation, clinical 

investigations should be complimented with patient-specific numerical analyses. Combining 

intra-arterial imaging methodologies with in-vivo arterial deformations, which can be 

translated to FE simulations as boundary conditions, and building upon the numerical 

framework that is introduced in the 2nd part of this thesis, it’s possible to generate accurate 

patient-specific models. These models, evaluated in conjunction with clinical follow-ups, are 

expected to provide a deeper understanding of the mechanical background of restenosis in 

peripheral arteries.  
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Chapter 1 

Introduction 

 

1.1 Clinical Background 

Obstructions of the femoro-popliteal arteries in the lower limbs of the body – clinically 

commonly manifested as peripheral arterial disease (PAD) – is mainly caused by 

atherosclerosis.47 The disease is estimated to be present in 3% of people in the age range of 

40 - 59 years and in 20% of people over 70 years of age.89 In addition, between the years 2000 

and 2010, a 23.5% increase in worldwide PAD incidence has been reported.39 The introduction 

of balloon angioplasty, a mechanical widening of an obstructed artery through a small arterial 

puncture hole, has made this method the foremost in the treatment of PAD ever since its 

introduction over three decades ago.89 Its major advantages over surgical revascularization 

are related to its minimal-invasiveness. However, endovascular therapy for femoro-popliteal 

(FP) arterial obstructions may be associated with a very high frequency of disease recurrence 

due to restenosis. Restenosis, a re-narrowing of the artery post angioplasty, may be caused 

by arterial elastic recoil79, negative arterial remodeling113 and neointimal hyperplasia102 and 

remains the Achilles’ heel of this minimally-invasive treatment approach.  

The placement of stents into widened arteries to relieve blockages and act as mechanical 

scaffoldings has been an effective treatment method since its inception.47,89 While stent 

implantation has largely insured high success rates for coronary arteries59,80,84,134, it could not 

overcome the issue of restenosis in peripheral arteries. With the implantation of balloon-

expendable stents, patency rates dropped to levels obtained with performing only 

percutaneous transluminal angioplasty (PTA) after only six months or one year.7,10,48  

Therefore, more flexible stents have been developed for the peripheral arteries. These self-
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expendable Nitinol stents improved the clinical outcomes and showed an increase in the rates 

of primary patency and freedom from target lesion revascularization (TLR) compared to 

previous approaches.30,68,74,115 However, restenosis still remains a significant problem in the 

peripheral arteries with clinically significant restenosis occurring in about one third of the 

patients undergoing placement of bare metal Nitinol stents.106 While the introduction of drug-

eluting Nitinol stents helped further solve the issues caused by non-coated stents, the long-

term restenosis rates of 17% (from controlled clinical trials) and an even worse real-world 

outcome of 37% suggest that the problems caused directly by this mechanically challenging 

anatomical region continue to persist.27,28,33,58,103,115 Recently, drug-coated balloons have been 

proposed as an alternative to stent implantation altogether.103 The long-term outcomes of the 

initial reports seem to favor this “leave-nothing-behind” approach with restenosis rates of 

17%125 and 19%132 comparing favorably with the outcomes from drug-eluting stents. 

However, limited number of clinical trials and contradictory outcomes among different 

devices99,125,132 suggest that the technology needs further advancements before it can be 

considered the gold standard among the available endovascular treatments. Furthermore, 

bail-out stenting will continue to be utilized for cases, in which the PTA results in suboptimal 

revascularization. Therefore, there is a need to improve the long-term outcomes of stent 

implantation in FP arteries. 

1.2 Causes for Restenosis 

A number of clinical and numerical studies analyzed the causes for in-stent restenosis in FP 

arteries31,35–37,65,82,105,109,118. Due to the flexion of the knee, the FP artery is constantly 

subjected to mechanical deformations caused by the physiological activities of the patients. 

As a consequence, the Superficial Femoral Artery (SFA) and the popliteal artery are submitted 

to significant shortening, elongation, torsion, flexion, and vulnerability to external 

compression. 

