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Abstract 1 

Hypothesis 2 

Descriptive statistics with respect to patient anatomy and image guidance accuracy can be utilized to 3 

assess the effectiveness of any system for minimally invasive cochlear implantation, on both an 4 

individual patient and wider population level.  5 

Background 6 

Minimally invasive cochlear implantation involves the drilling of a tunnel from the surface of the mastoid 7 

to cochlea, with the trajectory passing through the facial recess. The facial recess anatomy constrains 8 

the drilling path and places prohibitive accuracy requirements on the utilized system. Existing single 9 

thresholds are insufficient for assessing the effectiveness of these systems. 10 

Methods 11 

A statistical model of the anatomical situation encountered during minimally invasive drilling of the 12 

mastoid for cochlear implantation was developed. A literature review was performed to determine the 13 

statistical distribution of facial recess width; these values were confirmed through facial recess 14 

measurements on CT data. Based on the accuracy of a robotic system developed by the authors, the 15 

effect of variation of system accuracy, precision and tunnel diameter examined with respect to the 16 

potential treatable portion of the population.  17 

Results  18 

A facial recess diameter of 2.54±0.51 mm (n=74) was determined from a review of existing literature; 19 

subsequent measurements on CT data revealed a facial recess diameter of 2.54±0.5 mm (n = 23). The 20 

developed model demonstrated the effects of varying accuracy on the treatable portion of the 21 

population.  22 

Conclusions  23 

The presented model allows the assessment of the applicability of a system on a wider population scale 24 

beyond examining only the system’s ability to reach an arbitrary threshold accuracy.  25 

 26 
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Introduction 27 

The enabling of minimally invasive cochlear implantation (MICI) utilizing robotic and image guidance 28 

technology has been the focus of significant research efforts over the last decade. The approach 29 

involves drilling a tunnel directly from the surface of the mastoid to the cochlea, removing the need for 30 

the traditional mastoidectomy, in which a portion of the mastoid is milled away to allow the visualization 31 

of structures for the safe creation of a posterior tympanotomy and access to the cochlea for electrode 32 

insertion. Previously investigated approaches to the procedure include hand held guidance using 33 

standard surgical navigation techniques1, patient specific templates2, and image-guided robotics 34 

utilizing modified industrial3 and custom manipulators in serial4 or parallel5,6 configurations.  35 

The major technical challenge of the procedure is accuracy, with newly developed technologies 36 

routinely reporting achieved drilling accuracy results1 – 6. However, it remains unclear how these values 37 

relate to clinical practice, with existing accuracy reports often referring to a previously defined 38 

requirement of 0.5 mm or better at a target on the cochlea1. This threshold does not sufficiently reflect 39 

the complexity related to safety aspects that are applicable both on a population and individual patient 40 

level. Due to significant variations in patient anatomy, general claims of applicability and safety based 41 

on a “one-size-fits-all” threshold are insufficient with respect to an image-guided system for MICI.  42 

The decision about whether the system can be applied in a particular case should be made based on 43 

the specific anatomy of the patient and the known accuracy of the system, investigated in clinically 44 

relevant and sufficiently statistically powered experiments. Furthermore, it would be of interest to 45 

investigate the applicability of a system on a population level beyond its ability to reach an arbitrary 46 

threshold. For these reasons, we propose to build upon the concept introduced by Nau7 in which the 47 

ability of a robot to perform a surgical task within required tolerances was assessed based on industrial 48 

standards for manufacturing. Applied to MICI, required tolerances can be specified based on patient 49 

anatomical information.  50 

Subsequently, a method that, based on a given system’s descriptive accuracy statistics, can compute 51 

the treatable portion of the population using available statistical information on the facial recess and 52 

estimate the likelihood of a safe procedure given an individual patients anatomy and system 53 

configuration, was developed and is presented herein. The developed model was then utilized to 54 

evaluate the theoretically treatable portion of the population utilizing our own investigational robotic 55 
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system4, besides a number of arbitrary alternative systems to demonstrate how the technique can be 56 

utilized to analyze the applicability of any future developed system.  57 

Materials & Methods 58 

A Statistical Model for Patient Treatability Assessment 59 

The desired model requires information about both the size of the facial recess and the specific system 60 

utilized. First, one can define a safe region based on the specific characteristics of the system in use. If 61 

a drill bit with a known diameter is utilized as part of a system with a characterized level of accuracy, 62 

such a safe region can be defined as a circle as shown in Figure 1, with a radius defined as in (1). 63 

