ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Pathology: Diagnosis and Prognostic Stratification

Aurel Perren1*, Anne Couvelard2*, Jean-Yves Scoazec3, Frederico Costa4, Ivan Borbath5, Gianfranco Delle Fave6, Vera Gorbounova7, David Gross8, Ashley Grossman9, Robert T. Jensen10 Matthew Kulke11, Kjell Oeberg12, Guido Rindi13, Halfdan Sorbye14, Staffan Welin15, and all other Antibes Consensus Conference participants

* contributed equally
1. Institute of Pathology, University of Bern, Switzerland
2. Service de Pathologie, Hôpital Bichat, Paris, France
3. Services de pathologie morphologique et moléculaire, Département de biologie et pathologie médicales, Gustave Roussy Cancer Campus, Villejuif, France
4. Centro de Oncologia, Sao Paulo, Brazil
5. Service de Gastroenterologie, Cliniques Universitaires St-Luc, Bruxelles, Belgium
6. Department of Digestive and Liver Disease, Ospedale Sant'Andrea, Rome, Italy
7. Department of Oncology, Institution of Russian Academy of Medical Sciences
8. Department of Endocrinology & Metabolism, Hadassah University Hospital, Mevasseret Tsion, Israel
9. Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, United Kingdom
10. Digestive Diseases Branch, NIH, Bethesda, Md., USA
11. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
12. Department of Medical Sciences, Endocrine Oncology Unit, University Hospital, Uppsala, Sweden
13. Institute of Anatomic Pathology, Policlinico A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
14. Dept. of Oncology, Haukeland University Hospital, Bergen, Norway
15. Department of Medical Sciences, Endocrine Oncology, Uppsala University, Sweden
Corresponding author: Aurel Perren Institute of Pathology University of Bern Murtenstrasse 31 CH-3012 Bern Switzerland

KEYWORDS: Classification, Immunohistochemistry, Neuroendocrine tumor, grading, differentiation

RUNNING HEAD: Diagnosis and Prognostic Stratification

Abstract

The European Neuroendocrine Tumor Society (ENETS) proposed standard of care guidelines for Pathology in 2009. Since then, profound changes in the classification have been made, with the separation of neuroendocrine neoplasia (NEN) into well differentiated neuroendocrine tumours (NET) and poorly differentiated neuroendocrine carcinomas (NEC) in the 2010 WHO classification. The 7th edition of the TNM classification (2009) included NEN for the first time, adapting widely ENETS proposals but with some differences for NEC and for NET of the pancreas and the appendix. Therapy guidelines for gastro-entero-pancreatic NET have been updated 2016. The need for update of the standards of care prompted ENETS to organize a consensus conference which was held in Antibes in 2015; a working group was designated to propose pathological standards of care.

Introduction

The European Neuroendocrine Tumor Society (ENETS) proposed standard of care guidelines for Pathology in 2009 [1]. Since then, profound changes in the classification have been made, with the separation of neuroendocrine neoplasia
(NEN) into well differentiated neuroendocrine tumours (NET) and poorly
differentiated neuroendocrine carcinomas (NEC) in the 2010 WHO classification [2].
The 7th edition of the TNM classification (2009) included NEN for the first time,
adapting widely ENETS proposals but with some differences for NEC and for NET of
the pancreas and the appendix [3]. Therapy guidelines for gastro-entero-pancreatic
NET have recently been updated as well [4]. The need for update of the standards of
care prompted ENETS to organize a consensus conference which was held in
Antibes in 2015; a working group was designated to propose pathological standards
of care.

Gross analysis and processing of tissues
Histopathological analysis of tissue specimens is the gold standard for the diagnosis
of NEN. Conventional morphological analysis is completed by immunohistochemistry,
required to demonstrate the neuroendocrine phenotype and to evaluate Ki67 index.
Samples can be obtained by endoscopy, but mini-biopsy is preferred to the classical
fine needle aspiration with smears only [5, 6]. Tissue specimens are gained by
biopsy of a primary or secondary tumor, by surgical resection or by endoscopic
resection. Tissues are fixed in formalin and embedded in paraffin. Resection
specimens require a detailed gross examination to select the proper regions for
histological analysis. Gross examination is also crucial to provide data for T- and N-
staging and to select the regions to analyze for establishing resection status.

