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Abstract
The metabolic adaptation of dairy cows during the transition period has been studied inten-

sively in the last decades. However, until now, only few studies have paid attention to the

genetic aspects of this process. Here, we present the results of a gene-based mapping and

pathway analysis with the measurements of three key metabolites, (1) non-esterified fatty

acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose, characterizing the meta-

bolic adaptability of dairy cows before and after calving. In contrast to the conventional

single-marker approach, we identify 99 significant and biologically sensible genes associat-

ed with at least one of the considered phenotypes and thus giving evidence for a genetic

basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways

involved in the metabolism of steroids and lipids are potential candidates for the adaptive

regulation of dairy cows in their early lactation. From our perspective, a closer investigation

of our findings will lead to a step forward in understanding the variability in the metabolic

adaptability of dairy cows in their early lactation.

Introduction
Selective breeding of dairy cows during the last decades has led to the modern high-yielding
dairy cow producing more than 45 kg milk per day [1]. However, the immense milk yield also
entails a high energy demand during the early lactation period, which cannot be fully covered
by feed intake [2]. In order to overcome the metabolic load resulting from a negative energy
balance, dairy cows need to mobilize body fat, protein and mineral stores. A failure in metabol-
ic adaptation to this situation leads to an increased susceptibility to health problems as well as
development of production-related diseases such as ketosis and fatty liver [3,4].

Numerous studies have tried to elucidate and describe the complex system of metabolic ad-
aptation of dairy cows during their early lactation period [2,5–9]. They identified a number of
crucial regulated target genes, metabolites and endocrine factors in the liver and blood plasma
that are involved in important pathways responsible for the adaptive regulation of the
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metabolism. Nevertheless, so far, a general understanding of why and how the ability of adapta-
tion varies between cows has still not been reached.

Interestingly, even under the same conditions and similar production levels, the success of
adaptation differs substantially between cows [5,6]. This strongly suggests that the ability of ad-
aptation may have a genetic basis. In this study, we aim to identify the genetic factors influenc-
ing the metabolic adaptation performance during early lactation. In particular, we are
interested in identifying genes as well as pathways associated with levels of candidate metabo-
lites in the blood plasma, which were previously confirmed to be essentially involved in the reg-
ulation of metabolic adaptation in dairy cows [2,4,6–10].

Genome-wide association studies (GWAS) using single marker analysis (SMA) have been an
essential tool for identifying genetic effects. GWAS approaches have been used to detect genomic
regions which affect parameters changing during a negative energy balance of dairy cows and milk
production-related traits [11–13]. When applied to high density marker data, the SMA approach
usually has a massive multiple testing problem, which, when accounted for properly, substantially
decreases the power to detect true genetic effects. Another shortcoming of the SMA approach is
that it ignores the fact that genes may be represented by several markers and so the effect of a gene
may be split up into several marker effects, each of which might not be large enough to pass the
significance threshold. Therefore, especially in human genetics, researchers have come forward
with gene-based association approaches aiming to overcome the limitations of the SMA [14–19].

In general, the main idea of a gene-based approach is to test each gene instead of each SNP
separately by summarizing all SNP-effects annotated to a gene together to one main gene-
effect. Here, one main challenge has been how to summarize the SNP-effects reasonably in
order to obtain an efficient gene-level test statistic. To date, a number of methods has been pro-
posed ranging from simple gene-level statistics like the minimum p-value approach [18] to
complex statistics, which may account for the linkage disequilibrium (LD) structure or even in-
tegrate functional information of the SNPs [16,17,20,21]. For our analysis, we decided to em-
ploy the gene-based score test (GBST) adapted from Pan [21]. This approach accounts for the
LD structure of the SNPs in a gene and the gene size measured by the number of SNPs, which
in turn prevents the inflation of type I error.

