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Abstract 

Objective: Vestibular cognition is a growing field of interest and relatively little is known 

about the underlying mechanisms.  

Methods: We tested the effect of prior beliefs about the relative probability (50:50 vs. 

80:20) of motion direction (yaw rotation) using a direction discrimination task. We 

analyzed choices individually with a logistic regression model and together with response 

times using a cognitive process model.  

Results: The results show that self-motion perception is altered by prior belief, leading to a 

shift of the psychometric function, without a loss of sensitivity. Hierarchical drift diffusion 

analysis showed that at the group level, prior belief manifests itself as an offset to the drift 

criterion. However, individual model fits revealed that participants vary in how they use 

cognitive information in perceptual decision-making. At the individual level, the response 

bias induced by a prior belief resulted either in a change in starting point (prior to evidence 

accumulation) or drift rate (during evidence accumulation).  

Conclusions: Participants incorporate prior belief in a self-motion discrimination task, 

albeit in different ways. 
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Introduction 5 

Whole body motion perception involves vestibular sensory information. While earlier studies 6 

on motion thresholds focused on sensory transduction processes [1], it became clear that 7 

perceptual thresholds do not reflect low-level sensory processes alone. Perception involves 8 

non-sensory components, and recently, Merfeld and colleagues [2] introduced a high-pass 9 

filtering mechanism as an important feature of decision-making. Based on computational 10 

modeling studies, it has become clear that the vestibular system performs sophisticated 11 

processing based on internal models [3]. A major component of such internal models are 12 

prior beliefs. In order to investigate the effect of prior beliefs on vestibular perception, we 13 

focused on biased perceptual decision-making. A bias can be introduced by the ability to 14 

anticipate upcoming stimuli and can be based on prior beliefs and knowledge about stimulus 15 

frequency [4]. To date, there is still relatively scarce evidence of biased perceptual decision-16 

making in the vestibular modality. A notable exception is the study by Wertheim and 17 

colleagues [5], showing that passive self-motion perception reported by participants depends 18 

on their prior knowledge about possible motion trajectories. Participants usually see the 19 

device before they take part in the experiment, and this knowledge alters the perceptual 20 

experience they report when exposed to vestibular stimuli. While those authors [5] collected 21 

verbal reports after linear passive self-motion, we measured binary choices and response 22 

times (RTs) in order to tap into underlying mechanisms involving prior belief. 23 

Participants performed a yaw rotation discrimination task in two conditions. In the unbiased 24 

condition, participants were told that each motion direction was equally likely to occur; in the 25 

biased condition, participants were instructed that rightward rotations were more likely. This 26 

manipulation was intended to introduce a response bias. This bias manifests itself as a shift of 27 

the psychometric function, without a substantial loss of sensitivity [6]. Previous research in 28 

the visual domain has also yielded faster RTs to more frequently occurring stimuli when 29 

compared to RTs to stimuli that are shown less frequently [4]. Accuracy is also increased for 30 

more frequent stimuli. In psychophysics, it is still common to analyze choices exclusively. If 31 

RTs are collected, they are considered independently of choices; however, this approach is 32 

inadequate, since it is difficult to detect potential trade-offs. For instance, a participant may 33 

increase his probability of giving a correct answer by taking more time. Therefore, data 34 

analysis in perceptual decision-making requires a joint consideration of choices and RTs. 35 

A common model used for joint analysis of choices and RTs is the drift diffusion model 36 

(DDM) [7]. In this model, the decision-making process is based on the accumulation of noisy 37 

sensory evidence. A decision for either of the two choice alternatives is made when a lower 38 

or upper bound is reached. The rate of evidence accumulation is known as the drift rate, and 39 

the distance between the two choice alternatives is known as the boundary separation. 40 

