Abstract

The aim of this study was to assess the combined use of the radiotracers 18F-FDG and 18F-NaF in treatment response evaluation of a group of multiple myeloma (MM) patients undergoing high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) by means of static (whole-body) and dynamic PET/CT (dPET/CT). Patients and methods: 34 patients with primary, previously untreated MM scheduled for treatment with HDT followed by ASCT were enrolled in the study. All patients underwent PET/CT scanning with 18F-FDG and 18F-NaF before and after therapy. Treatment response by means of PET/CT was assessed according to the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria. The evaluation of dPET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on 2-tissue compartment modelling and a non-compartmental approach leading to the extraction of fractal dimension (FD). Results: An analysis was possible in 29 patients: 3 with clinical complete response (CR) and 26 with non-CR (13 patients near complete response-nCR, 4 patients very good partial response-VGPR, 9 patients partial response-PR). After treatment, 18F-FDG PET/CT was negative in 14/29 patients and positive in 15/29 patients, showing a sensitivity of 57.5% and a specificity of 100%. According to the EORTC 1999 criteria, 18F-FDG PET/CT-based treatment response revealed CR in 14 patients (18F-FDG PET/CT CR), PR in 11 patients (18F-FDG PET/CT PR) and
progressive disease in 4 patients (18F-FDG PET/CT PD). In terms of 18F-NaF PET/CT, 4/29 pts (13.8%) had a negative baseline scan, thus failed to depict MM. Regarding the patients, for which a direct lesion-to-lesion comparison was feasible, 18F-NaF PET/CT depicted 56 of the 129 18F-FDG positive lesions (43%). Follow-up 18F-NaF PET/CT showed persistence of 81.5% of the baseline 18F-NaF positive MM lesions after treatment, despite the fact that 64.7% of them had turned to 18F-FDG negative. Treatment response according to 18F-NaF PET/CT revealed CR in 1 patient (18F-NaF PET/CT CR), PR in 5 patients (18F-NaF PET/CT PR), SD in 12 patients (18F-NaF PET/CT SD), and PD in 7 patients (18F-NaF PET/CT PD). Dynamic 18F-FDG and 18F-NaF PET/CT studies showed that SUVaverage, SUVmax, as well as the kinetic parameters K1, influx and FD from reference bone marrow and skeleton responded to therapy with a significant decrease (p<0.001). Conclusion: 18F-FDG PET/CT demonstrated a sensitivity of 57.7% and a specificity of 100% in treatment response evaluation of MM. Despite its limited sensitivity, the performance of 18F-FDG PET/CT was satisfactory, given that 6/9 false negative patients in follow-up scans (66.7%) were clinically characterized as nCR, a disease stage with very low tumor mass. On the other hand, 18F-NaF PET/CT does not seem to add significantly to 18F-FDG PET/CT in treatment response evaluation of MM patients undergoing HDT and ASCT, at least shortly after therapy.

Response to Reviewers:
Dear Editor,

Please find below our response to the Reviewers’ comments on our manuscript entitled “Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation” by C. Sachpekidis, J. Hillengass, H. Goldschmidt, B. Wagner, U. Haberkorn, K. Kopka, A. Dimitrakopoulou-Strauss

Reviewer #1:
Adequate. No remarks

Reviewer #2:
Authors have made extensive modification on the original manuscript based on our comment. But two questions still remain to be answered.

1. Authors provided the results of PFS and OS in the revised manuscript in Table 1. Data without appropriate analysis doesn’t lead to convincing conclusions. Authors did not proceed to survival analysis due to lack of late follow-up data for all patients. Why don’t authors proceed to progression-free survival analysis?

Authors’ response: We proceeded to progression-free survival analysis for 28 patients, since, as already mentioned, one patient was lost to follow-up. By the time of writing 12 patients demonstrated progression. We dichotomized patients in PET/CT-positive (complete response) and PET/CT-negative (non-complete response) after therapy (follow-up scan). 6/12 patients demonstrated complete 18F-FDG response and 6/12 patients had non-complete 18F-FDG response. The results of Kaplan-Meier analysis and a graph are now presented in the Point to point discussion (please see below Table 1, Figure 1). No statistically significant difference in PFS was observed between the 18F-FDG-positive and 18F-FDG-negative patients. We would prefer not to include the results of this...
analysis in the manuscript, since the number of events is still small. However, if the Reviewer insists, we could present them data as supplementary data. Due to the fact that only one patient showed complete response in 18F-NaF PET/CT (18F-NaF negative follow-up PET/CT), we did not perform similar dichotomization and survival analysis for this tracer.

<table>
<thead>
<tr>
<th></th>
<th>Median (months)</th>
<th>Mean (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>follow-up 18F-FDG negative</td>
<td>29.4</td>
<td>34</td>
</tr>
<tr>
<td>follow-up 18F-FDG positive</td>
<td>39</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 1. Mean and median PFS values of the 12 patients demonstrating progression, dichotomized according to the result of follow-up 18F-FDG PET/CT. The PFS difference between these two groups was not statistically significant (log-rank p=0.848).
2. I just want to know how to calculate the dosages of 18F-FDG and 18F-NaF. Table 2 is unnecessary. The dosages can be described with interval numbers.