1.2.1 Stent Fractures 

It has been proposed that stent fractures are caused by this complex biomechanical 

environment of the arterial tract. These deformations were reported to reduce the fatigue life 

of the stents implanted in these lower-limb arteries.4,6,37,41,57,65,86,88,92,118 Iida et al. analyzed 

the effect of exercise on stent fractures by performing follow-up studies on 40 patients, who 



1.2 Causes for Restenosis | 3 

 

 
 

underwent Nitinol stent placement.57 While the lesion length, region and level of calcification 

and the number of implanted stents all influenced the fracture rates, the amount of exercise 

was found to be the main motivator for stent fractures. Babalik and colleagues reported the 

results of a case report, in which a patient with high grade stenosis in the left popliteal artery 

was implanted with 2 overlapping self-expandable stents.6 Stent fractures were found to have 

occurred 6 months after implantation due to flexion of the knee joint. Via single-case studies, 

Kröger et al. investigated the effect of leg movement on both balloon and self-expandable 

stents and linked the stent failures with leg flexions.65 Solis et al. presented a single case study, 

in which a patient, who had a severe background of Peripheral Vascular Disease (PVD), was 

implanted with a self-expandable stent around a high flexion point.118 After only 4 months, a 

resultant stent fracture had led to the formation of a pseudo aneurysm. Based on these 

observations, these single-case studies6,65,118, as well as some major multi-center trials105,109, 

suggested a link between stent fractures and in-stent restenosis or reduced patency of the 

stented segment.  

Despite the studies that suggested a correlation between stent fractures and restenosis, this 

hypothesis was in question from the start.9,33,127 Analyzing the 1-year outcome of the 

DURABILITY I trial, in which 151 patients with varying levels of PAD were implanted with 

PROTÉGÉ Everflex stents, Bosiers and co-workers reported a fracture rate of 8.1%.9 70% of 

these cases, which included 40% of the severe fracture category, showed no restenosis. The 

results of the SIROCCO trial, in which 93 patients were implanted with either drug-eluting or 

bare SMART stents, displayed a fracture rate of 22% at a 2-year follow-up.33 The relation 

between the stent fractures and in-stent restenosis was not clearly reported; however, it was 

noted that all but one of the fracture cases were clinically asymptomatic. The theory that stent 

fractures lead to in-stent restenosis has also been refuted by recent clinical studies performed 

with new generation of stents. These studies report that stent fracture rates have decreased 

to only a few percent133, while long-term clinical outcomes continue to remain 

poor.27,28,72,104,133 

1.2.2 Arterial Deformations 

Another possible cause for in-stent restenosis is the trauma to the inner or outer layers of the 

artery induced by its interaction with the rigid Nitinol stent. The combined effect of the arterial 

deformations during motion of the leg and the difference in mechanical stiffness between the 
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stent and the arterial wall is reported to produce harsh contact conditions between stents and 

tissues. In turn, these repeated mechanical interactions could lead to acute and chronic 

irritation of arterial walls, which may trigger restenosis.36,86,96 Furthermore, changes in the 

mechanical environment following stent implantation might lead to kinking of the native FP 

arterial segment, either distal or proximal to the stented regions.4,86  

Clinical Investigations 

Arena reported severe edge dissections at the proximal and distal ends of the Nitinol stents 

implanted in 2 patients with different clinical backgrounds.3,4 In both cases, the motion of the 

SFA and the popliteal arteries led to unnatural, even flow-limiting kinking in the immediate 

unstented segments, which became worse with recurrent leg flexions (Fig. 1.1). This extreme 

deformation behavior may lead to further arterial re-obstructions, including complete 

occlusions of the FP segment, and to repeat revascularizations shortly after the primary 

endovascular operation. Consequently, it is reasonable to assume that the complex 

biomechanical properties of the femoro-popliteal arterial tract play a crucial role in the re-

obstruction of the arteries subsequent to endovascular therapy. 
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Figure 1.1. Following the implantation of a single, long Nitinol stent along the FP artery, the 

bending of the leg results in an extreme deformation (i.e. kinking) at the non-stented popliteal 

artery adjacent to the distal end of the stent (Image taken from Arena3). 

To date, the flexion behavior of the FP arterial tract is only very poorly understood. While it is 

clear that the FP arterial segment is exposed to a variety of biomechanical strains during knee 

flexion, the behavior of this segment post placement of Nitinol stents is complex. Several in-

vivo studies have been conducted to evaluate the arterial deformations due to the motion of 

the leg.16,17,31,40,44,46,63,87 Cheng et al. performed contrast medium-enhanced magnetic 

resonance (MR) imaging on both legs of 8 human subjects (mean age ± SD: 27 ± 5 y) with no 

PAD.17 The SFAs were imaged with patients in supine and fetal positions and the analyzed 

segments were isolated to the iliofemoral arteries between the profunda femoris and 

descending genicular arteries. For both legs, significant shortening and twisting of the SFAs 

were observed as the patients moved to fetal positions. In an effort to investigate the effect 

of age on arterial deformations, Cheng and colleagues redid the same study on 7 older, healthy 

human subjects (mean age ± SD: 56 ± 5 y).16 While the imaging protocol and the investigated 
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