Sensory and motor processing not directly related to the decision-making process is taken 41 

into account by the inclusion of a non-decision time. The final parameter is the starting point 42 

of the evidence accumulation process. For unbiased decision-making, this lies halfway 43 

between the two alternatives; in the case of biased decision-making, the starting point may be 44 

shifted toward either boundary. 45 

In essence, the DDM offers two possibilities for introducing a bias [7]: 1) by adjusting the 46 

starting point toward the decision boundary of the more likely option, or 2) by increasing the 47 

drift rate for the more likely option. Both mechanisms can account for potential influences of 48 

prior belief. A change in starting point can be interpreted as a bias prior to the accumulation 49 

of sensory evidence, which may reflect a strategic response bias, while the altered drift rate 50 

exerts its effect during the process of evidence accumulation [8]. 51 
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The goal of this study is to investigate whether and how prior belief exerts an effect on 52 

passive whole body motion discrimination, similar to that found in other sensory modalities. 53 

Specifically, the question is whether participants can introduce a bias by changing their 54 

response criterion, and if so, which cognitive processes are involved. In order to achieve this 55 

goal, we analyzed choices using a multi-level logistic regression model, and jointly analyzed 56 

choices and RTs using a hierarchical drift diffusion model, in a simple direction 57 

discrimination task. 58 

Methods 59 

Subjects 60 

Six healthy volunteers (3 female/3 male, aged between 22 to 29) took part in this study. 61 

Informed consent was obtained from all participants. Ethical approval was obtained from the 62 

Ethics Committee of the University of Bern. 63 

Motion Stimuli 64 

Motion stimuli were generated using a 6 degree of freedom motion platform (6DOF2000E, 65 

MOOG Inc., East Aurora, NY). We used single cycle sinusoidal acceleration motion profiles 66 

with a frequency of 1Hz. This type of yaw rotation is similar to active head movements and 67 

has been used to study passive self-motion perception [9]. Participants wore a blindfold and 68 

they were seated on a chair mounted on the motion platform. Peak velocity was individually 69 

adjusted to each participant. 70 

Experimental Procedure 71 

The study consisted of a direction discrimination task using passive whole body yaw rotation. 72 

A high-pitched tone indicated the onset of motion. Participants were instructed to push one of 73 

two buttons to indicate their perceived motion direction as quickly as possible. In case of 74 

uncertainty, participants were instructed to guess. 75 

Before starting the experiment, 24 practice trials with supra-threshold peak velocity were 76 

administered to allow familiarization with the task. In order to ensure that performance was 77 

comparable between participants, each participant’s threshold [10] was determined. The main 78 

experiment consisted of 4 blocks of the same direction discrimination task, with 5 intensity 79 

levels for leftward and rightward motion, administered 12 times, resulting in 120 trials per 80 

block.  81 

Manipulation of Response Bias 82 

In the unbiased condition, participants were instructed that leftward and rightward rotations 83 

were equally likely. In the biased condition participants were told that 80% of motion stimuli 84 

would be to the right and 20% of stimuli to the left. The conditions differed only in the 85 

instructions received; in both conditions, leftward and rightward rotations were equally likely 86 

to occur. The order of the two conditions was counterbalanced across participants. 87 

 88 

Data Analysis 89 

Participants’ choices were analyzed using a Bayesian hierarchical logistic regression model 90 

incorporating two additional parameters in order to account for attentional lapses and guesses 91 
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[11]. We quantified a response bias as an additive effect of the biased condition on the 92 

parameter of the linear predictor. Choices and RTs were then jointly analyzed using a 93 

Bayesian hierarchical drift diffusion model [12]. All models were estimated using the brms 94 