 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
∅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

2
+  𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑛𝑛 ⋅ 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 (1) 

whereby 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the radius of the safety region,  ∅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the drill diameter, 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴 the system mean 64 

accuracy, 𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴 the standard deviation of the system accuracy and 𝑛𝑛 defines the rate at which the drilled 65 

trajectory will fall within this safety region (i.e. the number of standard deviations). 66 

If one then considers the facial recess diameter of a specific patient as well as the specific distribution 67 

of the system accuracy, the percentage level at which a specific facial recess diameter intercepts with 68 

the safety region can be calculated. Thus, for a specific patient a “confidence level” can be defined 69 

based on the cumulative distribution function (CDF). Note that as a safety region cannot be defined for 70 

a facial recess diameter of less than that of the drill diameter (𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 0), the normal CDF must be 71 

altered to describe the folded CDF as in (2), for 𝐹𝐹𝐹𝐹𝑒𝑒𝑓𝑓𝑓𝑓 ∈ [0,∞). 72 

 
𝐹𝐹�𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 � 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 ,𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎� =

1
2
�𝑒𝑒𝑒𝑒𝑒𝑒 �

𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎
𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎√2𝜋𝜋

� + 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎
𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎√2𝜋𝜋

�� 
(2) 

Whereby 𝐹𝐹(𝑥𝑥 | 𝜇𝜇,𝜎𝜎) is the folded normal CDF, 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 are the mean and standard deviation of the 73 

system accuracy, 𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 is the effective radius of the facial recess, described as the measured radius 74 

of the facial recess minus the radius of the drill, and 𝑒𝑒𝑒𝑒𝑒𝑒 is the Gauss error function. Thus, this function 75 

will provide the probability that the drill will fall within a circle with a diameter of 𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒. 76 

The model described mathematically above and graphically in Figure 1 allows the definition of a 77 

confidence level for a specific patient, and can be extended to estimate the minimum facial recess 78 
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diameter which a system can treat with a certain confidence level. In order to allow this information 79 

regarding two factors is required: the facial recess diameter and the specific accuracy statistics of the 80 

system to be evaluated. The definition of these parameters is described in the following sections. 81 

Determination of Facial Recess Diameter  82 

The facial recess is bounded posteriorly by the facial nerve, anteriorly by the posterior annulus of the 83 

tympanic membrane or chorda tympani and superiorly by the ossicles (Figure 2). The dimensions of 84 

the facial recess (and extended facial recess excluding the chorda tympani) have been described in a 85 

number of previous publications, utilizing a variety of techniques including measurements on medical 86 

image (CT) data8,9,10, histological specimens11,12,13, and physical measurements on extracted bone 87 

samples14,15,16. All previously described dimensions of both the facial recess and extended facial recess 88 

are reported in Table 1. 89 

With respect to our target scenario, we consider measurements of the facial recess at the level of the 90 

round window or basal turn of the cochlea to be most relevant. Only these values were included in this 91 

study (see Table 2). Subsequently, the mechanical measurements utilizing a caliper after 92 

skeletonization of the chorda tympani and facial nerve16, measurements in medical image data after 93 

MICI drilling10 and histological measurements12 will be utilized for further analysis. While the 94 

methodologies utilized vary, each represents measurements of the same anatomical region and thus 95 

similar values can be expected.  96 

The dimensions of the facial recess derived from literature were subsequently confirmed in a study 97 

using a total of 23 temporal bone specimens. High resolution CT scans of the specimens were acquired 98 

(Siemens Somatom Definition Edge, 0.156 × 0.156 × 0.2 mm3) and the relevant structures segmented 99 

utilizing a custom planning software17. A trajectory was defined from the mastoid surface to the round 100 

window through the facial recess, with the trajectory position optimized to maximize the distance 101 

between the drill and the anatomy. The size of the facial recess was then calculated by summing the 102 

trajectory diameter and the distance between the surface of the trajectory tunnel to the chorda tympani 103 

and facial nerve respectively (Figure 2). 104 
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Definition of System Accuracy and Configuration 105 