Authors’ response: Table 2 was removed and dosage ranges of both tracers are now provided in text (pg 5, para 2, ln 6-7). There was a maximum limit of 250 MBq for each PET exam, as defined by the federal radiation protection agency. The administered dose was not weight-dependent. We tried to apply as much
activity as possible with respect to the predefined upper limit. Nevertheless, due to technical reasons (e.g. delays in delivery of tracer), in very few cases relative low doses of tracer activity were administered (for example baseline 18F-FDG PET/CT of patient 13).
Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation

C. Sachpekidis1,2, J. Hillengass3, H. Goldschmidt3,4, B. Wagner3, U. Haberkom1,5, K. Kopka6, A. Dimitrakopoulou-Strauss1

1Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
2Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
3Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
4National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
5Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
6Department of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany

correspondence address:

Christos Sachpekidis, M.D.
Medical PET Group-Biological Imaging
Clinical Cooperation Unit Nuclear Medicine
German Cancer Research Center
Im Neuenheimer Feld 280
D-69210 Heidelberg
Emails: christos_saxpe@yahoo.gr

Key Words: 18F-FDG; 18F-NaF; PET/CT; high-dose chemotherapy; autologous stem cell transplantation; two-tissue compartment model
ABSTRACT
The aim of this study was to assess the combined use of the radiotracers 18F-FDG and 18F-NaF in treatment response evaluation of a group of multiple myeloma (MM) patients undergoing high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) by means of static (whole-body) and dynamic PET/CT (dPET/CT). Patients and methods: 34 patients with primary, previously untreated MM scheduled for treatment with HDT followed by ASCT were enrolled in the study. All patients underwent PET/CT scanning with 18F-FDG and 18F-NaF before and after therapy. Treatment response by means of PET/CT was assessed according to the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria. The evaluation of dPET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on 2-tissue compartment modelling and a non-compartmental approach leading to the extraction of fractal dimension (FD). Results: An analysis was possible in 29 patients: 3 with clinical complete response (CR) and 26 with non-CR (13 patients near complete response-nCR, 4 patients very good partial response-VGPR, 9 patients partial response-PR). After treatment, 18F-FDG PET/CT was negative in 14/29 patients and positive in 15/29 patients, showing a sensitivity of 57.5% and a specificity of 100%. According to the EORTC 1999 criteria, 18F-FDG PET/CT-based treatment response revealed CR in 14 patients (18F-FDG PET/CT CR), PR in 11 patients (18F-FDG PET/CT PR) and progressive disease in 4 patients (18F-FDG PET/CT PD). In terms of 18F-NaF PET/CT, 4/29 pts (13.8%) had a negative baseline scan, thus failed to depict MM. Regarding the patients, for which a direct lesion-to-lesion comparison was feasible, 18F-NaF PET/CT depicted 56 of the 129 18F-FDG positive lesions (43%). Follow-up 18F-NaF PET/CT showed persistence of 81.5% of the baseline 18F-NaF positive MM lesions after treatment, despite the fact that 64.7% of them had turned to
\(^{18}\)F-FDG negative. Treatment response according to \(^{18}\)F-NaF PET/CT revealed CR in 1 patient (\(^{18}\)F-NaF PET/CT CR), PR in 5 patients (\(^{18}\)F-NaF PET/CT PR), SD in 12 patients (\(^{18}\)F-NaF PET/CT SD), and PD in 7 patients (\(^{18}\)F-NaF PET/CT PD). Dynamic \(^{18}\)F-FDG and \(^{18}\)F-NaF PET/CT studies showed that SUV\(_{\text{average}}\), SUV\(_{\text{max}}\), as well as the kinetic parameters K\(_1\), influx and FD from reference bone marrow and skeleton responded to therapy with a significant decrease (p<0.001). **Conclusion:** \(^{18}\)F-FDG PET/CT demonstrated a sensitivity of 57.7% and a specificity of 100% in treatment response evaluation of MM. Despite its limited sensitivity, the performance of \(^{18}\)F-FDG PET/CT was satisfactory, given that 6/9 false negative patients in follow-up scans (66.7%) were clinically characterized as nCR, a disease stage with very low tumor mass. On the other hand, \(^{18}\)F-NaF PET/CT does not seem to add significantly to \(^{18}\)F-FDG PET/CT in treatment response evaluation of MM patients undergoing HDT and ASCT, at least shortly after therapy.
INTRODUCTION

High-dose chemotherapy (HDT) with melphalan followed by autologous stem cell transplantation (ASCT) is the standard of care for multiple myeloma (MM) patients aged 65 years or younger. In the last years the incorporation of novel agents (thalidomide, lenalidomide, bortezomib) into induction regiments and maintenance therapy of MM has improved the quality of treatment response, which in turn has led to extended progression free survival (PFS) and overall survival (OS) rates. This previously unreported, prolonged survival of MM patients renders accurate assessment of response to therapy a necessity. Treatment response evaluation in MM is based on well-defined laboratory parameters and in case of a complete serological response the assessment of plasma cell percentage in bone marrow usually acquired from the iliac crest.

18F-FDG PET/CT is a sensitive functional imaging modality. The updated International Myeloma Working Group (IMWG) criteria consider patients with focal skeletal lesions and increased uptake with underlying osteolytic destruction in one of the new imaging modalities as indicative of active myeloma. Although its routine application in the follow-up of MM is not yet recommended, 18F-FDG PET/CT appears to be useful in the monitoring of MM and has been proposed to strengthen the evaluation of the quality of treatment response.

18F-NaF is a PET tracer used for skeletal imaging, which accumulates in both osteoblastic and osteolytic lesions, reflecting regional blood flow and bone remodeling. 18F-NaF PET/CT is evolving as an important imaging method for the assessment of malignant bone diseases. Despite being suggested as a potential valuable tool in the assessment of MM, three recently published prospective studies have yielded rather discouraging results, regarding the
performance of 18F-NaF PET/CT in evaluation of myeloma bone disease29,30,31. Nevertheless, the data regarding application of 18F-NaF PET/CT in MM are still considered to be limited.

The aim of this prospective study was to assess the combined use of the radiotracers 18F-FDG and 18F-NaF in treatment response evaluation of a group of MM patients undergoing HDT followed by ASCT by means of static (whole-body) and dynamic PET/CT (dPET/CT).
MATERIALS AND METHODS

Patients

The evaluation included initially 34 patients confirmed to suffer from MM based on the criteria established by the IMWG, at the time point of patient recruitment, and scheduled for treatment with HDT followed by ASCT32. All patients had primary disease and had never received chemotherapy. Their mean age was 59.1 years (range 38-73 years). Table 1 presents analytically the characteristics of the patients investigated. Patients with a negative baseline 18F-FDG PET/CT were excluded from the statistical analysis in order to avoid bias in the interpretation of the results (n=5 patients). Patient data on PFS and OS up to July 2016 (time of writing) are also presented. The analysis was conducted in accordance to the declaration of Helsinki with approval of the ethical committee of the University of Heidelberg and the federal agency of radiation protection.