Diagnostic Standards:
Neuroendocrine phenotype:
Table 1 summarizes the mandated and optional immunohistochemical requirements
for a histopathological analysis of a NET biopsy. If by hematoxylin/eosin staining, a
neuroendocrine phenotype is suspected, immunohistochemical stainings for synaptophysin and chromogranin-A are required to definitely confirm this hypothesis [7]. Cytokeratin staining might be useful to confirm the epithelial nature of the tumor and to rule out paraganglioma. In well differentiated NET, all tumor cells stain diffusely for synaptophysin because of the diffuse presence of small clear vesicles. The expression of chromogranin A is usually more heterogeneous in the cytoplasm of tumor cells, since it depends on the presence of large neurosecretory granules. Rectal NET may frequently stain negative for chromogranin A with most monoclonal antibodies of current use. Otherwise, care must be taken in diagnosing well differentiated NET without any chromogranin-A expression; other entities, such as solid pseudopapillary neoplasia of the pancreas, acinar cell carcinoma or adrenocortical neoplasms must be ruled out. In poorly differentiated NEC, however, chromogranin-A may be lacking: moreover, in some small cell NEC, synaptophysin also may be focal or absent: in such tumors, the diagnosis of “small cell neuroendocrine carcinoma” is a diagnosis of exclusion. The use of other so-called neuroendocrine markers such as neuron-specific enolase (NSE) or N-CAM (CD56) is discouraged due to their low specificity [8].

Differentiation

According to the WHO classification, NEN are separated into well differentiated NET and poorly differentiated NEC. Initially, the assumption was that all G1-G2 tumors were well-differentiated and all G3 tumors were poorly differentiated. However well differentiated NET can rarely have proliferation indexes >20% especially in the pancreas. These patients survive longer than patients with poorly differentiated NEC [9], but shorter than patients with well differentiated NET. This new entity has by some been classified as well differentiated NET G3 [10]. These well differentiated NET with high proliferation index seem to be characterized by regular network of fine
vessels, organoid growth pattern without expansile growth and absence of geographic necrosis or desmoplastic stroma. Well differentiated morphology correlates with Ki67 index range of 20% to 50% [9-12]. Therefore, the exact Ki67 index as well as differentiation needs to be included into pathology reports. For NEC, small cell and large cell morphology should be described.

Grading:
Once the neuroendocrine nature of a tumor is demonstrated, the proliferative activity has to be assessed using Ki67 staining and performing a staining index. The percentage of positive tumor nuclei has to be assessed and reported. Grading is performed as defined in WHO and UICC/AJCC classifications (See Table 2). Ki67 index seems to be more accurate and reproducible than mitotic count [13] [14] and is the only counting possible on biopsy samples. Therefore, Ki67 index is regarded as compulsory and mitotic count optional. Grading can be performed as well on primary tumors as on metastases, but some heterogeneity exists between both and between different metastases [15, 16] [17]; the proliferation index is often higher in metastases. If not enough material for hotspot selection and analysis of 2000 tumor cells is available, undergrading might occur [18], this is occurring in EUS-obtained mini-biopsies [5, 19]. Grading is not recommended on smears from fine needle aspiration, but reliability is increasing in mini-biopsies, also gained by endoscopic procedures [6]. The risk of undergrading decreases between 200 and 2000 cells examined [19, 20] and was minimal when > 2000 cells were counted [20]. Finally, the amount of tissue needed depends on the purpose of the analysis. Only a limited number of cells is enough for discriminating well differentiated NET G1/G2 from poorly differentiated NEC G3 but might be not sufficient for an accurate grading.

Optional diagnostic markers
The use of optional or additional markers including hormones or transcription factors may be employed in the setting of a neuroendocrine tumor metastases of unknown primary site: Serotonin and cdx-2 positivity are in favor of a primary of the small intestine, islet-1 (Isl-1) expression is found in primaries of the pancreas and duodenum and TTF1 in primaries of the lung and in medullary thyroid carcinoma [21], the second together with calcitonin. All these markers are of no use in the setting of poorly differentiated NEC [22].

Immunohistochemical detection of somatostatin receptors (SSTR), especially SSTR2, is feasible and indicated in the absence of in-vivo somatostatin imaging studies [23, 24]. In the case of questionable vascular invasion, immunohistochemistry for endothelial cell markers such as CD34 or special stains for the visualization of vessel walls might be of help.

