
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
9
6
9
5
3
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
9
.
4
.
2
0
2
4

This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 130.92.9.57

This content was downloaded on 15/03/2017 at 15:37

Please note that terms and conditions apply.

Bipartite Bell inequalities with three ternary-outcome measurements—from theory to

experiments

View the table of contents for this issue, or go to the journal homepage for more

2016 New J. Phys. 18 035001

(http://iopscience.iop.org/1367-2630/18/3/035001)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Non-locality of experimental qutrit pairs

C Bernhard, B Bessire, A Montina et al.

Multipartite nonlocality as a resource and quantum correlations having indefinite causal order

Florian John Curchod, Yeong-Cherng Liang and Nicolas Gisin

Versatile shaper-assisted discretization of energy-time entangled photons

B Bessire, C Bernhard, T Feurer et al.

More randomness from the same data

Jean-Daniel Bancal, Lana Sheridan and Valerio Scarani

A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations

Miguel Navascués, Stefano Pironio and Antonio Acín

Local hidden–variable models for entangled quantum states

R Augusiak, M Demianowicz and A Acín

Classifying 50 years of Bell inequalities

Denis Rosset, Jean-Daniel Bancal and Nicolas Gisin

Open-system dynamics of entanglement:a key issues review

Leandro Aolita, Fernando de Melo and Luiz Davidovich

Using complete measurement statistics for optimal device-independent randomness evaluation

O Nieto-Silleras, S Pironio and J Silman

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/18/3
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1751-8113/47/42/424013
http://iopscience.iop.org/article/10.1088/1751-8113/47/42/424014
http://iopscience.iop.org/article/10.1088/1367-2630/16/3/033017
http://iopscience.iop.org/article/10.1088/1367-2630/16/3/033011
http://iopscience.iop.org/article/10.1088/1367-2630/10/7/073013
http://iopscience.iop.org/article/10.1088/1751-8113/47/42/424002
http://iopscience.iop.org/article/10.1088/1751-8113/47/42/424022
http://iopscience.iop.org/article/10.1088/0034-4885/78/4/042001
http://iopscience.iop.org/article/10.1088/1367-2630/16/1/013035


New J. Phys. 18 (2016) 035001 doi:10.1088/1367-2630/18/3/035001

PAPER
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—from theory to experiments

Sacha Schwarz1, Bänz Bessire1, André Stefanov1 andYeong-Cherng Liang2,3

1 Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland
2 Department of Physics, National ChengKungUniversity, Tainan 701, Taiwan
3 Institute for Theoretical Physics, ETHZurich, 8093 Zurich, Switzerland

E-mail: ycliang@mail.ncku.edu.tw

Keywords:Bell inequalities, quantumnonlocality, device-independent quantum information, POVM

Abstract
Weexplore quantumnonlocality in one of the simplest bipartite scenarios. Several new facet-defining
Bell inequalities for the 3 3 3 3 3 3{[ ] [ ]} scenario are obtainedwith their quantumviolations analyzed
in details. Surprisingly, all these inequalities involving only genuine ternary-outcomemeasurements
can be violatedmaximally by some two-qubit entangled states, such as themaximally entangled two-
qubit state. This gives further evidence that in analyzing the quantum violation of Bell inequalities, or
in the application of the latter to device-independent quantum information processing tasks, the
commonly heldwisdomof equating the local Hilbert space dimension of the optimal state with the
number ofmeasurement outcomes is not necessarily justifiable. In addition, when restricted to the
minimal qubit subspace, it can be shown that one of these Bell inequalities requires non-projective
measurements to attainmaximal quantumviolation, thereby giving thefirst example of a facet-
defining Bell inequality where a genuine positive-operator-valuedmeasure is relevant.We
experimentally demonstrate the quantum violation of this and two other Bell inequalities for this
scenario using energy–time entangled photon pairs. Using the obtainedmeasurement statistics, we
demonstrate how characterization of the underlying resource in the spirit of device-independence,
but supplementedwith auxiliary assumptions, can be achieved. In particular, we discuss howonemay
get around the fact that, due tofinite-size effects, rawmeasurement statistics typically violate the non-
signaling condition.