In the following, we present the results of the GBST applied to the three key metabolites: (1)
non-esterified fatty acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose. We fur-
ther use the significant genes to detect metabolic pathways potentially affecting these traits to
gain understanding of their biological backgrounds. To this end, we adapt the methods com-
monly used for the analysis of gene expression profiles and gene sets in microarray data experi-
ments, termed gene-set enrichment analysis (GSEA) [22]. More precisely, we employ the
permutation-based weighted Kolmogorov Smirnov Test (WKST) by Subramanian et al. [23]
and the Wilcoxon Rank Sum Test (WRST) [22] for the identification of pathways, which have
been reported to be more successful than other approaches [22,24].

As a result, we found several biologically sensible genes and pathways associated with candi-
date metabolites during the transition period, which are essential for the adaptation of dairy
cows. We further identified the three pathways involved in the metabolism of lipids and steroids,
having a joint impact on all of our phenotypes. This may be regarded as evidence for the genetic
basis for the adaptation performance of dairy cows and, at the same time, reveals its complexity.

Results

Analysis Overview
In order to assess the genetic characteristics of the metabolic adaptation of dairy cows during
calving and lactation, we examined the three metabolites NEFA, BHBA and glucose at three
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critical points of time: 3 weeks before calving (T1), 4 and 13 weeks after calving (T2 and T3, re-
spectively). According to van Dorland et al. [6], Graber et al. [10] and Gross et al. [2,4,7], these
metabolites are key factors for the metabolic status of dairy cows during their early
lactation period.

NEFA and BHBA, both serving as energy sources, are negatively correlated with feed intake
and the synthesis of glucose, which is an essential substrate for milk synthesis. In general, dairy
cows exhibit increased concentrations of NEFA and BHBA during the transition period result-
ing in a higher risk for diseases such as ketosis or fatty liver. Hence, we are especially interested
in finding genes and pathways that could be responsible for regulating the concentration of
NEFA, BHBA and glucose. In particular, we wish to find pathways that are able to inhibit the
production of NEFA and BHBA and, at the same time, stimulate the production of glucose
during the transition period. To this end, we performed the GBST and GSEA using the mea-
surements of NEFA, BHBA and glucose at T1, T2 and T3. We also considered the changes of
the metabolites over time and thus used the ratio of their concentrations measured at the differ-
ent points of time (T2/T1, T3/T1, and T3/T2) for each metabolite, respectively, as
additional phenotypes.

Gene-based Analysis and SMA
For all the three traits considered, the GBST found 99 significant associations with the false dis-
covery rate (FDR) approach [25] and 46 with the Bonferroni-correction at a genome-wide
FDR or significance level of 5%. Table 1 summarizes the number of significant genes for each
of the three phenotypes. A detailed description of the discovered genes is listed in S1 Table and
the Manhattan plots for all our results can be found in S1–S3 Figs. As a comparison, we also
performed a simple SMA that identified only two significant genes (FDR = 5%), which were
also detected by the GBST. In the following, all results are based on the GBST at a genome-
wide FDR level of 5%.

First, we concentrate on the analysis of the results for the metabolite NEFA. Here, we found
several genes on chromosome 3 and 13 affecting the concentration of NEFA during the ante-
(T1) and post-partum (T3) period, respectively. However, these genes seem to have no statisti-
cal impact on the NEFA concentrations during the early lactation period with the highest
metabolic load (T2). Moreover, we discover the gene SNAI2 (snail homolog (Drosophila)) on
chromosome 14 to be significantly associated with the ratio of NEFA concentrations measured
at T2 and T1 (T2/T1, p = 6.28×10-7) as well as during T2 (p = 5.08×10-8). This strongly sup-
ports the view that SNAI2 is important for the regulation of this metabolite during lactation
and hence has an effect on the adaption of dairy cows. Also noticeable are the genes UGT2B15
(UDP glucuronosyltransferase 2 family, polypeptide B15) and MGC152010 (UDP glucurono-
syltransferase 2 family) associated with the ratio of NEFA (T3/T1) with p-values of

Table 1. Number of significant genes with the GBST (FDR = 5%) for the three metabolites.

