Bioavailability of the flavonol quercetin in neonatal calves after oral administration of quercetin aglycone or rutin.

Maciej, J; Schäff, C T; Kanitz, E; Tuchscherer, A; Bruckmaier, Rupert; Wolffram, S; Hammon, H M (2015). Bioavailability of the flavonol quercetin in neonatal calves after oral administration of quercetin aglycone or rutin. Journal of dairy science, 98(6), pp. 3906-3917. American Dairy Science Association 10.3168/jds.2015-9361

[img] Text
1-s2.0-S0022030215002015-main.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB)

Polyphenols, such as flavonoids, are secondary plant metabolites with potentially health-promoting properties. In newborn calves flavonoids may improve health status, but little is known about the systemically availability of flavonoids in calves to exert biological effects. The aim of this study was to investigate the oral bioavailability of the flavonol quercetin, applied either as quercetin aglycone (QA) or as its glucorhamnoside rutin (RU), in newborn dairy calves. Twenty-one male newborn German Holstein calves were fed equal amounts of colostrum and milk replacer according to body weight. On d 2 and 29 of life, 9 mg of quercetin equivalents/kg of body weight, either fed as QA or as RU, or no quercetin (control group) were fed together with the morning meal. Blood samples were taken before and 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 12, 24, and 48 h after feed intake. Quercetin and quercetin metabolites with an intact flavonol structure (isorhamnetin, tamarixetin, and kaempferol) were analyzed in blood plasma after treatment with glucuronidase or sulfatase by HPLC with fluorescence detection. Maximum individual plasma concentration was depicted from the concentration-time-curve on d 2 and 29, respectively. Additional blood samples were taken to measure basal plasma concentrations of total protein, albumin, urea, and lactate as well as pre- and postprandial plasma concentrations of glucose, nonesterified fatty acids, insulin, and cortisol. Plasma concentrations of quercetin and its metabolites were significantly higher on d 2 than on d 29 of life, and administration of QA resulted in higher plasma concentrations of quercetin and its metabolites than RU. The relative bioavailability of total flavonols (sum of quercetin and its metabolites isorhamnetin, tamarixetin, and kaempferol) from RU was 72.5% on d 2 and 49.6% on d 29 when compared with QA (100%). Calves fed QA reached maximum plasma concentrations of total flavonols much earlier than did RU-fed calves. Plasma metabolites and hormones were barely affected by QA and RU feeding in this experiment. Taken together, orally administrated QA resulted in a greater bioavailability of quercetin than RU on d 2 and 29, respectively, and quercetin bioavailability of quercetin and its metabolites differed markedly between calves aged 2 and 29 d.

Item Type:

Journal Article (Original Article)

Division/Institute:

05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH) > Veterinary Physiology
05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH)

UniBE Contributor:

Bruckmaier, Rupert

Subjects:

500 Science > 570 Life sciences; biology

ISSN:

0022-0302

Publisher:

American Dairy Science Association

Language:

English

Submitter:

Lorenzo Enrique Hernandez Castellano

Date Deposited:

20 Jul 2017 13:24

Last Modified:

05 Dec 2022 15:03

Publisher DOI:

10.3168/jds.2015-9361

PubMed ID:

25795488

Uncontrolled Keywords:

bioavailability; calf; flavonoid; quercetin; rutin

BORIS DOI:

10.7892/boris.95882

URI:

https://boris.unibe.ch/id/eprint/95882

Actions (login required)

Edit item Edit item
Provide Feedback