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Abstract 

Displacement of preserved pore water from claystones by imposing a hydraulic gradient with an artificial pore water 
yields early extracts characteristic of the pore water. Long-term tracer breakthrough behavior provides transport 
properties and anion-accessible porosity, whereas elution of major components are controlled by ion exchange and 
mineral solubility. A single long-term experiment provides a comprehensive system understanding. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of WRI-15. 
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1. Introduction 

Pore water characterization, ionic transport and water-rock interaction in argillaceous rocks is of interest for 
performance assessment of deep disposal of radioactive waste and understanding processes in cap rocks (oil/gas 
exploitation, carbon dioxide sequestration). Direct pore water sampling is difficult1, and destructive methods such as 
aqueous leaching and pore water squeezing are prone to artefacts1,2. Pore water composition is reconstructed by 
thermodynamic modelling integrating multiple sources of data3. Transport properties are derived from dedicated 
experiments. 
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These authors4 presented first results from a new method called “advective displacement” whereby a confined 
core sample was subjected to a hydraulic gradient inducing a flux for sampling small aliquots of displaced pore 
water. Early extracts closely resemble the in situ composition, and the recorded breakthrough of select injected 
tracers (anions, 2H) provides transport properties. A single long-term experiment can thus yield a comprehensive 
pore water characterization and system understanding. This paper details the technique and its limitations with 
results from clayey lithologies from a Mesozoic sequence underlying the Swiss Molasse basin (deep boreholes) or 
accessible in the Swiss Jura Mountains (Mont Terri underground rock laboratory).      

2. Advective displacement method, sample preparation and analysis 

 Core samples (70-100 mm diameter), preserved and protected on site, are cut (50-100 mm length) and placed 
between thin filter discs (Teflon supported by porous titanium) and titanium coupling pieces (Fig. 1). Chemical and 
hydraulic isolation from the confining fluid is achieved by inner Teflon layers and an outer latex sleeve. The 
resultant core assembly is placed into a triax-type apparatus, imposing a fixed core length with an adjustable spindle, 
and subjected to a water confining pressure (5-10 MPa). Chosen infiltration pressures of 3-8 MPa impose hydraulic 
gradients of 3-16·103 m/m, and this induces volumetric flow rates of 0.2-1 ml/week. Confining pressure is 
maintained by an equivalent argon pressure, and infiltration is driven from a polymer-coated steel cylinder 
pressurized by helium. 

Parameters measured in-line include electric conductivity (Fig. 1), and intermittently pH (and Eh) with small-
volume (~20 µl) flow-through cells. Sampling of aliquots is done in syringes, 0.5-1 ml for early aliquots. Ideally, 1-2 
pore volumes are pushed through a core (5-25 months) for providing transport properties and a concise data set for 
reactive transport modelling interpretation. Analytical methods include IC, ICP-OES, titration, photometry, 
DIC/DOC, and CRDS for stable water isotopes. Hydraulic conductivity is calculated from volumetric flow rates 
evaluated at each sampling time, hydraulic gradient and sample dimensions. Initial and post-mortem analysis of core 
material includes physical properties, mineralogy, aqueous extracts and cation occupancy and exchange capacity. 

Artificial pore water composition (Na-Cl-SO4-Ca-Mg-K) is thermodynamically modelled to approximately match 
the expected salinity of the in situ pore water (4-10 g/l Cl) and constrained by selected mineral saturation. Tracers 
added include deuterated water and different combinations of anions (Br-, I-, NO3

-) at concentrations of 40-120 mg/l. 
 

a b c d e  

Fig. 1. (a-c) sample preparation (see text), (d) electric conductivity, (e) pH cell. Diameter of capillary tube is 1.6 mm. 

3. Results 

3.1. Sample characteristics, hydraulic and transport properties 

Samples from three different formations with physical properties determined at the end of an advective 
displacement experiment (Tab. 1) possess water-loss porosities of 5.6-16.5 vol% and hydraulic conductivities of 4-
40·10-14 m/s. Rocks are argillites to calcareous marl, all containing a portion of illite/smectite mixed layers.  

A characteristic feature of claystone is its osmotic character resulting from negatively charged clay mineral 
surfaces that restrict anions to a smaller porosity domain compared to water and cations. This leads to an increased 
average linear velocity for anions under an advective regime, with distinctly faster breakthrough times relative to 
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water. Breakthrough curves for tracers ore pore water components (Fig. 2) are plotted against time converted to pore 
volume fractions (based on the measured total water content). Anions tend to reach full breakthrough concentration 
already after 1 pore volume, whereas breakthrough of deuterium is distinctly delayed. Even a small difference in 
transport between Cl and Br can be resolved (Fig. 2b), whereas SO4 behaves as a reactive component. In this latter 
example, initial Br is flushed out and a significant initial difference in chloride concentration is evened out. 