Time/ratio NEFA BHBA glucose

T1 5 8 5

T2 5 10 3

T3 7 0 12

T2/T1 2 9 8

T3/T1 10 0 3

T3/T2 9 2 1

Sum 38 29 32

doi:10.1371/journal.pone.0122325.t001
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p = 1.11×10-15 and p = 1.27×10-11, respectively. This indicates that the regulation of the meta-
bolic status of dairy cows before and after the onset of lactation is indeed different, even though
usually the metabolic load is negligible at these times (T1 and T3).

In a similar fashion, we also identified several significant genes (i.a. DNAJC30 (DnaJ
(Hsp40) homolog, subfamily C, member 30) and WBSCR22 (Williams Beuren syndrome chro-
mosome region 22)) on chromosome 25 associated with the ratio of BHBA (T2/T1) with
p-values smaller than 1.69×10-6. Interestingly, these genes also seem to affect the BHBA con-
centration strongly (all p-values< 9.22×10-10) during the early lactation period with the high-
est metabolic load (T2) but not 3 weeks before or 13 weeks after calving. Moreover, further
investigations demonstrated that cows carrying both a minor allele at the SNP annotated to
DNAJC30 and only major alleles at the three SNPs in WBSCR22 tend to have higher BHBA
concentrations during the transition period (1.53 mmol/L on average) than cows with the op-
posite genetic characteristics (1.09 mmol/L on average). A Welch two sample t-test comparing
the two different groups of cows yielded a p-value of p = 0.044.

Finally, we focused on the analysis of the phenotype glucose, an essential metabolite for the
synthesis of milk during lactation. Here, the gene UEVLD (UEV and lactate/malate dehydroge-
nase domains) seems to play an important role in the regulation of the glucose concentration
during lactation (T2, T2/T1). Similar to the results of BHBA, we investigated the 15 SNPs an-
notated to this gene. Among these SNPs, we identified 7 markers interacting with each other.
Cows that carry only major alleles at these loci have a relatively high concentration of glucose
in their blood at T2 (3.3 mmol/L on average, other cows: 3.0 mmol/L on average). Comparing
the glucose concentration of these cows with the others yielded a p-value of p = 3.3×10-7 at T2,
but only p = 0.01 and p = 0.002 at T1 and T3. Even though the differences are significant at all
three points in time, the effect appears to be highest during the early lactation period (T2, week
4 post-partum).

Pathway Analysis
For the pathway analysis, we used the permutation-based weighted Kolmogorov Smirnov Test
(WKST) by Subramanian et al. [23] as well as the Wilcoxon Rank Sum Test (WRST) [22] with
N = 10,000 permutations. Note that, from a statistical point of view, the tests were performed
in a two-step framework (see Methods Section), in which the results of the GBST were used as
input information for the WKST andWRST. By doing so, we were able to ignore the uncertain-
ty resulting from the estimation of the p-values for the GBST, which in turn could increase the
uncertainty in the estimation of the p-values for the WKST andWRST. In order to account for
this, we will only use the empirical p-values obtained by the WKST and WRST in the following
analysis to rank the pathways according to their importance, but will not look at their signifi-
cance. The aim is then to identify biologically and physiologically sensible pathways among the
five top ranked pathways with the smallest p-values for each of the three phenotypes.

S2 and S3 Tables show the five top ranked pathways for each of the three phenotypes and
points in time with the WKST and WRST, respectively. Due to the huge amount of results, we
predominantly concentrated on pathways actively influencing the three phenotypes at T2 and
T2/T1. Table 2 lists all the pathways ranked at least fifth by both WKST as well as WRST.
Among the 20 phenotype-to-pathway associations, we found many associations to be biologi-
cally and physiologically sensible. We were further able to connect most of our findings to
other studies (see Table 2).

On the one hand, according to our expectations, the pathway involved in the synthesis and
degradation of ketone bodies is significantly associated with the ratio of the ketone body BHBA
as well as the pathway for the metabolism of starch and sucrose with glucose. On the other
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hand, we were not able to establish a significant association of the galactose metabolism with
glucose during lactation. This association was only significant 13 weeks after calving (T3, com-
pare S2 Table).