PET/CT data acquisition

All patients underwent PET/CT scanning with 18F-FDG and 18F-NaF before and after therapy with HDT and ASCT. The mean time between baseline and follow-up study was 95 days (range 47-228 days) (Table 1). The double tracer study in each patient was completed in two consecutive days. For reasons of radiation protection the patients were intravenously administered with a maximum dosage of 250 MBq 18F-FDG (range 85-246 MBq) on the first day and respectively a maximum dosage of 250 MBq 18F-NaF (range 167-247 MBq) on the second day. Data acquisition consisted of two parts for each tracer: the dynamic part (dPET/CT studies of the lower lumbar spine and the pelvic skeleton) and the static part (whole body PET/CT). Details regarding data acquisition are described in a previous publication of our group29.
PET/CT data analysis

Data analysis was based on: visual (qualitative) analysis, semi-quantitative evaluation based on SUV calculations, and quantitative analysis of the 18F-FDG and 18F-NaF PET/CT scans, performed before (baseline PET/CT) and after (follow-up PET/CT) treatment.

Qualitative analysis was based on visual assessment of the PET/CT scans, according to criteria applied in previous studies from our group$^{29, 33}$. Briefly, bone marrow/skeletal foci presenting with significantly enhanced 18F-FDG uptake, for which another benign aetiology was excluded, were considered indicative for myeloma. Afterwards, the results of 18F-NaF PET/CT were correlated to those of 18F-FDG PET/CT, which served as reference. The basic concept regarding 18F-NaF PET/CT evaluation was that only lesions that correlated with respective lesions on 18F-FDG PET/CT were considered as MM-indicative29.

Semi-quantitative evaluation was based on volumes of interest (VOIs) and on subsequent calculation of SUVs. VOIs were drawn with an isocontour mode (pseudo-snake) and were placed over sites of MM involvement as well as over reference tissue34. Bone marrow (in the case of 18F-FDG) and skeleton (in the case of 18F-NaF) of the 5th lumber vertebra and os ilium if without focal tracer enhancement served as reference tissue.

Quantitative evaluation of the dynamic 18F-FDG and 18F-NaF PET/CT data, derived from reference tissue of the pelvis, was performed using a dedicated software and based on a two-tissue compartment model, with methods already reported in literature and performed previously from our group29,35,36,37,38,39,40,41. The application of a two-tissue compartment model leads to the extraction of the kinetic parameters K_1, k_2, k_3.

and k_4 as well as influx (K_i) that describe specific molecular processes for each tracer.

In case of 18F-FDG, K_1 reflects the carrier-mediated transport of 18F-FDG from plasma to tissue while k_2 reflects the transport of the radiopharmaceutical back from tissue to plasma, and k_3 represents the phosphorylation rate while k_4 the dephosphorylation rate of the glucose analogue. Influx (K_i) is derived from the equation $= (K_1 \times k_3)/(k_2 + k_3)$. In case of 18F-NaF, rate constants K_1 and k_2 describe the fluoride ions exchange with hydroxyl groups of hydroxyapatite crystal of the bone and the reverse, while k_3 and k_4 represent the formation of fluoroapatite and the opposite. Influx (K_i) is related to Ca$^{2+}$ influx and bone apposition rate and, presumably, represents bone remodelling rate.

In addition to performing compartment analysis, a non-compartment model based on the fractal dimension (FD) for the time-activity data was also applied. FD is a parameter of heterogeneity based on the box counting procedure of chaos theory and was calculated for the time activity data in each individual voxel of a VOI. The values of FD vary from 0 to 2 showing the more deterministic or chaotic distribution of the tracer activity via time in a VOI.

Treatment response evaluation by laboratory and imaging

Treatment response evaluation was performed according to the clinical gold standard, based on the European Bone Marrow Transplantation Criteria, introduced by Bladé et al8 and modified by the IMWG uniform response criteria for multiple myeloma9. These criteria served as reference standard in our study.

Treatment response by means of 18F-FDG PET/CT was assessed according to the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria leading to four groups of therapy response (complete response, 18F-FDG PET/CT CR; partial response, 18F-FDG PET/CT PR; stable disease, 18F-FDG PET/CT SD; progres-
sive disease, 18F-FDG PET/CT PD)\(^4\). Due to lack of defined treatment monitoring
criteria based on 18F-NaF PET/CT, we also applied the EORTC 1999 criteria for this
tracer.

Moreover, quantitative data derived from dynamic PET/CT studies from the pelvis
were also applied in treatment response evaluation. In particular, the kinetic
parameters retrieved from application of two-tissue compartment modelling as well as
FD in reference bone marrow or skeleton were compared before and after therapy.

Statistical analysis

Data were statistically evaluated using the STATA/SE 12.1 (StataCorp) software on
an Intel Core (2 · 3.06 GHz, 4 GB RAM) running with Mac OS X 10.8.4 (Apple Inc.,
Cupertino, CA, USA). The statistical evaluation was performed using the descriptive
statistics and Wilcoxon rank-sum test. Moreover, we calculated the sensitivity and
specificity of 18F-FDG PET/CT for determination of remission status based on the
clinical gold standard\(^8,9\). The results were considered significant for p less than 0.001
(p<0.001).
RESULTS

Treatment response evaluation based on the clinical gold standard

Patient population characteristics, as well as the results of treatment response evaluation are reported in Table 1. All patients showed at least partial clinical response after completion of HDT and ASCT. 5 MM patients had a negative baseline 18F-FDG PET/CT scan and were, therefore, excluded from the statistical analysis. These 5 patients were also MM-negative on 18F-NaF PET/CT. Regarding the remaining 29 patients, 3 of them demonstrated complete response (CR) and 26 demonstrated non-CR. In particular, 13 patients showed near complete response (nCR), 4 patients very good partial response (VGPR), and 9 patients showed partial response (PR) according to the clinical evaluation criteria.

