Different chronological patterns of appearance of blood derived milk components during mastitis indicate different mechanisms of transfer from blood into milk

Olga Wellnitz¹, Christina Zbinden², Johannes Lüttgenau¹, Heinrich Bollwein¹ and Rupert M Bruckmaier²*

¹Vetsuisse Faculty University of Zurich, Clinic of Reproductive Medicine, Switzerland
²Vetsuisse Faculty University of Bern, Veterinary Physiology, Switzerland

Received 15 November 2014; accepted for publication 22 May 2015; first published online 3 July 2015

This study aimed to describe chronological patterns of changes of various candidate blood components in milk during the acute phase of a mammary immune response in detail. Eight dairy cows were challenged with Escherichia coli lipopolysaccharide in one udder quarter. Milk from challenged and control quarters and blood samples were taken before, and 1 and 2 h after challenge and then every 15 min until 5 h after challenge. The SCC, serum albumin, immunoglobulin (Ig)G1, IgG2, lactate dehydrogenase (LDH), and L-lactate in milk and blood, and α-lactalbumin in blood were analysed. All selected parameters in milk increased in challenged quarters but did not increase in control quarters. Milk IgG1, IgG2, serum albumin, and LDH were already significantly increased at 2 h after challenge whereas a significant increase of SCC was detectable at 2·75 h and L-lactate was increased at 2·25 h after challenge. In blood L-lactate was increased at 3·75 h after challenge, however, other factors in blood did not change significantly within the 5 h of experiment. In conclusion, the increase of blood components in milk during inflammation follows two different patterns: There is a rapid increase for IgG1, IgG2, or LDH, before the increase of SCC, and their concentrations reach a plateau within 3 h. On the other hand, SCC and L-lactate show a slower but consistent increase not reaching a plateau within 5 h after LPS challenge. L-lactate increases to higher concentrations in milk than in blood. This clearly shows that the increase of blood components follows different patterns and is therefore a controlled and compound-specific process and not exclusively an unspecific type of leakage.

Keywords: dairy cow, mastitis, blood-milk barrier.

In the mammary gland, invaded pathogens induce an immune response by stimulating the innate immune system. Along with this process considerable changes in milk composition occur due to changes in secretion but also through changes of the permeability of the blood-milk barrier leading to an increase of blood components in milk (Burton & Erskine, 2003; Schmitz et al. 2004; Wellnitz & Bruckmaier, 2012). These changes influence the nutritional value and taste, and the further processing of the milk. In addition, the change of milk composition plays an important role in the detection of mastitis through measurement of changes in concentration of mastitis indicators in milk. For this purpose a detailed knowledge of chronological changes and the mechanisms of the transfer of various factors into milk during early stages of mastitis is essential.

Changes of specific components in milk that have immune function can influence the mammary immune defence. The infiltration of polymorphonuclear neutrophils (PMN), the main effectors of the mammary immune defence, into the mammary gland during mastitis is measured as an increase of the milk somatic cell count (SCC) (Burton & Erskine, 2003; Wellnitz & Bruckmaier, 2012). A low SCC is, therefore, used as a marker of good hygienic milk quality (Harmon, 1994).

Lipopolysaccharide (LPS) is an endotoxin that is released from gram-negative bacteria. Intramammary administration of LPS from Escherichia coli, a common mastitis pathogen, is a well-established method to experimentally induce mastitis under defined conditions for studying the immune response of the mammary gland (Bruckmaier et al. 1993; Schmitz et al. 2004; Baumert et al. 2009a; Wellnitz et al. 2011).
Serum albumin is a blood protein whose appearance in milk can be used as an indicator of blood-milk barrier permeability (Stelwagen et al. 1994) and as an indicator of mastitis (Verhoeff & Smith, 1981). Immunoglobulin (Ig) G is the major immunoglobulin in milk of ruminants (Butler, 1983). The predominant antibody type in milk from healthy udders, although at a very low concentration, is IgG1 due to its active and selective transport across the blood-milk barrier (Baker et al. 2009). During mastitis IgG1 and IgG2 increase in milk and IgG2 is found in higher concentrations than IgG1 in mastitis milk (Lehmann et al. 2013). For the mammary immune defence IgG2 seems to play a more important role than IgG1 because bovine neutrophils upregulate Fc receptors for IgG2 when they migrate into infected tissue but not for IgG1 or IgA (Paape et al. 2000; Burton & Erskine, 2003). In addition, IgM is not a major antibody subclass in normal or mastitic milk (Rainard & Caffin, 1983).