The potentially treatable patient population can be evaluated according to (2) by assessing the facial 106 

recess diameter of the population and utilizing available descriptive accuracy statistics of a given 107 

system. Additionally, effects on the potentially treatable patient population as a result of alterations in 108 

the system (i.e. accuracy, drill diameter) can be investigated. Consequently, we define four potentially 109 

valid system configurations for further analysis as follows: 110 

• System X0: with (0.15±0.08 mm, ØDrill = 1.8 mm), the system as described in Bell et al4;  111 

• System X1 with (0.5±0.08 mm), lower accuracy but similar precision; 112 

• System X2 with (0.15±0.25 mm), similar accuracy but lower precision; 113 

• System X3 with (0.5±0.25 mm), both lower accuracy and precision. 114 

Additionally, we consider the effect of varying tunnel diameters; alternative diameters of 1.4 mm (lower 115 

boundary to accommodate an electrode), 1.6 and 2.0 mm (upper bound given by the anatomical 116 

situation) were considered. The effects of altering the tunnel diameter and system accuracy are 117 

assessed separately based on the system accuracy X0; a total of 7 systems are thus evaluated.  118 

Results 119 

Determination of Facial Recess Diameter 120 

The width of the facial recess was successfully determined in all 23 samples, with a mean diameter of 121 

2.54±0.5 mm derived. The history of the specific temporal bones is unknown, however previous studies 122 

have shown no significant differences between the size of the facial recess in adults and children18 and 123 

between subjects of different races15. The calculated values were found to be in close agreement with 124 

those observed in previous CT, histologic and physical evaluation. 125 

The combination of the most relevant measurements from literature (i.e. those of the facial recess at 126 

the level of the round window or basal turn of the cochlea) and the data extracted from this work reveals 127 

a mean facial recess diameter of 2.54 ± 0.5 mm, with a total sample size of 97 samples (Table 2); this 128 

value was utilized for all subsequent calculations. No statistically significant difference in facial recess 129 

diameter was observed based on the analysis method utilized (unpaired t-test, p=0.05). 130 
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Statistical Evaluation of Population Treatability 131 

The developed methods allowed evaluation of the relationship between the specified system accuracy 132 

and facial recess size for both the base system and hypothetical systems. 133 

The statistical probability that a system with a given accuracy and drill diameter will drill within a given 134 

radius can be represented graphically as shown in Figure 3, in which the facial recess diameter of the 135 

population in the range of 2 standard deviations from the mean is shown. 136 

Utilizing system X0, approximately 46.7% of the population can accommodate a safety region of three 137 

standard deviations above the mean drilling error, when utilizing a drill diameter of 1.8 mm; 60% and 138 

71% of the population can accommodate safety regions covering 2σ and 1σ.  139 

With respect to the defined theoretical systems, the accuracy and precision variations of the systems 140 

demonstrates the effects these values have on the size of the system safety region and subsequent 141 

effects on the treatable portion of the population (Figure 3, Table 3). With a defined threshold of three 142 

standard deviations, the effect of changes in the precision of the system tend to dominate.  143 

Discussion 144 

MICI has been the subject of significant research over the past decade, culminating in the first clinical 145 

trials in 201319. Given the delicate nature of the procedure, particularly the lack of direct visual feedback 146 

and proximity to the facial nerve, a more complex model for the assessment of the system performance 147 

both on a population level, as well as on an individual patient level, is required. To this end, the definition 148 

of inclusion criteria for MICI must reflect the fact that the integrity of the facial nerve is of the highest 149 

priority. Thus, we suggest that accuracy assessments using a “one size fits all” threshold are potentially 150 

misleading. As the incidence of permanent FN injury reported in the literature for conventional CI 151 

surgery is approximately 0.1%20, a robotic approach should remain, at minimum, equally safe with 152 

respect to this value. We therefore suggest the use of a 3-sigma level, representing approximately 153 

99.9% of cases drilled potentially within the safe region of the facial recess. While a threshold of 3σ 154 

limits the number of potentially treatable patients (an inclusion rate of 47% is expected for initial clinical 155 

trials using system X0) such a threshold should serve to increase procedural safety.  156 