18F-FDG PET/CT evaluations

Baseline 18F-FDG PET/CT demonstrated 129 MM-indicative focal lesions in 22 patients. The comparison between 18F-FDG PET and the underlying low-dose CT findings in these 22 patients revealed 86 circumscribed osteolytic lesions in CT that correlated with the 18F-FDG avid PET lesions (66.7%). In 5 patients the number of lesions was too large to be exactly calculated (more than 20 lesions). 2 patients demonstrated an intense diffuse pattern of bone marrow uptake without focal lesions. No baseline EMD was detected. After treatment, 18F-FDG PET/CT became negative in 14 patients, while it remained positive in 15 patients. In correlation with the clinical gold standard, 18F-FDG PET/CT after therapy was true positive in 15/26 patients with non-CR, and false negative in 11/26 patients with non-CR, resulting in a sensitivity of 57.7%. On the other hand, 18F-FDG PET/CT was true negative in 3/3 patients with CR, resulting in a specificity of 100%. 18F-FDG PET/CT demonstrated no false positive results in the skeleton. Two patients demonstrated on follow-up 18F-FDG
PET/CT pelvic lymphadenopathy and liver lesions. However, after correlation with clinical data, these findings were attributed to inflammatory/post-therapeutic changes and fungus infection respectively. Treatment response evaluation according to the EORTC 1999 criteria revealed 14 patients with CR (\(^{18}\)F-FDG PET/CT CR), 11 patients with PR (\(^{18}\)F-FDG PET/CT PR), and 4 patients with PD due to development of new bone marrow lesions (\(^{18}\)F-FDG PET/CT PD) (Table 2) (Figures 1, 3).

\(^{18}\)F-NaF PET/CT evaluations

Regarding \(^{18}\)F-NaF PET/CT evaluations, 4/29 (13.8\%) patients failed to depict any MM lesions on the baseline PET/CT. In the remaining patients 108 lesions were demonstrated on baseline \(^{18}\)F-NaF PET/CT. Follow-up \(^{18}\)F-NaF PET/CT showed that 88 of the 108 (81.5\%) baseline MM-indicative lesions were still \(^{18}\)F-NaF positive after treatment. In terms of treatment response, 1 patient showed \(^{18}\)F-NaF PET/CT-CR, 5 patients \(^{18}\)F-NaF PET/CT-PR, 12 patients \(^{18}\)F-NaF PET/CT-SD, and 7 patients \(^{18}\)F-NaF PET/CT-PD (Table 2) (Figures 2, 4).

Comparison between \(^{18}\)F-FDG PET/CT and \(^{18}\)F-NaF PET/CT findings

In 5 patients with innumerable \(^{18}\)F-FDG positive lesions, \(^{18}\)F-NaF PET/CT revealed a more limited disease extent on baseline scan. The 2 patients, who demonstrated an intense diffuse pattern of bone marrow uptake on \(^{18}\)F-FDG PET/CT, were \(^{18}\)F-NaF negative. Regarding the 22 patients, for who a direct lesion-to-lesion comparison was feasible, \(^{18}\)F-NaF PET/CT depicted 56 of the 129 \(^{18}\)F-FDG positive lesions (43\%). 57 of the 88 lesions (64.7\%) that were still positive on follow-up \(^{18}\)F-NaF PET/CT had already turned to \(^{18}\)F-FDG negative, thus were falsely classified as MM-positive by the follow-up \(^{18}\)F-NaF PET/CT, according to the criteria applied in the study.

Survival data
The data on PFS and OS up to July 2016 (time of writing) are presented in Table 1. The follow-up time ranged from 15 to 52 months. Only one patient had died. 12 patients demonstrated progression, while 18 patients were progression-free. One patient was lost to follow-up. Due to lack of late follow-up data for all patients, we did not proceed to survival analysis in order to compare the survival rates between the different groups.

Kinetic analysis data

The results of dPET/CT evaluations from reference tissue before and after therapy are presented in Tables 3, 4. In terms of both 18F-FDG dPET/CT and 18F-NaF dPET/CT, the patients responded to therapy with a statistically significant decrease of the semi-quantitative parameters SUV_{average} and SUV_{max}, as well as of the quantitative parameters K_1, influx (K_i) and FD ($p<0.001$ respectively). The changes in the respective TACs for both tracers are presented in Figures 5, 6.
DISCUSSION

Assessment of treatment response in MM is based on certain, well-defined laboratory parameters8,9. Nevertheless, novel imaging modalities such as PET/CT are nowadays considered valuable tools in improving the definition of response to therapy especially in case of complete response where the percentage of plasma cells in the bone marrow is assessed only from a single location at the iliac crest. Several studies have highlighted the potency of ¹⁸F-FDG PET/CT in accurate response evaluation to therapy in MM16,45,46,47 while the role of ¹⁸F-NaF PET/CT in the evaluation of myeloma lesions is still being investigated. In the present prospective study we assessed the combined use of ¹⁸F-FDG PET/CT and ¹⁸F-NaF PET/CT in treatment response evaluation of MM patients undergoing HDT with melphalan followed by ASCT.

In patient-based analysis ¹⁸F-FDG PET/CT showed a sensitivity of 57.7\%, a result similar to results previously reported by Derlin et al. who found sensitivities of 54.6\% and 50.0\% for correct determination of remission status after stem cell transplantation using also the same clinical criteria as gold standard14,47. A possible explanation for this relatively limited sensitivity is that MM cells have a rather low proliferation rate and some lesions might be too small to be depicted, given that 6 of the false negative patients (66.7\%) were clinically characterized as nCR, a disease stage with very low tumour mass14,48. The phenomenon of achievement of clinical CR with persistence of ¹⁸F-FDG PET/CT positivity after therapy in MM has been studied by Zamagni et al and Bartel et al. These groups have highlighted the fact that MM patients with conventionally defined CR but with persistence of ¹⁸F-FDG PET/CT positive lesions have a higher risk of progression than ¹⁸F-FDG PET/CT negative patients12,13. Moreover, the Zamagni
group has proven that the achievement of conventional CR and 18F-FDG PET/CT negativity ensured a significantly prolonged progression free survival (PFS) and an extended overall survival (OS) compared to the achievement of conventional CR but with persistence of 18F-FDG avidity after therapy16. The specificity of 18F-FDG PET/CT was 100% with 3/3 patients clinically characterized as CR being 18F-FDG negative. 18F-FDG PET/CT is considered a relatively specific imaging modality regarding MM response assessment, due to its ability to differentiate between active disease and fibrotic lesions15,46. As expected, a direct comparison of the treatment response assessed by the clinical gold standard and 18F-FDG PET/CT was not feasible.