1. Introduction

In the classic paper where Schrödinger [1] introduced the termquantum entanglement, he remarked that this is
not one but rather the characteristic trait of quantummechanics that forces its entire departure from a classical
line of thought. Indeed, among themany nonclassical features offered by entanglement, quantumnonlocality—
the fact that (certain) entangled quantum systems can exhibit correlations betweenmeasurement outcomes that
are not Bell-local [2, 3]—has not only called for a closer inspection of notions like realism, determinism etc., but
has also led to the reexamination of the causal structure underlying our physical world [4].

While the peculiarity of quantumnonlocality hasmade itmore challenging for us to gain good intuitions in
the quantumworld, the very same feature has also led to quantum information tasks that cannot be achieved
otherwise. A prominent example of this is the possibility to performquantumkey distributions whose security is
guaranteedwithout relying on any assumption about themeasurements being performed nor the quantum state
prepared [5, 6]. Similarly, quantumnonlocality is also an essential ingredient for the self-testing [7–11] of
quantumapparatus directly frommeasurement statistics.More recently, the paradigmof device-independent
quantum information[3, 12]—where the analysis of quantum information is based solely on the observed
correlations—has also been applied in the context of randomness expansion [13, 14], randomness extraction
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[15], dimension-witnessing [16–18], as well as robust certification [19, 21, 20], classification [22] and
quantification [23–25] of (multipartite) entanglement etc.

For all these tasks, an imperative step is to certify that the observed correlation is not Bell-local—a task that is
often achieved through the violation ofBell inequalities[2]. Achieving a solid understanding of the quantum
violation of Bell inequalities is thus an important step towards the development of novel device-independent
quantum information processing tasks. To date, however, the bulk of such studies have focussed on the simplest
Clauser–Horne–Shimony–Holt (CHSH)[26]Bell scenario, namely, one involving only two parties, each
performing two binary-outcomemeasurements.Whilemore complicated Bell scenarios, such as those
involvingmore parties [25, 27, 28], ormoremeasurement settings [29–33] ormoremeasurement outcomes
[34–36] have also been individually considered, scenarios involving a combination of these have so far received
relatively little attention (see, however, [21, 36–39]).

In this paper, we investigate the Bell scenario of two parties where each experimenter can perform three
ternary-outcomemeasurements. Although someBell inequalities in this scenario have previously been reported
[36–38, 40], most of these are not facet-defining [30] for the corresponding convex set of Bell-local correlations.
In contrast, we present in this work several novel facet-defining Bell inequalities for this scenario. Interestingly,
some of these newly obtained Bell inequalities—despite being ternary-outcome and irreducible to one having
fewermeasurement outcomes—can already be violatedmaximally via localmeasurements on entangled two-
qubit states. Ourwork thus complements that of[33, 39, 41], showing that in determining the quantum state
thatmaximally violates a given Bell inequality, optimal choice of the localHilbert space dimension is not
necessarily correlatedwith the (maximal)number ofmeasurement outcomes involved.

A common feature shared by all the Bell inequalities that we present here is that they cannot be cast in a form
involving only full (bipartite) correlators [21, 42, 43]. Interestingly, except in Bell experiments [44, 45] related to
the closing of detection loophole [46], there is almost no other experimental exploration of this generic kind of
Bell inequalities (see however [47]). In addition, among all these novel inequalities, there is onewhich provably
requires non-projectivemeasurements in order to attain itsmaximal quantum violationwhen one restricts to
theminimal, qubit subspace. Here, we experimentally violate this and two other Bell inequalities—all involving
three ternary-outcomemeasurements—using energy–time entangled photons. Due to strong resistance against
decoherence and the possibility tomanifest entanglement in different degrees of freedom (polarization [48],
transverse or orbital angularmomentum [49, 50], or energy–time [51–55]), entangled photon pairs offer an
ideal framework for such fundamental studies. Energy–time entangled photons, in particular, represent a highly
flexible system tunable using techniques developed fromultrafast science [56, 57], especially for the preparation
of quantum states with varying degree of entanglement and/orHilbert space dimensions.