[13] and rstan [14] R packages. We estimated several models allowing for an effect of 95 

response bias on the DDM parameters, and selected the best model based on the leave-one-96 

out cross validation (LOO) method [15].  97 

Results 98 

Probability of Rightward Responses 99 

Figure 1A shows participants’ proportion of rightward responses as a function of motion 100 

intensity, separately for the two instruction conditions. Motion intensity is shown as positive 101 

for rightward motion, and negative for leftward motion. The scale represents the standardized 102 

peak velocity. Verbal instructions led to an overall increase in the proportion of rightward 103 

responses. This increase in rightward response probability represents a bias in perceptual 104 

decision-making. Only participant 1 seems to have introduced a bias toward rightward 105 

responses at the expense of the ability to successfully discriminate between left and right; the 106 

probability of giving a rightward response is high even for trials with high leftward velocity. 107 

It is noteworthy that performance of this participant in the unbiased condition is absolutely 108 

comparable to the other participants. 109 

Figure 1B shows the group-level parameter estimates of the logistic fit. The fixed effect for 110 

the intercept in the unbiased condition (unbiased crit) reveals that participants did not favor 111 

either of the directions, and the fixed effect of motion intensity (sensitivity) shows that 112 

stronger motion intensity increased the probability of giving a rightward response. The third 113 

and fourth parameters represent additive effects for the intercept ( biased crit) and slope of 114 

motion intensity ( biased sensitivity) in the biased condition. The additive effect on the 115 

intercept represents a shift of the psychometric curve along the x-axis, shown in Figure 1C. 116 

The fact that the 95% credible region lies to the right of zero means that in the biased 117 

condition, the probability of giving a rightward response was greatly increased, 118 

independently of the motion intensity. The fact that the additive effect on the slope is 119 

centered at zero means that on average, participants’ altered decision criterion was not 120 

accompanied by a loss of sensitivity, resulting in similarly shaped curves in Figure 1C. 121 

Therefore, we conclude that participants were able to incorporate the information given in the 122 

instructions into their decision-making process by shifting their decision criterion, without 123 

losing the ability to discriminate between motion directions. 124 

 125 

FIGURE 1 ABOUT HERE 126 

Figure 1: Response data and hierarchical logistic regression model  127 

(A) Proportion of rightward responses as a function of standardised motion intensity in biased 128 

and unbiased condition for all participants. (B) Median, 50% and 95% credible regions of 129 

group-level parameter estimates for the logistic fit. (C) Estimated psychometric curves for 130 

biased and unbiased condition at group level. Parameters: Unbiased crit = intercept for the 131 

unbiased condition. Sensitivity = slope parameter for the unbiased condition. Δ biased crit = 132 

additive effect on intercept for biased condition. Δ biased sensitivity = Additive effect on 133 

sensitivity for biased condition. 134 
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 135 

Drift Diffusion Analysis 136 

We next assessed whether the criterion shift shown in Figure 1 was due to a shifted starting 137 

point or a shifted drift criterion. We estimated several DDM models, including models that 138 

allowed for an effect of the instruction condition on the boundary separation and non-139 

decision time. Based on the LOO information criterion, we selected a model that allowed for 140 

a change in both starting point and drift rate as a function of instruction conditions. 141 

Additionally, the drift rate could vary as a function of motion intensity. These were estimated 142 

as fixed effects, with random participant effects. We then compared this model, which 143 

alleviates the problem of over-fitting individual parameter estimates (partial pooling model) 144 

[12] to a non-pooling model, which estimates all parameters for each participant separately. 145 

These models were not distinguishable based on LOO. We therefore report parameter 146 

estimates from both models; the group-level estimates (fixed effects) are from the partial 147 

pooling model, and the individual estimates are from the no-pooling model. Figure 2A shows 148 

the estimated fixed effects for the drift rate and the starting point. The parameters are 149 

described in Table 1.  150 

 151 

Table 1: Drift Diffusion Parameter Estimates  152 

PARAMETER DESCRIPTION 

Drift rate intercept Offset in the drift rate in the unbiased condition. This represents the 

tendency to accumulate evidence for a given motion direction, 

independently of motion intensity. 

 biased intercept Additive effect of biased condition on the drift rate offset. 