The performance of 18F-NaF PET/CT was rather limited. In patient-based analysis, baseline 18F-NaF PET/CT was negative in 13.8% of the 18F-FDG PET/CT positive MM patients. Moreover, baseline 18F-NaF PET/CT depicted only 43% of the 18F-FDG positive lesions, a result in accordance with a previous study of our group involving 67 MM patients, in which 18F-NaF PET/CT detected only 39% of the MM lesions demonstrated on 18F-FDG PET/CT29. Regarding follow-up studies, 18F-NaF PET/CT showed persistence of the majority (81.5%) of the baseline 18F-NaF positive MM lesions after treatment, despite the fact that 64.7% of them had turned 18F-FDG negative as a response to HDT and ASCT. The reason for this discordance between 18F-FDG and 18F-NaF PET/CT findings lies on the different molecular mechanisms of the two tracers. 18F-FDG represents a direct parameter of tumour metabolism. A decline in the tumour 18F-FDG uptake is expected to be seen with a loss of viable cancer cells, which is in the case in patients with partial or complete response49. On the other hand, 18F-NaF uptake mechanism corresponds to osteoblastic activity. The
accumulation of 18F-NaF in osteolytic lesions, as in case of MM, takes place in the accompanying, even minimal, reactive osteoblastic changes19. To date there is little information available about the role of 18F-NaF PET in treatment monitoring of systemic cancer therapy. Hillner et al. have recently assessed the impact of 18F-NaF PET results in a set of 2,217 oncological patients receiving systemic therapy. Their results showed a high impact of the modality in patients with progressive osseous metastatic disease, with a 40% change in treatment plan after 18F-NaF PET21. The authors stressed, however, the non-tumor specific nature of the tracer as an indicator of reactive bone formation in response to various insults, and the limitation of being subject to the flare phenomenon associated with systemic therapy. The experience from 99mTc-MDP bone scintigraphy (BS), the analogue of 18F-NaF PET for conventional nuclear medicine, is much larger. Although the response to treatment is evident through a decrease in 99mTc-MDP uptake in BS, several studies have shown that an increased activity of the bone-seeking tracer in the area of a tumour lesion may persist for several months after therapy, partly in terms of the healing, osteoblastic, reactive process50,51,52,53,54. Garcia et al. evaluated the combined use of 99mTc-MDP BS and 18F-FDG PET in treatment response assessment of bone metastases in 25 patients suffering from breast and lung cancer. According to their results, 5 patients with improvement on 18F-FDG PET scans demonstrated PD and/or SD on 99mTc-MDP BS. Clinical follow-up, serial tumor markers and radiological findings confirmed the 18F-FDG PET findings, leading to the conclusion that some of the BS results should be interpreted as representing a persistent bone reaction, not active metastatic disease55. This previous experience with bone matrix radiotracers was the reason that the sensitivity and specificity of 18F-NaF PET/CT were not assessed with regard to the clinical gold standard.
Apart from the conventional evaluation of whole-body PET/CT scans, we performed quantitative assessment of the dynamic PET/CT data derived from reference bone marrow 18F-FDG), and reference skeleton (18F-NaF) of the pelvis after application of two-tissue compartment modelling. The quantitative aspect is a major advantage of PET, which is neglected when using whole-body protocols and visual/qualitative evaluation as the only diagnostic tool. Only limited data exist on quantitative assessment of tracer kinetics in MM. Our group has recently shown that the 18F-FDG kinetic parameters K_1, influx (K_i), as well as SUV from reference bone marrow of the os ilium, correlated significantly with bone marrow malignant plasma cell infiltration rate40. The herein presented results revealed that in the case of 18F-FDG, tracer uptake (reflected by SUV$_{\text{average}}$ and SUV$_{\text{max}}$), its transport capacity (K_1), and its influx rate (K_i) responded to HDT and ASCT with a significant decrease. These findings are in agreement with previous findings from Dimitrakopoulou-Strauss et al., who studied a group of MM patients undergoing anthracycline-based chemotherapy with dynamic 18F-FDG PET/CT prior to the onset of therapy and after the first cycle. The authors found a significant decrease ($p<0.000$) of SUV, FD, V_B, and influx (K_i) for 18F-FDG as derived from reference bone marrow of the os ilium, in response to treatment56. The herein presented results provide more evidence in the direction of establishment of 18F-FDG PET/CT as a tool for treatment response evaluation in MM; we proved that in a group of patients that clinically responded to therapy with at least PR, certain parameters involved in 18F-FDG metabolism also responded with a significant decrease of their values. Considering that the particular 18F-FDG parameters correlate with the bone marrow malignant plasma cell infiltration rate, an indicator of myeloma burden and one of the myeloma defining events10, our data stress the capacity of 18F-
FDG dynamic PET/CT to demonstrate bone marrow changes in response to treatment in a molecular level.