The rest of this paper is structured as follows. Notations and other preliminarymaterials are introduced in
section 2.We then present in section 3 the Bell inequalities that we have obtained through numerical
optimizations. Experimental Bell inequality violations are reported in section 4. After that, in section 5, we
discuss about analysis of themeasured data along the spirit of device-independent quantum information, using
entanglement quantification via negativity [58] as an example.We endwith some further discussions in
section 6. Technical details related to numerical optimizations and certain results obtained thereof are relegated
to the appendices.

2. Preliminaries

2.1. Bell inequalities and somenatural sets of correlations
Consider a Bell-type experiment involving two parties Alice andBob, where each party is allowed to perform
three ternary-outcomemeasurements.We label Alice’smeasurement setting (input) by x, Bob’s by y and their
correspondingmeasurement outcome (output) by a and b respectively. For ease of discussion, we follow the
notation of [59] and refer to this as the 3 3 3 3 3 3{[ ] [ ]}Bell scenario, where the number of entries in the first
(second) square bracket is the number of input for Alice (Bob)while the actual value in the square brackets
represents the number of output for that particular input.

The correlations betweenmeasurement outcomes observed in a Bell-type experiment in this scenario can be
succinctly summarized using the vector P P a b x y, , x y a b, , , 0

2{ ( ∣ )}= =


of joint conditional probabilities. A

correlation is said to be Bell-local [2, 3] if it admits the decomposition

P a b x y P P a x P b y, , , , 1( ∣ ) ( ∣ ) ( ∣ ) ( ) å l l=
l

l

for all x y a b, , , with some fixed, normalizedweights P 0, 1[ ]Îl , wherewe denote throughout by  the set of
Bell-local correlations. It turns out [60] that  is a convex polytope [61], and thus can be described by a convex
mixture of a finite number of (deterministic) extremal probability vectors satisfying P a x, 0, 1( ∣ )l = and
P b y, 0, 1( ∣ )l = . Equivalently, a convex polytope can be fully characterized by the intersection of afinite
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number of half-spaces [61]. Following [30], we refer to theminimal set of such half-spaces as facet-defining Bell
inequalities, or simply as facets. A generic Bell inequality, i.e., one involving some linear combination of joint
conditional probabilities, for the 3 3 3 3 3 3{[ ] [ ]} scenario reads as

P a b x y, , 2
x y a b

ab
xy

ab
xy

, , , 0

2

max( ∣ ) ({ }) ( )


å a a
=

and is, however, not necessarily a facet. Here, wewrite explicitly the dependence of max on ab
xy{ }a to remind that

the upper bound attainable by P Î


is a function of the real coefficients ab
xy{ }a .

Aswas first shown by Bell, the set of correlation vectors P

allowed in quantum theory (denoted by) is a

strict superset of . Formally, quantum correlations take the formof

P a b x y M M a, , tr , 3a x b y( ∣ ) ( ) ( )∣ ∣


r= Ä

where ρ is a densitymatrix and Ma x and Mb y are the positive-operator-valuedmeasure (POVM) elements
associatedwithAlice’s and Bob’s localmeasurements, i.e., they satisfy

M M M M b0, 0, , 3a x b y
a

a x A
b

b y B ( )∣ ∣ ∣ ∣  å å= = 

for all x y a b, , , , with A B( )  being the identity operator acting onAlice’s (Bob’s)Hilbert space.
It is easy to see that themarginal distributions of the quantum correlation, P a x y,( ∣ ) and P b x y,( ∣ ), are

independent of the input of the other party, i.e., they satisfy the so-called non-signaling (NS) conditions [62, 63]

P a x y P a b x y P a x P b x y P a b x y P b y, , , , , , , . 4
b a

( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ) å åº = º =

Note that if these conditions are violated independent of spatial separation, thenAlice can communicate
superluminally the value of x to Bob by remotely varying themarginal distribution observed by Bob through her
choice of x. Interestingly, the set of correlations satisfying equation (4), whichwe shall denote by  is actually a
strict superset of (see, for instance, [3, 64] and references therein).