Finally, we concentrate on the joint analysis of the three metabolites to discover pathways
involved in the regulation of all three phenotypes and thus important for the metabolic adapta-
tion of dairy cows (see Methods Section). Table 3 lists the 5 top ranked pathways resulting
from the mentioned analysis (only for T2 and T2/T1, for the complete results please refer to
the supporting information).

Table 2. Phenotype-pathway associations that were at least fifth ranked by the WKST as well as the WRST, and references supporting the
corresponding association if known.

Phenotype Time Pathways Literature

NEFA T2 Histidine metabolism [26]

Sulfur metabolism

T2/T1 Glycerolipid metabolism [27]

Glycerophospholipid metabolism [27]

Taurine and hypotaurine metabolism

BHBA T2 Retinol metabolism [28]

Tyrosine metabolism

Inositol phosphate metabolism

Steroid hormone biosynthesis

T2/T1 Synthesis and degradation of ketone bodies [29]

Tryptophan metabolism

Inositol phosphate metabolism

glucose T2 Steroid biosynthesis [30]

Other glycan degradation

Fatty acid elongation

Ether lipid metabolism

T2/T1 Ether lipid metabolism

Starch and sucrose metabolism [29]

Steroid hormone biosynthesis [30]

Glycerophospholipid metabolism

doi:10.1371/journal.pone.0122325.t002

Table 3. The 5 pathways with the smallest p-values according to the WKST and WRST for the joined analysis of the NEFA, BHBA and glucose
measurements at T2 and T2/T1.

Time Rank WKST P-Value (WKST) WRST P-Value (WRST)

T2 1 Steroid hormone biosynthesis 0.0018 Steroid hormone biosynthesis 0.0040

T2 2 Retinol metabolism 0.0063 Other glycan degradation 0.0199

T2 3 Drug metabolism—other enzymes 0.0115 Drug metabolism—cytochrome P450 0.0222

T2 4 Starch and sucrose metabolism 0.0124 Retinol metabolism 0.0223

T2 5 Other glycan degradation 0.0174 Starch and sucrose metabolism 0.0242

T2/T1 1 Ether lipid metabolism 0.0030 Glycerophospholipid metabolism 0

T2/T1 2 Glycerophospholipid metabolism 0.0034 Ether lipid metabolism 5.00E-04

T2/T1 3 Other glycan degradation 0.0061 Nitrogen metabolism 0.0028

T2/T1 4 Tyrosine metabolism 0.0113 Tyrosine metabolism 0.0151

T2/T1 5 Nitrogen metabolism 0.0144 Other glycan degradation 0.0174

doi:10.1371/journal.pone.0122325.t003
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Interestingly, we found that the two pathways involved in the metabolism of ether lipids
and glycerophospholipids are highly ranked by both the WKST as well as the WRST method.
Moreover, both pathways demonstrate empirical p-values smaller than 0.005 at T2/T1. This
finding agrees with the results of Klein et al. [31], who were able to establish a link between the
glycerophosphocholine levels in milk and the susceptibility for ketosis in dairy cows during
early lactation. As for T2, the pathway for steroid hormone biosynthesis is highly associated
with the three metabolites, showing p-values of p = 0.0018 and p = 0.004 with the WKST and
WRST, respectively. Fig. 1 illustrates the similarities of the three pathways and their number of
genes. While the two lipid pathways share the majority of the genes involved, they seem to
have no similarities with the steroid pathway.

Discussion
Metabolic adaptation has been of great interest for dairy scientists during the last decades, but
up to the present, little attention has been paid to its genetic aspects. In this study, we investi-
gated the genetic factors influencing the metabolic adaptation of dairy cows during their transi-
tion period. In particular, we were interested in the two following questions:

(1). Do the differences in metabolic adaptation between cows have a genetic basis?