Milk L-lactate and lactate dehydrogenase (LDH) increase in milk during intramammary infection and they have been considered as indicators of mastitis (Davis et al. 2004; Chagunda et al. 2006). However, there is no obvious contribution of these factors to the immune defence.

For all these components a correlation to SCC increase is accepted (Harmon, 1994; Davis et al. 2004; Chagunda et al. 2006). However, a detailed chronological pattern of increase has, to our knowledge, not yet been described in the first 5 h of mastitis. To test the hypothesis that there are different component-specific patterns for the transfer of blood components into milk, this study aimed to investigate the sequence and the pattern of increase of SCC, the blood components IgG1, IgG2, serum albumin, L-lactate, and lactate dehydrogenase in milk. To record also a potential transfer in the opposite direction, i.e. from milk into blood, the milk protein α-lactalbumin was measured in blood during the first hours of an endotoxin-induced mastitis.

Material and methods

The experimental procedures followed the Swiss Federal Law on Animal Protection and were approved by the Committee of Animal Experiments of the Canton Fribourg, Switzerland.

Animals and management

Holstein (n = 6) and Swiss Fleckvieh (n = 2) cows in their 1st to 5th lactation (2·5 ± 0·6) and in month two to nine (5·5 ± 0·8) of lactation were used for this experiment. Cows were housed in tie stall barns during experiments and had constant low SCC below 130 000 cells/ml for at least 5 d before the experiment in all four quarters (morning foremilk samples). None of the udders showed clinical signs of mastitis. An intravenous catheter was inserted into one jugular vein on the day before the experiment to take blood samples.

Experimental design

After morning milking one quarter of each cow was challenged with 200 µg Escherichia coli LPS (serotype O26:B6; Sigma-Aldrich, Buchs, Switzerland), diluted in 10 ml of saline solution after a careful disinfection of teat openings with 70% ethanol. Another quarter within cow was used as control and treated with 10 ml of saline solution. The treated quarters were randomly selected (front or rear, left or right) and equally distributed. Foremilk samples (~10 ml) were taken hourly by hand from LPS challenged and control quarter at 0 h (prior to injection) until 5 h after challenge. In addition, between 2 and 5 h after challenge, samples were taken every 15 min. Both milk samples were taken within 50 s before milk ejection started. Immediately after collection SCC was measured with a DeLaval cell counter (DCC; DeLaval, Tumba, Sweden) and then samples were frozen at −20 °C for later analyses.

Blood samples were taken coinciding with milk sampling through the intravenous catheter. Blood was collected into tubes containing EDTA as anticoagulant. Blood samples were stored briefly on ice and then centrifuged for 20 min at 3000 g. Plasma was collected and frozen at −20 °C until further analyses.

Concentrations of serum albumin in milk and plasma were measured using a commercial ELISA kit (Bethyl Laboratories, Montgomery, TX, USA) according to the manufacturer’s instructions, except for using a higher dilution for milk samples (1 : 12 000) than described in the manual (1 : 5000). Because of high divergent values in treated and control samples, in plate dilutions were performed using a multichannel pipette (one 1 : 2 dilution), to meet the standard curve of the assay.

The immunoglobulin G1 and G2 concentrations in whole milk and plasma were measured using a bovine IgG1 and IgG2 ELISA quantitation kit (Bethyl Laboratories Inc., Montgomery, TX). The procedure was performed as described in the manufacturer’s protocol, except for slight modifications: After coating the plates with anti IgG1/IgG2 antibody (50 µl of capture antibody per 10 ml Coating buffer), the plates were washed with an automatic washing system (microplate washer Columbus Pro, Tecan Group Ltd., Männedorf, Switzerland). To reduce unspecific binding to anti IgG Antibodies, the blocking reagent was replaced with 150 µl/well of 5% fish skin gelatin Solution [5% of cold water fish skin gelatin (G7763; Sigma Aldrich, Steinheim, Germany) in distilled water]. After washing, 100 µl of milk diluted in washing buffer (1 : 200) were added to each well. Because of the high sensitivity of the assay, in plate dilutions were performed (one serial dilution (1 : 2) using a multichannel pipette) to hit the standard range. Concentrations of IgG1/IgG2 were calculated by extrapolating from a standard curve generated by a microplate reader (Thermomax; Molecular Devices, Sunnyvale, CA).