Interestingly, 18F-NaF-associated kinetic parameters demonstrated similar changes as 18F-FDG in response to therapy. In particular, 18F-NaF uptake ($\text{SUV}_{\text{average}}$ and SUV_{max}), the rate of fluoride ions exchange with hydroxyl groups of hydroxyapatite crystal of the bone (K_1), Ca^{2+} influx, bone apposition rate and, presumably, bone remodelling rate (K_i) decreased significantly after HDT and ASCT. Myelomatous bone disease after ASCT is little understood57. The fact that bone marrow transplantation may affect the skeleton has been demonstrated by Gandhi et al. in an heterogeneous group of oncological patients, one of which suffered from MM. The authors showed that 3 months after ASCT there was a significant decline of bone mineral density in the femoral neck and a non-significant trend towards reduction in the lumbar spine58. Terpos et al. have shown that bone formation markers do not normalise until the eighth month post-ASCT, providing an indication that bone formation may delay in normalising59. Further, in one of the few published treatment monitoring studies by means of dynamic 18F-NaF PET, Installé et al. have demonstrated in 14 patients with Paget’s disease receiving bisphosphonates therapy that SUV_{max}, K_1, and influx constant K_i decreased significantly as response to treatment60. To the best of our knowledge, these are the first data regarding bone turnover changes in MM patients receiving HDT and ASCT, evaluated by means of dynamic PET/CT.

In addition to two-tissue compartment modelling for tracer kinetics assessment, we also applied a non-compartmental approach based on the box counting procedure of the chaos theory for the analysis of dPET data, resulting in another index representative of tissue heterogeneity, fractal dimension (FD)43. Fractal geometry has
found use in pathology for assessment of irregularities61. Our group has shown that FD of 18F-FDG correlates significantly with the degree of bone marrow malignant plasma cell infiltration rate40. In the present study we found that FD for both tracers decreased significantly, reflecting a decline of the heterogeneity of the concentration of both tracers over time in response to treatment, a result in accordance with the changes of compartment-derived kinetic parameters.

This study has some limitations. Firstly, the number of patients enrolled was relatively small. Therefore, further studies with a larger study population are warranted to generalize the herein presented results. Secondly, most of the PET/CT positive findings were not histopathologically confirmed. However, this is usually not possible in the clinical setting. Another limitation is the confinement of the dynamic PET/CT studies only in the anatomic area of the pelvis, since whole-body dynamic studies cannot be performed. We used a two-bed position protocol for the dynamic PET acquisition, which allows the study of a relatively large field of view of 44 cm. Nevertheless, new PET/CT scanners allow dynamic studies over several bed positions by using a continuous bed movement, thus, facilitating the use of dynamic protocols and reducing the whole acquisition time. Finally, the lack of late follow-up data for all patients prevented us from proceeding to survival analysis between the different patient groups, which will be the topic of a future publication of our group.
CONCLUSION

In the present study 18F-FDG PET/CT demonstrated a sensitivity of 57.7% and a specificity of 100% in treatment response evaluation of 29 MM patients undergoing HDT and ASCT, using the clinical response criteria as reference standard. Despite its limited sensitivity, the performance of 18F-FDG PET/CT was satisfactory, given that 6/9 false negative patients in follow-up scans (66.7%) were clinically characterized as nCR, a disease stage with very low tumor mass. In contrary, 18F-NaF PET/CT did not aid significantly in treatment response evaluation of MM patients, at least in an early phase. Dynamic PET/CT studies demonstrated a decrease of SUVs and specific kinetic parameters in reference tissue for both 18F-FDG and 18F-NaF as response to treatment, reflecting changes in a molecular level before any morphological changes take place.
COMPLIANCE WITH ETHICAL STANDARDS

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Furthermore, the study was approved by the Ethical Committee I of the University of Heidelberg and the Federal Radiation Protection Agency.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Acknowledgment:
The study was part of a special research area project (SFB TRR 79) funded by the German Research Foundation.
FIGURE LEGENDS

Figure 1: A 70-years old stage III MM patient scheduled for HDT and ASCT, undergoing 18F-FDG PET/CT before and after therapy. Maximum intensity projection (MIP) 18F-FDG PET/CT before therapy (left) revealed a mixed pattern of 18F-FDG uptake with intense, diffuse uptake in the axial skeleton and multiple, focal bone marrow lesions. Follow-up 18F-FDG PET/CT MIP three months after ASCT (right) demonstrated a complete remission of both diffuse bone marrow uptake as well as focal myeloma-indicative lesions (18F-FDG PET/CT-CR). 18F-FDG uptake in cervical, abdominal and inguinal lymph nodes in the follow-up scan was attributed to inflammatory reaction after therapy, thus considered benign. Response according to clinical criteria was CR and according to the 18F-FDG PET EORTC criteria also CR.

Figure 2: Whole body 18F-NaF PET/CT MIP before and after therapy of the same patient as in figure 1. Baseline 18F-NaF PET/CT (left) demonstrated several 18F-NaF positive skeletal lesions, which partly corresponded to respective lesions on 18F-FDG PET/CT (Fig. 1) and were considered myeloma-indicative, as well as several degenerative changes mostly in the spine. Follow-up 18F-NaF PET/CT MIP after therapy (right) showed remission of some of the MM-indicative lesions but at the same time persistence of several of them (18F-NaF PET/CT-PR). Response according to clinical criteria was CR and according to the 18F-NaF PET criteria applied in our study PR.

Figure 3: A 68-years old stage III MM patient scheduled for HDT and ASCT undergoing 18F-FDG PET/CT before and after therapy. Transaxial 18F-FDG PET/CT in the cervical level before therapy (upper row) revealed an 18F-FDG
avid, MM-indicative lesion in the transverse process of the 4th cervical vertebrae. The patient underwent a follow-up {superscript}18{subscript}F-FDG PET/CT 49 days after ASCT (lower row), which demonstrated complete metabolic remission of the MM lesion. According to the EORTC 1999 criteria, the patient was characterized as {superscript}18{subscript}F-FDG PET/CT-CR. According to clinical criteria, the patient’s response was nCR.

Figure 4: Transaxial {superscript}18{subscript}F-NaF PET/CT before and after therapy of the same patient as in figure 3. Baseline {superscript}18{subscript}F-NaF PET/CT (upper row) revealed also the {superscript}18{subscript}F-FDG avid, myeloma-indicative lesion in the transverse process of the 4th cervical vertebrae as {superscript}18{subscript}F-NaF positive. In contrary to {superscript}18{subscript}F-FDG PET/CT (Fig.3), the lesion demonstrated a persistence of the {superscript}18{subscript}F-NaF accumulation in the follow-up {superscript}18{subscript}F-NaF PET/CT (lower row) after HDT and ASCT ({superscript}18{subscript}F-NaF PET/CT-SD).