(2). If there is such a genetic basis, what genes and pathways are responsible for the metabolic
adaptation?As for the first question, our findings strongly support the idea that the meta-
bolic adaption indeed has a genetic basis. Both the gene-based as well as the pathway anal-
ysis revealed many genes and pathways influencing the three metabolites, but only at
certain points of time. For instance, the gene UEVLD appears to affect the phenotype glu-
cose only in the early lactation, but not 4 weeks before or 13 weeks after calving. The op-
posite case can be observed from the relations between several genes on chromosome 3
and 13 and the phenotype NEFA.

With regard to the second question, we found several significant genes and pathways regu-
lating the concentrations of NEFA, BHBA and glucose during the transition period. Three
pathways with a number of SNPs detected (steroid hormone biosynthesis, ether lipid metabo-
lism and glycerophospholipid metabolism) were found to jointly affect the key metabolites

Fig 1. Venn-diagram for the number of genes annotated to the three pathways steroid hormone
biosynthesis (S), ether lipid metabolism (E) and glycerophospholipid metabolism (G).

doi:10.1371/journal.pone.0122325.g001
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NEFA, BHBA and glucose. The genes distributing to the significance of the three pathways are
involved in various sectors of the lipid metabolism. Especially, the repeated link to the choles-
terol metabolism in dairy cows coping with elevated NEFA concentrations is obvious and was
recently shown at a physiological level [32]. Interestingly, no SNPs were detected for genes,
which are directly involved in the ketogenesis. However, the findings regarding associations to
different phenotypes in BHBA concentrations are very probably an indirect result of the
changes in NEFA concentrations. The availability or surplus of NEFA is a main factor deter-
mining the degree of BHBA synthesis, e.g. ketogenesis is regulated through NEFA plasma con-
centration. Similar to BHBA, glucose concentration cannot be directly connected to significant
associations with SNPs in the presented genes and pathways. However, the occurrence of re-
duced glucose availability at high BHBA concentrations was recently demonstrated [33] and is
presumably the reason for the low glucose concentration as a secondary effect of high
NEFA concentration.

Generally, we were able to connect most of our findings to previous studies and hence con-
firm their plausibility. As an example, the associations of the glycerolipid and glycerophospho-
lipid metabolism with the ratio of NEFA concentrations at T2 and T1 may be explained by the
intense mobilization of lipids from tissue stores in the transition period resulting in a substan-
tial release of NEFA into the blood stream [27]. Another interesting pathway associated with
NEFA is the histidine metabolism (at T2). While there is no apparent connection between his-
tidine and NEFA, Vanhatalo et al. [26] found that histidine significantly increases the milk and
milk protein yield during lactation, but at the same time decreases its lactose and fat contents.
Nevertheless, when interpreting these results, we have to take into account that even though
the three considered metabolites are indeed indicators for the metabolic adaptation of dairy
cows, they may not be fully indicative to the whole process of adaptation. Therefore, we suggest
that the discovered genes and pathways should be viewed as potential candidates for closer in-
vestigation and validation from a biological perspective in future studies considering the com-
plex endocrine and metabolic interactions.

In order to answer the two mentioned questions, we performed a GWAS using the GBST as
suggested by Pan [21] followed by a GSEA for the identification of pathways. Even though the
focus of this work was not methodological, our results demonstrated that using the GBST is
more successful than the conventional SMA in identifying biologically sensible genes even with
a relatively small samples size. For all of the considered traits, we discovered highly significant
genes consisting of many SNPs interacting with each other. The SMA, however, missed most
of these genes, since it is only designed to dissect single SNP-effects and has low power due to
the massive multiple testing problem. Using the example of the Bonferroni-correction, Table 4
explains the apparent loss of power of the SMA compared to the GBST. By testing each single
SNP separately, the SMA needs to test about 30 times more null hypotheses than the GBST re-
sulting in much more conservative significance threshold per test.