While this recommended conservative safety margin will ensure a potentially safe procedure in 99.9% 157 

of cases, it is important to note that this value cannot be inverted to assess the possible rate of nerve 158 
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damage because the higher error in the remaining cases will not always be directed towards one of the 159 

bounding nerves (facial nerve or chorda tympani). The definition of a safe region based on the 160 

characterized accuracy does therefore not provide any information about how likely the system is to 161 

actually damage any specific structure, only the probability that the drill will fall within a safe region.  162 

Furthermore, the statistical model described above assigns equal weighting to both the chorda tympani 163 

and facial nerve, while in reality the surgeon is much more likely to sacrifice the chorda tympani (up to 164 

20% of cases21) during traditional cochlear implant surgery. This may be reflected during planning of 165 

the trajectory, which rarely passes through the center of the facial recess, but is instead offset away 166 

from the facial nerve.  Extension of the model to account for these factors is relatively simple: if one 167 

calculates the distance corresponding to the specific change in desired probability, this can then be 168 

added on to the effective facial recess diameter. As an example, if a confidence level of one standard 169 

deviation is acceptable at the chorda tympani, two standard deviations can be added to the effective 170 

facial recess diameter for the calculation. In reality, the three sigma safety region remains, but with the 171 

center of the trajectory shifted such that the region overlaps with the border of the chorda tympani at a 172 

level of one standard deviation. In the baseline case, this would increase the treatable portion of the 173 

population to approximately 60%. Additionally, although a diameter of 1.4 mm is currently required such 174 

that an electrode can be inserted through the tunnel, future developments may include reductions in 175 

electrode diameter and thus allow smaller tunnels, leading to increases in the treatable portion of the 176 

population. 177 

The facial recess measurements obtained adhere closely to data derived in previous studies; 178 

consequently we conclude that the available data on the width of the facial recess is valid and that a 179 

value of 2.54±0.5 mm can be accepted as representative. The current approach assumes that patient 180 

anatomy is normally distributed, while the CT data utilized for analysis suggests that anatomy may be 181 

skewed slightly positively (i.e. towards larger diameters), a normal distribution will provide a good, if 182 

slightly low, initial estimation of patient treatability. If future evaluation of the anatomy reveals significant 183 

variation from the assumed normal model, the approach can be relatively easily modified to reflect the 184 

new distribution. With respect to the identification of anatomical structures, errors in segmentation may 185 

lead to under- or overestimation of facial recess diameter and any image-guided system relies on the 186 

accuracy of the underlying image-based plan. Subsequently, precise and reproducible identification of 187 

anatomical structures within medical image data is imperative to ensuring the integrity of the anatomy. 188 
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Furthermore, the approach assumes that the facial recess is the major limiting factor with respect to 189 

trajectory placement. In our experience this has been the case, however there may exist patients where 190 

trajectory placement is limited by other anatomical features (for example the dura or sigmoid sinus). 191 

Other limiting factors may include the alignment of the trajectory with the scala tympani, however one 192 

of the advantages of the approach is that it allows insertion angles to be optimized pre-operatively, thus 193 

reducing the likelihood of insertion failure due to large angles. While these factors could subsequently 194 

decrease the number of treatable patients, we expect that the numbers would not significantly impact 195 

the statistical results described above.  196 

Finally, one must consider that regardless of the described system accuracy the possibility still remains 197 

for cases in which, due to failures of the system or unexpected errors, the drilling accuracy falls well 198 

outside the expected distribution. Subsequently, a number of additional safety approaches have been 199 

investigated, including methods based on observed drilling forces 22, endoscopic imaging23 and intra-200 

operative CT24. Additional protection systems such as facial nerve monitoring25 and heat modeling26 201 

have also been explored. Each of these methods increase the safety of the procedure by providing 202 

measurement redundancy using independent physical effects and thus their utilization should be 203 

strongly encouraged whenever considering clinical application. 204 

Conclusions 205 

This work has presented the development and evaluation of a statistical model for the assessment of 206 