Concentrations of α-lactalbumin in plasma were measured using a bovine α-lactalbumin ELISA quantitation set (Bethyl Laboratories Inc., Montgomery, TX) according to...
Concentrations of somatic cells, serum albumin, IgG1, IgG2, as fixed effects and the quarter as repeated subject. Included time, treatment (LPS or control) and their interaction. The concentration of IgG1 in milk was 4·11 ± 0·11 ng/ml throughout the experiment. Blood concentration of IgG1 was detectable in the 5 h of experiment. Blood concentration of serum albumin was 4·11 ± 0·11 ng/ml throughout the experiment. In control quarters L-lactate was increased (mean of all values) at 2·25 h and increased further thereafter until the end of experiment. In control quarters after 2·75 h compared to the initial value the expression is increased during mastitis (Shamay et al. 2005). The results of the present study agree with results from Shuster et al. (1993) who showed an increase in SCC increase was significant within 2·75 h.

The increase of somatic cell count and changes of milk composition during mastitis in dairy cows have been investigated over many decades. However, to our knowledge, the detailed description of the chronological patterns of the changes of blood components in milk within the first hours of mastitis has not been shown before. The hypothesis that different blood components are transferred into milk in different patterns was confirmed by our study. Several blood components follow similar patterns of transfer into milk. This is of high importance for understanding the mechanisms of transfer of these components from blood into milk during mastitis. Furthermore the knowledge of the chronological appearance during the development of mastitis is important if factors are used for the early detection of mastitis and to figure out which is the most suitable parameter.

During a mammary immune response the permeability of tight junctions increases and, therefore, a breakdown of the milk-blood barrier occurs (Kehrli & Shuster, 1994; Burton & Erskine, 2003). This leads to a facilitated passage of several blood components into the milk. The increased appearance of serum albumin in milk is accepted as an indicator for leakage of blood constituents into the milk through the blood-milk barrier (Poutrel et al. 1983; Shuster et al. 1993; Stelwagen et al. 1994) although there is conclusive evidence that the mammary gland also produces albumin and the expression is increased during mastitis (Shamay et al. 2005). The results of the present study agree with results from Shuster et al. (1993) who showed an increase of serum albumin in whey within the first 2 h after LPS infusion before SCC increased. It is possible that there is a retarded influx of cells due to slow diapedesis because the size of the cells necessitates a change in shape to fit through the gaps between endothelial and epithelial cells (Burton & Erskine, 2003). Chemoattractants have to be present and a number of events have to be initiated for an efficient influx of neutrophils into the mammary gland (Burton & Erskine, 2003). For other molecules like IgG, albumin, or sucrose a free transfer through openings within the cell layers is assumed (Nguyen & Neville, 1998).
Interestingly the albumin concentrations in milk did not further increase after 3 h after challenge in the present study. Obviously, a maximal transfer from blood into milk was already attained at that time and shows a parallel transfer to osmotic regulated influx of water for milk production.

Immunoglobulin G1 and G2 concentrations increased in milk similar to albumin concentrations before a significant increase of SCC was detected. This phenomenon was described before (Guidry et al. 1983). The majority of IgG2 antibodies in milk are transferred from the blood (Leitner et al. 2000). The early leakage of high levels of blood IgG2 was discussed to be crucial if pathogen-reactive blood IgG2 antibodies are present to determine the success of neutrophil defence system against acute clinical mastitis (Burton &...
The results agree with previous findings of parallel increase of albumin and total IgG concentrations in milk (Harmon et al. 1976) or albumin and IgG1 and IgG2 concentrations in milk (Rainard & Caffin, 1983) indicating a similar facilitated influx of these factors from blood.

LDH was shown to increase after intramammary LPS challenge mainly due to the leakage from the blood (Lehmann et al. 2013). Although LDH is released from the cytoplasm of cells into the extracellular fluid during cell damage and cell death (Glick, 1969) the rapid increase of LDH concomitantly to serum albumin and immunoglobulins in the present study confirms blood as the main source of milk LDH in the first hours of mammary inflammation. However, an increase of LDH in milk during mammary inflammation could play a role in later stages of the inflammatory process which was not investigated in the present study. The rapid increase of LDH in milk after LPS challenge before SCC increased shows again a rapid opening of the blood-milk barrier that enables a free influx of several blood components compared to slow diapedesis of cells.

For all the above mentioned factors that were increased in milk, no changes in blood could be observed. This is most likely due to the much bigger volume of blood compared to the produced milk during the 5 h of the experiment.