Drift rate motion 

intensity 

Effect of motion intensity on the drift rate in the unbiased condition. 

Higher motion intensities lead to a larger drift rate. This indicates 

how well the motion intensity is processed, and is roughly 

analogous to the sensitivity in the psychometric function. 

 biased motion 

intensity 

Additive effect of biased condition on the effect of motion intensity 

on the drift rate. Negative values thus indicate decreased 

performance in the biased condition, whereas positive values 

indicate better performance. 

Starting point Starting point for evidence accumulation in the unbiased condition. 

Positive values indicate that the starting point is shifted toward the 

upper boundary (rightward responses), whereas negative values 

indicate a shift toward the lower boundary. 

 biased starting 

point 

Additive effect of biased condition on the starting point. Positive 

values indicate a shift toward the upper boundary, relative to the 

unbiased condition. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 153 

FIGURE 2 ABOUT HERE 154 

Figure 2: Parameter estimates of partial pooling DDM fits 155 

(A) Median, 50% and 95% credible regions of group-level parameter estimates for effects on 156 

the drift rate and the starting point. (B) Standard deviations of the random participant effects. 157 

Large standard deviation indicate large inter-individual differences between participants. 158 

Parameters: Drift rate intercept = Offset in the drift rate in the unbiased condition.   biased 159 

intercept = Additive effect of biased condition on the drift rate offset. Drift rate motion 160 

intensity = Effect of motion intensity on the drift rate in the unbiased condition.  biased 161 

motion intensity = Additive effect of biased condition on the effect of motion intensity on the 162 

drift rate. Starting point = Starting point for evidence accumulation in the unbiased condition. 163 

 biased starting point = Additive effect of biased condition on the starting point. 164 

 165 

 166 

The intercept for the drift rate in the unbiased condition in Figure 2A is slightly above zero, 167 

indicating a slightly increased probability of reaching the upper boundary. This parameter 168 

represents the amount of evidence that is accumulated independently of the motion intensity; 169 

the effect of this becomes important at low motion intensities. The additive effect on this 170 

intercept in the biased condition is greater than zero, with the 95% credible region excluding 171 

0; this means that, at the group level, participants’ drift rates for rightward motion were 172 

increased due to the instruction favoring one direction of motion. The effect of motion 173 

intensity is positive, indicating that participants incorporated information about the stimulus 174 

into their drift rates. Notably, the fixed additive effect of the biased condition on the motion 175 

intensity parameter is effectively zero. Therefore, at the group-level, the biased condition 176 

does not result in altered processing of motion intensity. The starting point in the unbiased 177 

condition is zero; participants did not favor either motion direction prior to evidence 178 

accumulation. The additive effect in the biased condition is also zero, meaning that, on 179 

average, the biased condition did not result in an altered starting point. 180 

Figure 2B shows the standard deviations of the random participant effects. Large standard 181 

deviation mean that there were large inter-individual differences between participants. While 182 

the standard deviation of the additive effect on the intercept in the biased condition is 183 

relatively small, indicating that this effect is consistently found across all participants, Figure 184 

2B reveals that there is considerable variability between participants for both the slope of 185 

motion intensity in the unbiased condition and the additive effect on the slope in the biased 186 

condition. Since the additive effect on the slope is centered at zero, a large standard deviation 187 

indicates that there are positive and negative effects at the individual level. Any effects at the 188 

individual level may cancel out. Therefore, we report parameter estimates for each participant 189 

individually. The results are shown in Figure 3. 190 

 191 
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FIGURE 3 ABOUT HERE 195 

Figure 3: Parameter estimates of individual DDM fits for every participant  196 

Median, 50% and 95% credible regions of parameter estimates for effects of motion intensity 197 

and biased condition on the drift rate and starting point parameters for each subject 198 

individually. Parameters are the same as in Figure 2A. There are differences in how 199 

participants incorporated a bias into their decision-making (see main text for details). 200 