Pathological report

Table 3 summarizes the minimum requirements for pathological reports of resection specimens or biopsy specimens of NEN.

Needs for research

MGMT expression or methylation may serve as a predictive marker of response to temozolomide based chemotherapy in PanNET: clinical trials are on the way to address this issue. In the same regard, translational studies are needed to define biomarkers predicting response to other therapies such as targeted therapies or other chemotherapeutic strategies. The new category of NET G3 needs to be better defined pathologically, possibly by the inclusion of molecular markers in order to have a more solid basis to define the therapeutic consequences of this tumor type. At last, increasing molecular evidence may suggest a grouping of NET according to
mutational, expression or methylation profiles, but so far no therapeutic strategies are based on these findings.

Conclusions

The proposed standard procedures for diagnosing NEN should now follow the WHO and TNM classification systems that are under revision. A standardized diagnosis is the basis for a standardized treatment as well as for studies to be comparable.

References

Table 1. Mandatory and optional elements for assessing a biopsy specimen containing a tumor with features of a GEP-NEN

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology and differentiation on HE section</td>
</tr>
<tr>
<td>Immunostaining for neuroendocrine markers</td>
</tr>
<tr>
<td>– Synaptophysin and chromogranin A</td>
</tr>
<tr>
<td>Immunostaining for proliferation marker</td>
</tr>
<tr>
<td>– Ki67/MIB1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunostaining for hormones such as insulin, gastrin, serotonin and others</td>
</tr>
<tr>
<td>– In the context of hormonal symptoms, liver metastases of an unknown primary or follow-up of a tumor with a hormonal syndrome</td>
</tr>
<tr>
<td>Immunostaining for transcription factors (TTF1, CDX2, Isl-1)</td>
</tr>
<tr>
<td>– In the context of a carcinoma of unknown primary</td>
</tr>
<tr>
<td>Immunostaining for somatostatin receptor (i.e. SSTR2)</td>
</tr>
<tr>
<td>– If not available by in-vivo technique such as SRS imaging</td>
</tr>
<tr>
<td>Immunostaining for vessel markers</td>
</tr>
<tr>
<td>– To determine angioinvasion</td>
</tr>
</tbody>
</table>

Table 2. Grading of GEP-NENs:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Mitotic count, 10 HPF</th>
<th>Ki67 index, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td><2</td>
<td><3</td>
</tr>
<tr>
<td>G2</td>
<td>2-20</td>
<td>3-20</td>
</tr>
<tr>
<td>G3</td>
<td>>20</td>
<td>>20</td>
</tr>
</tbody>
</table>

1 HPF = high-power field = 2 cm², at least 40 fields evaluated in areas at highest mitotic density.

2 MIB1 antibody; % of 500 to 2,000 cells in areas of highest nuclear labeling. If less cells, the number of assessed cells should be noted.

3 <3 could replace ≤2 in the 2010 WHO classification in order to include decimal numbers between 2 and 3
Table 3. Minimum requirements of pathology reports, given for the example of pancreatic NET, according to CAP guidelines

Type of specimen:	Excisional biopsy, parial pancreatectomy, Whipple resection, total pancreatectomy
Tumor site:	pancreatic head, body, tail, uncinated process.
Tumor size:	in cm and 3 dimensions
Tumor focality:	unifocal, multifocal
Tumor functionality	Insulinoma, Glucagonoma, Somatostatinoma, Gastrinoma, VIPoma, Serotonin producing, other, nonfunctional
Histologic differentiation:	well differentiated, poorly differentiated*
Proliferation rate:	Ki-67 index + optionally mitotic count
Tumor necrosis:	present, absent
Microscopic tumor extension	confined to pancreas, invading peripancreatic soft tissue, invading other organs
Margins:	margins uninvolved by tumor, closest margin in cm, margins involved by tumor
Lymphovascular invasion:	present, absent
Perineural invasion:	present, absent
TNM staging (UICC 7th edition):	
Lymphnodes:	number of lymphnodes examined, number of lymphnodes involved
Additional features	

* note that for poorly differentiated NEC the TNM system of adenocarcinomas of the pancreas is applied.