The gene-based approach in combination with the pathway analysis is a well-established
and commonly used method in human genetics. Here, a number of methods have been

Table 4. Comparison of the per test significance threshold between the SMA and GBST after
adjustment with the Bonferroni-correction at a genome-wide level α = 0.05.

m (# of SNPs/genes) α/m -log10(α/m)

SMA 601,455 SNPs (all) 8.31×10-8 7.08

231,712 SNPs (intragenic) 2.16×10-7 6.67

GBST 22,025 genes 2.27×10-6 5.64

doi:10.1371/journal.pone.0122325.t004
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proposed and successfully employed to identify genes and pathways contributing to the devel-
opment of complex human diseases (for some examples, see [15,16,19,20,34]). In animal genet-
ics and breeding, researchers in general are still relying on simple SNP-based association
studies. However, Peng et al. [15] as well as our study have shown that complex phenotypes are
often affected by the joint action of many variants within a gene or even of many genes within
a pathway. Hence, we believe that the use of the gene- and pathway-based approach in animal
science is a promising tool to shed new light on the genetic complexity of common traits and
deepen the understanding of their biological backgrounds.

Material and Methods

Phenotype Data
The data used in our analyses were obtained from a large on-farm study involving 232 dairy
multiparous cows from different breed types (Brown Swiss, Holstein, Swiss Fleckvieh) housed
at 64 farms (at least 2 cows per farm used in the trial, calving between November 2007 and
April 2008, similar diet: grass and maize silage based feeding with additional concentrate, all
cows under supervision of breeding associations) [35] and 50 Holstein dairy cows kept under
controlled feeding conditions on an experimental farm (grass and maize silage based feeding
with additional concentrate) [2]. In brief, blood samples were taken from cows which had a sig-
nificant metabolic load in their previous early lactation as estimated by the fat:protein-ratio
and milk fat content reflecting a tremendous body fat mobilization. Based on previous frequent
measurements during the transition period, samples were taken at three critical stages of lacta-
tion: T1 = week 3 before expected calving (not lactating and no metabolic load); T2 = week 4
post-partum (lactating and high metabolic load), and T3 = week 13 after parturition (lactating
and no metabolic load). Plasma concentrations of NEFA, BHBA and glucose were measured at
T1, T2 and T3 using commercial kits as described by Graber et al. [35] and Gross et al. [2].
Table 5 presents the data summary for the three phenotypes and S4–S6 Figs. the
corresponding histograms.

Genotype Data
The 282 dairy cows were genotyped with the Illumina next-generation High-Density Bovine
BeadChip. The resulting genotype dataset, consisting of 777,692 markers for 282 dairy cows,
was then quality controlled and filtered with a SNP call rate of 95% and minor allele frequency
(MAF) of 5%. After filtering and quality control, 601,455 SNPs for 282 animals remained.

To assess a possible stratification of the material, a principal component analysis (PCA)
based on the genotypes was performed. Fig. 2 displays the first two principal components of
the PCA. According to the results, we divided the 282 animals into two groups (Holstein, Red
Holstein and Fleckvieh vs. Braunvieh). This grouping reflects that Swiss Fleckvieh historically
was heavily interbred with Red Holstein. Within the two subgroups missing genotypes were
imputed with the program BEAGLE (Version 3.3.2 [36]). After removing 38 cows with missing

Table 5. Mean and standard deviation of the three metabolites NEFA, BHBA and glucose.

μ ± σ NEFA log(mmol/L) BHBA mmol/L Glucose mmol/L

T1 4.269 ± 0.691 0.582 ± 0.266 3.719 ± 0.360

T2 5.624 ± 0.647 1.349 ± 1.081 3.146 ± 0.560

T3 4.643 ± 0.642 0.770 ± 0.352 3.702 ± 0.433

doi:10.1371/journal.pone.0122325.t005
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phenotypes, a final dataset with 178 animals in group 1 (G1) and 66 animals in group 2 (G2)
was available for our analyses.

Gene and Pathway Annotation
In order to perform the GBST and pathway analysis, we need a gene-annotation that allocates
SNPs to genes and a pathway-annotation for genes to pathways. For the gene-annotation, we
downloaded a list of all known genes from the Ensembl Genes database (Release 73, UMD3.1)
for the species Bos taurus [37]. We allocated SNPs to genes according to the transcription-start
and—end positions including exon, intron, UTR variants as well as SNPs up to 5kbp up- and
downstream. The final gene-annotation includes 22,025 genes containing at least one intragen-
ic SNP. For the pathway analysis, we retrieved a gene to pathway annotation from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database [29]. We further matched the different
gene identifiers from the Ensembl and KEGG database to obtain a final pathway-annotation
for our dataset with 81 metabolic pathways containing at least 5 genes.