Figure 5: Time activity curves (TACs) depicting {superscript}18{subscript}F-FDG concentration during the 60 minutes of dynamic PET acquisition in reference bone marrow before (upper row) and after therapy with HDT and ASCT (lower row). The curves are derived from bone marrow of the os ilium that served as reference (blue curve with green dots) and from the common iliac artery (curve with gold dots). Small decrease in the radiotracer concentration in reference tissue VOIs after therapy. The corresponding kinetic parameters responded to therapy also with a decrease.

Figure 6: Time activity curves (TACs) depicting {superscript}18{subscript}F-NaF concentration during the 60 minutes of dynamic PET acquisition in reference skeleton before (upper row) and after therapy with HDT and ASCT (lower row). The curves
are derived from osseous tissue of the os ilium that served as reference (blue curve with green dots) and from the common iliac artery (curve with gold dots). Decrease in the radiotracer concentration in reference tissue VOIs after therapy. The corresponding kinetic parameters responded to therapy also with a decrease.
Table 1 Characteristics, treatment response and survival rates of the patients investigated in the study.

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Stadiu m</th>
<th>Age</th>
<th>Gender</th>
<th>Time between ASCT- follow-up PET (days)</th>
<th>Clinical response</th>
<th>18F-FDG PET/CT response</th>
<th>18F-NaF PET/CT response</th>
<th>Prog ression after ther apy</th>
<th>PFS (mont hs)</th>
<th>OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>66</td>
<td>F</td>
<td>78</td>
<td>PR</td>
<td>PR</td>
<td>Negative baseline scan</td>
<td>Yes</td>
<td>39</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>65</td>
<td>M</td>
<td>228</td>
<td>CR</td>
<td>CR</td>
<td>PR</td>
<td>Yes</td>
<td>16</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>57</td>
<td>M</td>
<td>117</td>
<td>nCR</td>
<td>PR</td>
<td>SD</td>
<td>Yes</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>70</td>
<td>M</td>
<td>97</td>
<td>CR</td>
<td>CR</td>
<td>PR</td>
<td>Yes</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>73</td>
<td>M</td>
<td>132</td>
<td>nCR</td>
<td>PR</td>
<td>SD</td>
<td>No</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>53</td>
<td>M</td>
<td>64</td>
<td>PR</td>
<td>CR</td>
<td>SD</td>
<td>No</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>46</td>
<td>F</td>
<td>81</td>
<td>nCR</td>
<td>CR</td>
<td>SD</td>
<td>Yes</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>53</td>
<td>F</td>
<td>83</td>
<td>VGPR</td>
<td>PR</td>
<td>SD</td>
<td>Lost to follow-up</td>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>69</td>
<td>F</td>
<td>52</td>
<td>PR</td>
<td>CR</td>
<td>CR</td>
<td>Yes</td>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>49</td>
<td>M</td>
<td>120</td>
<td>nCR</td>
<td>CR</td>
<td>Negative baseline scan</td>
<td>No</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>43</td>
<td>M</td>
<td>93</td>
<td>nCR</td>
<td>PD</td>
<td>PD</td>
<td>No</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>60</td>
<td>M</td>
<td>67</td>
<td>nCR</td>
<td>PD</td>
<td>PD</td>
<td>Yes</td>
<td>9</td>
<td>18 (dead)</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>68</td>
<td>M</td>
<td>75</td>
<td>nCR</td>
<td>PR</td>
<td>PR</td>
<td>Yes</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>69</td>
<td>M</td>
<td>101</td>
<td>nCR</td>
<td>CR</td>
<td>SD</td>
<td>No</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>68</td>
<td>F</td>
<td>49</td>
<td>nCR</td>
<td>CR</td>
<td>SD</td>
<td>No</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>53</td>
<td>M</td>
<td>70</td>
<td>PR</td>
<td>CR</td>
<td>SD</td>
<td>No</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>62</td>
<td>F</td>
<td>145</td>
<td>nCR</td>
<td>PD</td>
<td>PD</td>
<td>Yes</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>70</td>
<td>M</td>
<td>51</td>
<td>VGPR</td>
<td>PR</td>
<td>PD</td>
<td>No</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>60</td>
<td>M</td>
<td>115</td>
<td>PR</td>
<td>PR</td>
<td>SD</td>
<td>No</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>59</td>
<td>F</td>
<td>47</td>
<td>VGPR</td>
<td>PR</td>
<td>SD</td>
<td>No</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>60</td>
<td>M</td>
<td>86</td>
<td>CR</td>
<td>CR</td>
<td>SD</td>
<td>No</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>63</td>
<td>F</td>
<td>106</td>
<td>nCR</td>
<td>CR</td>
<td>Negative baseline scan</td>
<td>No</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>59</td>
<td>F</td>
<td>120</td>
<td>PR</td>
<td>CR</td>
<td>SD</td>
<td>Yes</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>48</td>
<td>M</td>
<td>102</td>
<td>nCR</td>
<td>CR</td>
<td>PR</td>
<td>No</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>61</td>
<td>M</td>
<td>89</td>
<td>PR</td>
<td>PR</td>
<td>Negative baseline scan</td>
<td>No</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>45</td>
<td>M</td>
<td>67</td>
<td>PR</td>
<td>PD</td>
<td>PD</td>
<td>No</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>71</td>
<td>M</td>
<td>125</td>
<td>PR</td>
<td>CR</td>
<td>PR</td>
<td>Yes</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>59</td>
<td>F</td>
<td>128</td>
<td>nCR</td>
<td>PR</td>
<td>PD</td>
<td>Yes</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>62</td>
<td>F</td>
<td>55</td>
<td>VGPR</td>
<td>PD</td>
<td>PD</td>
<td>No</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>62</td>
<td>M</td>
<td>105</td>
<td>VGPR</td>
<td>Negative baseline scan (excluded)</td>
<td>Negative baseline scan</td>
<td>Negative baseline scan</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>69</td>
<td>F</td>
<td>136</td>
<td>VGPR</td>
<td>Negative baseline scan (excluded)</td>
<td>Negative baseline scan</td>
<td>Negative baseline scan</td>
<td>Negative baseline scan</td>
<td>Negative baseline scan</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>38</td>
<td>M</td>
<td>48</td>
<td>VGPR</td>
<td>Negative baseline scan (excluded)</td>
<td>Negative baseline scan</td>
<td>Negative baseline scan</td>
<td>Negative baseline scan</td>
<td>Negative baseline scan</td>
</tr>
</tbody>
</table>
M, male; F, female; CR, complete response; nCR, near complete response; VGPR, very good partial response; PR, partial response; SD, stable disease; PD, progressive disease.