Due to the non-signaling nature of P ,{ } Î


, instead of specifying 3 1 824 + = real coefficients ab
xy(a

and ab
xy

max({ })) a in defining a Bell inequality, one can employ amore compact representation due toCollins
andGisin [36], which requires only the specification of 2 3 1 492( )´ + = parameters. Explicitly, the Collins–
Gisin representation of a Bell inequality in this scenario reads as

P P a x P b y P a b x y, , , 5
x a

A a
x

y b
B b
y

x y a b
ab
xy

0

2

0

1

,
0

2

0

1

,
, 0

2

, 0

1

max· ( ∣ ) ( ∣ ) ( ∣ ) ( ) ( )


å å å å å åb b b b b= + +
= = = = = =

  

where b

is a vector with entries given by the Bell coefficients A a

x
,b , B b

y
,b , ab

xyb appearing in equation (5), while P

is

now the corresponding vector ofmarginal and joint conditional probability distributions. This particular way of
writing a Bell inequality admits the compact tabular representation

, 6

B B B B B B

A

A

A

A

A

A

,0
0

,1
0

,0
1

,1
1

,0
2

,1
2

,0
0

00
00

01
00

00
01

01
01

00
02

01
02

,1
0

10
00

11
00

10
01

11
01

10
02

11
02

,0
1

00
10

01
10

00
11

01
11

00
12

01
12

,1
1

10
10

11
10

10
11

11
11

10
12

11
12

,0
2

00
20

01
20

00
21

01
21

00
22

01
22

,1
2

10
20

11
20

10
21

11
21

10
22

11
22

max( ) ( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟






b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b


so that the left-most column are the Bell coefficients associatedwith Alice’smarginal probabilities, the top row
gives the Bell coefficients for Bob’smarginal probabilities, while each xth block row and yth block column gives
the Bell coefficients for the joint distribution of the input combination (x, y).

2.2. Robustness of quantumviolation of Bell inequalities
With the judicious choice of an entangled quantum state ρ and localmeasurements described by Ma x and Mb y,

the resulting quantum correlation P

may lead to the violation of a Bell inequality. Given the identities of

equation (4), it is clear that a Bell inequality can bewritten in infinitelymany different forms. Due to this

arbitrariness, the difference between the corresponding quantumvalue M M, , ,a x b y( { }) b r


and the local

bound max( ) b


is thus not a good figure ofmerit for comparing different Bell inequalities. Rather, a commonly

adoptedmeasure that is unaffected by such an arbitrariness is given by the extent towhich the correlation P

can

tolerate white noise before it stops violating the given Bell inequality.

3
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Formally, let us denote the uniformprobability distribution (white noise) for the Bell scenario
3 3 3 3 3 3{[ ] [ ]}by P


, i.e., P a b x y, , 1

32( ∣ ) = for all a b x y, , , . Then for any given (nonlocal) quantum

correlation P

that violates a Bell inequality  , let us consider the convexmixture

P vP v P v1 , 0 1. 7v ( ) ( )  = + -
  



Clearly, since P Î


, P Î

 and  is convex, as we decrease the value of v from1, there is some critical value vCr



such that for all v v0, Cr[ ]Î , Pv


does not violate  . This critical value vCr

—which does not depend on how  is
represented—is commonly referred to as the (white-noise) visibility of P


with respect to  .More generally, as

we decrease the value of v from1, due to the convexity of , there is some critical value vCr such that for all
v v0, Cr[ ]Î , Pv Î


. Hereafter, we refer to this critical value as the (white-noise) visibility of P


with respect to

. It is worth noting that for any given nonlocal P

, vCr can be efficiently computed using linear programing (see

appendix A for details).
In the event when P


arises frommeasuring only rank-1 projectors on an entangled two-qutrit state ρ, vCr



defined above also coincides with the infimumof ν in

d
1 , 0 1, 8

2
( ) ( ) r nr n n= + -n



before rn stops violating  for the givenmeasurements M M, ;a x b y{ } in equation (8), d is the localHilbert space
dimension of ρ, e.g., d=3 in the case of a qutrit. Hereafter, we refer to the infimumof ν in equation (8) for the
general scenario, i.e., when ρ is not necessarily a two-qutrit state and/or M M,a x b y{ }are not necessarily rank-1
projectors as the state visibility Cr

n of ρwith respect to  . As it stands, this visibility depends not only on ρ and  ,
but also on the choice of POVMelements M M,a x b y{ }. The visibilities I

Crn and vI
Cr will be ourmain figures of

merit in comparing the different Bell inequalities presented in the next section.