MICI systems’ safety and effectiveness. A facial recess diameter of 2.54±0.51 mm (n=74) was 207 

determined from a review of existing literature; subsequent measurements on CT data revealed a facial 208 

recess diameter of 2.54±0.5 mm (n = 23). The developed method was applied based on a previously 209 

described minimally invasive robotic system, whereby approximately 46.7% of the population could 210 

accommodate a safety region of three standard deviations above the mean drilling error, when utilizing 211 

a drill diameter of 1.8 mm. Overall, the presented model allows the assessment of the applicability of a 212 

system on a wider population scale beyond examining only the ability to reach an arbitrary threshold 213 

accuracy 214 

 215 

 216 
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Figure Captions 303 

Figure 1: Graphical representation of the concept. A safety region through the facial recess (constrained 304 

by the facial nerve in yellow and chorda tympani in orange) can be defined by the diameter of the drill 305 

used (ø) and the accuracy characteristics of the system (mean µ and standard deviation σ). A 306 

confidence level for a specific facial recess diameter can be defined based on the number of standard 307 

deviations at which the border of the facial recess intersects with the safety region. In the above case, 308 

a safety region at a level of approximately 2σ can be accommodated, resulting in a confidence value of 309 

approximately 98% when utilizing the defined system. 310 

Figure 2: The facial recess diameter was defined as the sum of the drill diameter øDrill, the shortest 311 

distance between the drill and chorda tympani DChT and the shortest distance between the drill and the 312 

facial nerve DFN. One can also consider the distance to the stapes (DSt, the region inhabited by the 313 

stapes is represented as a cone), the incus and malleus (DIM) and the external auditory canal (DEAC). 314 

Figure 3: Effect of changes in the portion of the treatable patient population as a result of different 315 

configurations in mean accuracy, standard deviation and drill diameter. 316 

Table Captions 317 

Table 1: Reported measurements of facial recess (FR) and extended facial recess (eFR). 318 

Table 2: Relevant measurements of facial recess (FR) from literature, measurements completed within 319 

this study and combination of all measurements. 320 

Table 3: Treatable population for systems with different accuracy, precision and drill diameter values 321 

and respecting one, two and three standard deviations above the mean targeting error. 322 









Table 1: Reported measurements of facial recess (FR) and extended facial recess (eFR). 

 Type Measurement Measurement Level Diameter (mm) Number of 
Samples 

Su (1982) eFR Histology Pyramidal Eminence 4.01±0.56  356 

Bielamowicz 
(1988) 

FR 
 

eFR 
Histology 

Oval Window 
Round Window 
Oval Window 

Round Window 

3.00±0.61  
2.65±0.63  
4.00±0.45  
3.42±0.46  

20 

Young (1989) eFR Histology 
Round window 

Stapes 
2.98±0.69  
3.91±0.78  

97 

Adad (1999) eFR Caliper Posterior Edge of 
Tympanic Annulus 3.78±0.87 37 

Low (1999) eFR Caliper Pyramidal eminence 4.4±0.94  30 

Hamamoto 
(2000) FR Pin Caliper Round Window 2.6±0.4 22 

McManus 
(2012) FR MicroCT Chorda tympani middle 

ear entry 2.9±0.7  39 

Bettmann 
(2013) eFR CT 

Round Window 
Oval Window 

4.5 ± 1.3 
5.4 ± 0.9 

29 

Rau (2013) FR CT Basal Turn 2.44±0.46  32 

 



Table 2: Relevant measurements of facial recess (FR) from literature, measurements completed within this 

study and combination of all measurements. 

 Type Measurement Measurement Level Diameter (mm) 

Bielamowicz (1988) FR Histology Round Window 2.65±0.63 (n=20) 

Hamamoto (2000) FR Pin Caliper Round Window 2.6±0.4 (n=22) 

Rau (2013) FR CT Basal Turn 2.44±0.46 (n=32) 

This work FR CT Round Window 2.54±0.5 (n=23) 

Combined FR - - 2.54±0.5 (n=97) 

 



Table 3: Treatable population for systems with different accuracy, precision and drill diameter values and 

respecting one, two and three standard deviations above the mean targeting error. 

System characteristics (mm) Treatable Population at  

System 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 ∅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 + 2×𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 + 3×𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 

X0 

0.15 0.08 1.4 91.3% 85.1% 76.4% 

0.15 0.08 1.6 83.1% 73.9% 62.5% 

0.15 0.08 1.8 71.2% 59.5% 46.8% 

0.15 0.08 2.0 56.3% 43.6% 31.6% 

X1 0.5 0.08 1.8 20.1% 12.3% 6.9% 

X2 0.15 0.25 1.8 43.2% 12.9% 1.7% 

X3 0.5 0.25 1.8 6.4% 0.59% 0.02 % 
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