All patients were alive at the time of writing, with the exception of patient no 12.

Table 2 Treatment response of the 29 MM patients according to clinical criteria, 18F-FDG PET/CT criteria and 18F-NaF PET/CT criteria.

<table>
<thead>
<tr>
<th>Clinical response</th>
<th>18F-FDG PET/CT response</th>
<th>18F-NaF PET/CT response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR= 3 patients</td>
<td>CR= 14 patients</td>
<td>CR= 1 patient</td>
</tr>
<tr>
<td>nCR= 13 patients</td>
<td>PR= 11 patients</td>
<td>PR= 5 patients</td>
</tr>
<tr>
<td>VGPR= 4 patients</td>
<td>PD= 4 patients</td>
<td>SD= 12 patients</td>
</tr>
<tr>
<td>PR= 9 patients</td>
<td></td>
<td>PD= 7 patients</td>
</tr>
</tbody>
</table>

CR, complete response; nCR, near complete response; VGPR, very good partial response; PR, partial response; SD, stable disease; PD, progressive disease

Table 3 Descriptive statistics of mean and median values prior and after HDT and ASCT for the 18F-FDG semi-quantitative and quantitative parameters in reference bone marrow. The values of parameters K_1, k_2, k_3, k_4 and influx are 1/min. SUVs and FD have no unit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean prior</th>
<th>Median prior</th>
<th>Mean after</th>
<th>Median after</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUV$_{\text{average}}$</td>
<td>2.2</td>
<td>1.9</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>SUV$_{\text{max}}$</td>
<td>3.9</td>
<td>3.3</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>K_1</td>
<td>0.214</td>
<td>0.186</td>
<td>0.158</td>
<td>0.144</td>
</tr>
<tr>
<td>k_2</td>
<td>0.710</td>
<td>0.693</td>
<td>0.570</td>
<td>0.571</td>
</tr>
<tr>
<td>k_3</td>
<td>0.054</td>
<td>0.050</td>
<td>0.050</td>
<td>0.045</td>
</tr>
<tr>
<td>k_4</td>
<td>0.025</td>
<td>0.020</td>
<td>0.028</td>
<td>0.020</td>
</tr>
<tr>
<td>influx</td>
<td>0.014</td>
<td>0.013</td>
<td>0.011</td>
<td>0.009</td>
</tr>
<tr>
<td>FD</td>
<td>1.146</td>
<td>1.138</td>
<td>1.086</td>
<td>1.065</td>
</tr>
</tbody>
</table>

*significant probabilities (p<0.001)

Table 4 Descriptive statistics of mean and median values prior and after HDT and ASCT for the 18F-NaF semi-quantitative and quantitative parameters in reference skeleton. The values of parameters K_1, k_2, k_3, k_4 and influx are 1/min. SUVs and FD have no unit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean prior</th>
<th>Median prior</th>
<th>Mean after</th>
<th>Median after</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUV$_{\text{average}}$</td>
<td>8.7</td>
<td>8.4</td>
<td>6.9</td>
<td>6.3</td>
</tr>
<tr>
<td>SUV$_{\text{max}}$</td>
<td>14.6</td>
<td>13.8</td>
<td>10.5</td>
<td>10.0</td>
</tr>
<tr>
<td>K_1</td>
<td>0.200</td>
<td>0.177</td>
<td>0.143</td>
<td>0.116</td>
</tr>
<tr>
<td>k_2</td>
<td>0.413</td>
<td>0.421</td>
<td>0.329</td>
<td>0.272</td>
</tr>
<tr>
<td>k_3</td>
<td>0.279</td>
<td>0.249</td>
<td>0.250</td>
<td>0.229</td>
</tr>
<tr>
<td>k_4</td>
<td>0.015</td>
<td>0.013</td>
<td>0.013</td>
<td>0.012</td>
</tr>
<tr>
<td>influx</td>
<td>0.076</td>
<td>0.070</td>
<td>0.059</td>
<td>0.054</td>
</tr>
<tr>
<td>FD</td>
<td>1.382</td>
<td>1.390</td>
<td>1.340</td>
<td>1.342</td>
</tr>
</tbody>
</table>

*significant probabilities (p<0.001)
REFERENCES

11 Zamagni E, Nanni C, Gay F, et al.18F-FDG PET/CT focal, but not osteolytic,

23Lecouvet FE, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM; EORTC Imaging Group. Monitoring the response of bone metastases to treatment with 18F-Fluoride PET/CT.

34http://www.pmod.com/files/download/v31/doc/pbas/4729.htm

Laroche M, Lemaire O, Bourin P, et al. Dual-energy X-ray absorptiometry and

18F-FDG
before therapy

18F-FDG
after therapy
18F-NaF
before therapy

18F-NaF
after therapy
$^{18}\text{F-FDG before therapy}$

$K_1=0.39, k_3=0.09$
$\text{influx}=0.03, \text{FD}=1.25$

$^{18}\text{F-FDG after therapy}$

$K_1=0.16, k_3=0.02$
$\text{influx}=0.01, \text{FD}=1.07$
18F-NaF before therapy

$K_1=0.51$, $k_2=0.26$
influx $=0.11$, $FD=1.41$

18F-NaF after therapy

$K_1=0.12$, $k_2=0.18$
influx $=0.05$, $FD=1.34$