Gene-based Mapping and Pathway Analysis
Statistical Model. Denote y the observed vector of phenotypes of n individuals and X an

n×m matrix with values in {0, 1, 2} representing the genotypes for a gene G consisting ofm

Fig 2. The two leading principal components of the analysis with the genotype data with 601,455
SNPs for 282 animals. The first and second principal components explain 8.7% and 1.4% of the total
variation, respectively. The dashed line indicates the division of the cows into two groups.

doi:10.1371/journal.pone.0122325.g002
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SNPs. To test the association of the gene G to the phenotype y, we fitted a linear regression
model

y ¼ Zyþ Xbþ "; "eNð0; s2InÞ;

where Z denotes the n×(k+1) matrix of covariates accounting for possible environmental factors
or population structures, including the intercept and θ = (θ1,θ2,. . .,θk+1)

t, β = (β1,β2,. . .,βm)
t are

the regression coefficients. Accordingly, the statistical problem is to test whether the phenotype
y is influenced by any of them SNPs, that isH0: β = 0. For the SMA approach, we performed a
single marker regression and employed a simple t-test based on the same statistical model, but
only for one SNP (m = 1) at a time.

Population Stratification and Environmental Factors. The principal component analysis
based on the genotypes (see Fig. 2) revealed a substantial population structure within the group
G1 with 178 cows from the breeds Holstein, Red Holstein and Fleckvieh. To avoid inflation of
the type I error [38], it is important to account for this stratification both in the gene-based as
well as single marker analysis. We conducted a PCA for the group G1 as to obtain covariates
for the regression model and employed the Tracy-Widom test [38] to assess how many of the
leading principal components contributed significantly to the population structure. As a result,
the first 17 principal components were significant (α = 0.01) and thus were added as covariates
to the linear regression model for the group G1. We chose a very conservative significant
threshold in order to avoid overcorrection of the regression model, which would in turn mask
possible true effects. The covariate matrix for the whole dataset (G1+G2) with n = 244 animals
is then given by Z = (1n, IG1, PC2, . . ., PC17), where 1n = (1, 1,. . .,1)t, (IG1)j = 1 if animal j is in
Group G1 and 0 otherwise, and (PCi)j is the value of the i-th principal component for animal j
if it belongs to group G1 and 0 otherwise for j = 1, 2,. . .,n.

The NEFA, BHBA and glucose measurements of the 244 cows are from two different stud-
ies, which might have different management systems. In order to account for this, we include
an additional covariate IE with (IE)j = 1 if animal j is from the on-farm study and 0 otherwise.
For comparison purposes, we perform the gene-based and pathway analysis twice, with the co-
variate matrix Z and Z� = (1n, IE, IG1, PC1, PC2,. . ., PC17). The results of the two analyses are
similar, however, the analysis with the matrix Z yields smaller p-values. Therefore, in this
study, we will present results based on the matrix Z.

Gene-based Score Test. For our gene-based analysis, we employed a modification of the
Score Test, motivated by Pan [21]. To this end, denote U the score vector for them SNPs ad-
justed for the covariates given by

U ¼ 1

ŝ
Xtðy � PZyÞ;

where PZ = Z(ZtZ)−1Zt and ŝ is the Maximum-Likelihood estimate for σ under H0. Then, the
covariance matrix of U, also adjusted for the covariates Z, is

C ¼ ðX � PZXÞtðX � PZXÞ:

To test H0, Pan [21] suggests using the test statistic

SSU ¼ UtDiagðCÞ�1U ;

where Diag(C) is a diagonal matrix with only the diagonal elements of C as non-zero entries,
instead of the standard score statistic SSU΄ = UtC-1U. To calculate the distribution of the score
statistic SSU, we used a χ2-approximation by Zhang [39], while accounting for the fact that σ2

was estimated by ŝ2 ¼ 1
n
ðy � PZyÞtðy � PZyÞ.
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According to Pan [21], the modified test statistic SSU is more powerful than SSU’ for simu-
lated genetic data. Freytag and Bickeboeller [40] also confirmed this finding by employing this
method in the context of gene ranking. Using a simulation study, they compared this method
to other summary statistics for genes and reported that the test based on the score statistic out-
performs all other methods in many scenarios, in particular, when interactions between SNPs
are present.