 Table 1. Select properties of samples and experiments. 

1: Mont Terri URL, 2: Gösgen borehole, 3-5: Schlattingen borehole; I/S=illite/smectite mixed layers; WL=water loss (105°C) 

 

a b  

Fig. 2. (a) #1 in Tab. 1: Br and 2H (V-SMOW) breakthrough; (b) #2 in Tab. 1: Br breakout, Cl and SO4 breakthrough. APW=artificial pore water 

3.2. Geochemical evolution of effluent – ion exchange and solubility controls 

Evolution of concentrations in fluid aliquots show passive behavior for breakthrough of anionic tracers (Fig. 2), 
and breakout of anions present in situ (Br-, I-), including chloride. Sulfate (Fig. 3) does not behave conservatively, 
suggesting a solubility control. This is supported by calculated saturation indices that are nearly constant for gypsum 
(distinctly undersaturated) and celestite (near saturation). Cations are controlled by ion-exchange processes that lead 
to eluted concentrations that are different from the injected pore water for the entire duration of an experiment (Fig. 
3a), due to a large exchange capacity compared to the dissolved inventory. A special feature are elevated initial 
concentrations of mostly acetate (Fig. 3b) that are subsequently flushed out but remain at measurable levels for 
lactate, acetate and formate (>10 mg/l). 
 

a b   

Fig. 3. (a) #2 in Tab. 1, major components; (b) #3 in Tab. 1, major components. APW=artificial pore water injected. 
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# Formation Sample ID Clay cont. Water cont. WL-porosity Diamter Length PW mass K Duration Tracers
name label/depth(m) wt% clay (I/S) wt% vol% mm mm g 10-14 m/s d

1 Opalinus Clay BPC-A1 (10 m) 70 (15) 6.80 16.5 79 120 97.1 21 5110+ 2H, Br
2 Effingen Member GOS-122.89 20 (6) 2.14 5.62 96.5 111 45.6 13 430 2H
3 Opalinus Clay SLA-938.57-AD 83 (6) 4.80 12.2 101 101 99.2 35 817 2H, I, NO3

4 Brown Dogger SLA-779-78-AD 64 (15?) 5.03 12.7 101 96.4 98.9 3.9 635 2H
5 Brown Dogger SLA-811.95-AD 66 (4) 5.30 13.4 101 84.6 91.0 40 687 2H, I, NO3
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3.3. Early aliquots – composition of in-situ pore water 

Early aliquots resemble in-situ pore water composition, although potentially affected by certain artefacts (see 
discussion). Characteristic concentrations and other parameters (Tab. 2) show salinities distinctly smaller than 
seawater. From this data, saturation indices and the CO2 partial pressure can be calculated, assuming calcite 
saturation. A chloride-accessible porosity fraction (n(Cl)/n(WL)) is calculated from the early chloride concentration 
and that measured in aqueous extracts and up-scaled to the water content. This can be done also for the last 
measured chloride concentration combined with post-mortem aqueous extracts of a slab from the outflow end of a 
core sample. There is no systematic dependency of anion-accessible porosity on clay or smectite content or salinity 
(Tab. 1, 2).   

Table 2. Summary of early samples as proxy for pore water composition. 

Cl_AqEx: aqueous extract scaled to pore water; * from modelling Br and δ2H breakthrough; ** from post mortem aqueous extracts 

4. Conclusions 

A single long-term experiment may provide a nearly complete description of a claystone-pore water system and 
some of its geochemical behavior, but artefacts are also observed. These are related to issues of small sample size 
and sample storage that lead to somewhat “noisy” data in the early extracts. On occasion preferential loss of water 
from syringes is observed that leads to an increase in dissolved salts, but not to aberrant δ2H compositions. This 
method initially releases low-molecular weight organic acids at significant concentrations (500-1500 mg/l) in 
contrast to aqueous extraction where such acid concentrations are closer to levels of organic acids eluted at later 
times. In one case indication of microbial activity was observed, namely nitrate added as anionic tracer got nearly 
completely reduced to ammonium, nitrogen gas and possibly nitrite (#5, Tab. 1) accompanied by CO2 production. 
Otherwise, there was no indication of significant sulfate reduction (by organic carbon). The experimental setup is 
robust, but sample analysis required significant optimization of analytical methods to very small sample size. The 
efforts are compensated by comprehensive data sets that are also amenable to multi-component reactive transport 
modelling. 
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