 201 

 202 

The individual estimates reveal the source of variability of the effect of condition on the slope 203 

of motion intensity. Participant 1 shows a noticeable negative effect on the slope in the biased 204 

condition, resulting in a small cumulative effect of motion intensity in the biased condition, 205 

this participant does not seem to incorporate information about motion direction into the 206 

decision-making process; this is particularly evident for leftward motion. Rather the slight 207 

bias toward rightward responses is explained by the model as an offset to the drift rate. This 208 

offset is not visible in the unbiased condition, as the participant takes the motion intensity 209 

into account. A similar decrease in stimulus processing is visible in participant 2. The 210 

response bias in this participant is explained by an altered starting point in the biased 211 

condition. In contrast, participants 3, 5, and to a lesser extent 4, show an increased slope of 212 

motion intensity in the biased condition, coupled with an increased drift rate independent of 213 

the motion intensity. This results both in more efficient evidence accumulation for large 214 

motion intensities and a biased drift criterion toward rightward responses. Finally, participant 215 

6 shows no effect on stimulus processing, and a decreased offset in the drift rate in the biased 216 

condition. Similarly to participant 2, the model explains the biased responses as an increased 217 

starting point in the evidence accumulation process, indicated by the positive additive effect 218 

on the starting point parameter. The other participant to show an increased starting point is 219 

participant 5. 220 

In summary, our results show that participants can incorporate a prior belief about motion 221 

direction into their decision-making process, and this results in a shift of the psychometric 222 

function without loss of sensitivity. In terms of the DDM, the prior belief manifests itself as 223 

either a change in starting point or drift rate. Participants adopt different strategies, resulting 224 

in different combinations of parameters of the drift diffusion model. 225 

Discussion 226 

Both behavioral data and modeling demonstrates the importance of considering prior beliefs 227 

in sensory processing of dynamic vestibular stimuli. In this study, we assessed the effect of 228 

prior beliefs about the relative probability of motion direction using a cognitive process 229 

model. A joint analysis of both choices and RTs allows the extraction of richer information 230 

than is available from analyzing either choices or RTs independently. While the application 231 

of cognitive process models has been used in other sensory modalities [16, 17], this is not 232 

true for vestibular sensory processing. In comparison to other sensory systems, however, the 233 

vestibular system is comparatively well-understood in terms of the sensory dynamics, making 234 

it an ideal candidate for furthering our understanding of perceptual decision-making, and in 235 

particular, cognitive effects on decision-making. Recently, Merfeld and colleagues [2] 236 

discussed perceptual decision making in the context of Bayesian processing of dynamic 237 

sensory information, and proposed a high-pass filtering mechanism. Furthermore, detailed 238 
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computational models of vestibular sensory processing exist [18, 19], and this will allow the 239 

investigation of how decision-making may be incorporated in Bayesian models of sensory 240 

inference. The relationship between a Bayesian model of evidence accumulation and the drift 241 

diffusion model has been discussed elsewhere [20], and the authors point out that the two are 242 

equivalent under certain assumptions. As pointed out by Merfeld and colleagues [2], 243 

however, the standard drift diffusion model may be inappropriate for the type of evidence 244 

accumulation required for the real-time processing of dynamic sensory information. 245 

In our study, we found that all participants incorporate the altered prior belief induced by 246 

verbal instructions, into their perceptual decision-making process, albeit in different ways. In 247 

particular, the effects of an induced response bias can be seen in both an increased starting 248 

point and an altered drift rate. The former may represent a cognitive process that operates 249 

prior to, and possibly independently of perceptual processing, whereas the latter operates 250 

dynamically, during the evidence accumulation process. Future research needs to investigate 251 

to what extent the parameters of cognitive process models involved in perceptual decision-252 

making, such as changes in drift rate or starting point, can be mapped onto different 253 

underlying neural mechanisms. 254 
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