Pathway Analysis. Using the p-values obtained by the GBST, we performed a gene set en-
richment analysis (GSEA) to identify metabolic pathways associated with the phenotypes. For
this purpose, we adapted the weighted Kolmogorov-Smirnov Test (WKST) suggested by Sub-
ramanian et al. [23]. This method was shown to be superior compared to other gene set-level
statistics by Hung et al. [22].

Denote S a given set of genes (e.g. a pathway) and L = {g1, g2,. . .,gN} a ranked list of all genes
according to a ranking metric r(gj) = rj with r1 � r2 �. . .� rN. Importantly, the metric r should
reflect the ‘importance’ of a gene for the phenotype under consideration.

In order to test the association of the pathway S and the considered phenotype according to
the GSEA approach, we first calculate an Enrichment Score ES for this pathway and then per-
mute the phenotypes to obtain its null distribution. To this end, we start with a running-sum
RS = 0. We then walk down the list L (i = 1, 2,. . .,N) and increase RS by

riX
gj2S

rj

if the gene gi is contained in the pathway S, and decrease RS by

1

N � NS

if the considered gene is not contained in the pathway S, where NS = |S| is the number of genes
in the pathway S. Finally, the Enrichment Score ES is defined by the maximum deviation of the
running sum RS from zero. To assess the significance of ES while accounting for the correlation
structure of the genes, we permuted the phenotypes and repeated the whole procedure 10,000
times for each pathway and phenotype. For comparison purposes, we also employed the per-
mutation-based Wilcoxon Rank Sum Test (WRST) [22] based on the test statistic

RS ¼
X
gj2S

RankLðgjÞ:

In our analyses, we ranked our genes according to the p-values obtained by the GBST and
set. r(gj) = −log10(pj) The analysis was performed for each metabolite and each points of time
separately. Furthermore, in order to investigate whether there is a pathway that is able to regu-
late all three metabolites simultaneously, we also conducted a joint pathway analysis for the
three metabolites. Here, we ranked the genes according to the product of the p-values obtained
from the gene-based analysis with the three different phenotypes and set

rðgjÞ ¼ �log10ðpNEFAj pBHBAj pglucosej Þ. This will especially raise the rank of genes exhibiting small p-

values for all of the three metabolites. As a result, we hope to discover pathways involving in
the regulation of all the three phenotypes and thus are important for the metabolic adaptation
of dairy cows.

Multiple Hypothesis Testing. Both the SMA and the GBST require the testing of multiple
hypotheses (SNPs or genes) simultaneously. Therefore, it is necessary to adjust the significance
threshold of each single test properly in order to avoid an inflation of the genome-wide type I
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error rate. A commonly used, but very conservative method is the Bonferroni-correction. Here,
the significance threshold for each single test α’ is given by the genome-wide rate α (e.g.
α = 0.05) divided by the number of hypotheses testedm (a 0 ¼ a

m
). By doing so, the probability

for detecting at least one false positive signal, also termed as the familywise error rate (FWER),
has an upper boundary determined by the level α. Another and more powerful method to con-
trol the type I error rate is the False Discovery Rate (FDR) approach by Benjamini and Hoch-
berg [25]. As opposed to the Bonferroni-correction, the FDR approach aims to keep the
expected proportion of false positives instead of the FWER below a certain level q. Thereby, the

per test significance level α’ is determined so that the equation a 0m
Rða 0Þ � q holds, where R(α΄) de-

notes the number of tests that were declared significant at the level α’.
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