L-lactate concentrations are known to increase in milk during mastitis (Davis et al. 2004) and during LPS challenge (Lehmann et al. 2013). Due to the rapid increase in milk and the small size of the lactate molecule (90 Da) as compared to the other investigated constituents it is assumed that most of the L-lactate in milk in the beginning of mastitis is transferred from blood (Lehmann et al. 2013). However, it was shown before that L-lactate increases in blood in response to intravenous LPS administration (Giri et al. 1990). In addition it increases in milk after intramammary LPS challenge to even higher concentrations compared to those in blood (Lehmann et al. 2013). This clearly shows that L-lactate is not only transferred from blood through an opened blood-milk barrier. Silankove et al. (2011) found that L-lactate is produced by mammary epithelial cells as a result of a transient shift to anaerobic metabolism during mastitis which is responsible for an increase of L-lactate in milk during the further course of mastitis.

Alpha-lactalbumin in plasma did not increase significantly throughout the 5 h experiment compared to concentrations immediately before LPS challenge. The appearance of α-lactalbumin in blood was expected as this protein, which is produced exclusively in the mammary gland is increased in blood due to the impairment of the blood-milk barrier (McFadden et al. 1988). It was measured to show the chronological sequence of the opening of the blood-milk barrier. However, already high concentrations of α-lactalbumin could be measured at the beginning of the experiment directly after milking with very large individual variations. Cows were in different stages of lactation. As the cows were milked just twice a day, it can be assumed that the udder in cows in earlier lactation has been relatively full immediately before milking and, therefore before the experiment. This opens the mammary tight junctions (Stelwagen et al. 1997). Therefore, it is likely that the α-lactalbumin leaked into the blood until the milking, and although the barrier was closed already at the start of the experiment (minutes after milking) the α-lactalbumin concentrations were still high, because α-lac needs 8 h to return to baseline levels (Stelwagen et al. 1997). On the contrary blood components in milk were removed with the milk during milking and were not transferred into milk in control quarters and in the first hour of the experiment in challenged quarters due to the sealed blood-milk barrier. Thus, serum albumin in milk for example, which is agreed to be a marker of a leaky blood-milk barrier was low in the beginning of the experiment differences between 2 h after challenge and 5 h (end of experiment) were statistically investigated and detected. This shows that alpha-lactalbumin was transferred through the opening of the blood-milk barrier from...
Blood components in milk during mastitis

327

milk into the blood in response to LPS challenge, but this effect was superposed in the first 2 h of the experiment by high concentrations in blood before the start of experiment.

Conclusion

In conclusion, through a high frequency of milk sampling during the early stage of induced mammary inflammation the rapid opening of the blood-milk barrier can be demonstrated. However, this early effect is not reflected by the increase of SCC in foremilk samples an increase of several influx of cells from blood into milk. Clearly before the increase of L-lactate in mastitic milk however, includes other mechanisms than just a facilitated influx from the blood as shown for the other measured factors mechanisms including an additional production in blood and/or milk. These results are of most importance if the measurement of blood components in milk is used for early mastitis detection and show that milk composition can dramatically change before an increase of SCC can be measured.

References

Baker K, Quiao SW, Kuo T, Kobayashi K, Yoshida M, Lencer WI & Blumberg RS 2009 Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Seminars in Immunopathology 31 223–236

Baumert A, Bruckmaier RM & Wellnitz O 2009a Dose dependant SCC changes after intramammary lipopolysaccharide challenge. Milk Science International 64 119–121

Butler JE 1983 Bovine immunoglobulins: an augmented review. Veterinary Immunology and Immunopathology 4 43–152

Giri SN, Emau P, Cullor JS, Stabenfeldt GH, Bruss ML, Bondurant RH & Osburn BJ 1980 Effects of endotoxin infusion on circulating levels of eicosanoids, prostaggliserone, cortisol, glucose and lactic acid, and abortion in pregnant cows. Veterinary Microbiology 21 211–231

Glick JH 1969 Serum lactate dehydrogenase isoenzyme and total lactate dehydrogenase values in health and disease, and clinical evaluation of these tests by means of discriminant analysis. American Journal of Clinical Pathology 52 320–328

Rainard P & Caffin JP 1983 Sequential changes in serum albumin, immunoglobulin (IgG1, IgG2, IgM) and lactoferrin concentrations in milk following infusion of Escherichia coli into the udder of immunized and unimmunized cows. Annales of Veterinary Research 14 271–279

Shuster DE, Kehrli ME & Stevens MG 1993 Cytokine production during endotoxin-induced mastitis in lactating dairy cows. American Journal of Veterinary Research 54 80–85

Verhoeef J & Smith JA 1981 Bovine serum albumin and cell counts in the diagnosis of subclinical udder infections. Veterinary Quarterly 3 38–45

Wellnitz O & Bruckmaier RM 2012 The innate immune response of the bovine mammary gland to bacterial infection. Veterinary Journal 192 148–152