3.New facet-defining inequalities and their quantumviolation

3.1. Searching for new facet-defining Bell inequalities
Let us nowbriefly recapitulate the state of the art of various Bell scenarios. For 2 2 2 2{[ ] [ ]}, 3 3 3 3{[ ] [ ]},

2 2 2 2 2 2{[ ] [ ]}, 2 2 2 2 2 2 2{[ ] [ ]}, 2 3 2 2 2{[ ] [ ]}and 2 2 2 2 2 2{[ ] [ ] [ ]}, the complete list of facet-defining
Bell inequalities has been obtainedwith the help of standard polytope softwares, see [28, 36, 65]. Generalizing
the results of [28, 36], Pironio [65] recently showed that there is a large family of Bell scenarios where the only
non-trivial facets are either theCHSH inequality or their liftings [66]. Beyond this, only partial lists of facet-
defining Bell inequalities are known. Specifically, those for 2 2 2 2 2 2 2 2{[ ] [ ]}and 2 2 2 2 2 2 2 2 2 2{[ ] [ ]}can
be found in [32, 33] (the recent work byDeta and Sikirić [67], however, suggests that the known list of 175 facets
[68] for 2 2 2 2 2 2 2 2{[ ] [ ]} is complete).

In this paper, we shall restrict our attention to the Bell scenario 3 3 3 3 3 3{[ ] [ ]}where, to our knowledge,
the only known (non-lifted)nontrivial facet is the one presented in [36]. To get a better idea of what quantum
entanglement has to offer in this scenario, we shall first generate somenovel facets for this scenario.While a few
techniques [30, 31, 33] are known in the literature for generating facets for , here we adopt a different approach
—based on linear programming—which allows us to obtain nontrivial facets that can be violated by quantum
theorywith some nontrivial vCr. It is worth noting that the search for Bell inequality using linear programming
has also been considered [37] in the context ofminimizing the detection efficiency requirement in a loophole
free Bell test.

Let us now recall from [69] the following Bell inequality (first introduced in [40])

I P a b x y:
1

9
, ,

2

3
, 9

x y a b
xy a b3 0

, , , 0

2

( ∣ ) ( )

å d=+

=
+ +

where fd is a short-hand for theKronecker delta f mod 3,0d . This inequality was rediscovered (in a different form)
in [70] and has been discussed as a specific case of a family of generalization of theCHSHBell inequalities
[69, 71–75].Maximal quantum violation ( 0.7124» ) of this inequality can be achieved by (locally) performing
mutually unbiasedmeasurements on themaximally entangled two-qutrit state [69] (see also [70]), i.e.,

i i
1

3
, 10

i
3

0

2

A B∣ ∣ ∣ ( )åF ñ = ñ ñ+

=

where i A{∣ }ñ are orthonormal basis vectors for Alice’s (qutrit)Hilbert space; likewise for i B{∣ }ñ . This feature of
I3
+ naturally suggests that itmay be used for the self-testing of 3∣F ñ+ . Indeed, numerical optimization using the
tools of [23] shows that when one approaches themaximal quantum violation of I3

+, the underlying quantum
statemust also have a negativity that approaches 1, which is exactly the negativity of 3∣F ñ+ . However, the

4
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corresponding quantum correlation P
I3


+
—aswas shown in [69]—exhibits only a white-noise visibility vI

Cr
3
+

of 87.94%.
In addition, while being a natural generalization of theCHSHBell inequality to three ternary-outcome

measurements, the Bell inequality I3
+ is provably [69]not facet-defining. Thus, it can bewritten as a convex

combination of facets [61] such that at least one of which offers at least as good (if not better)white-noise

visibility for the correlation P
I3


+
. In particular, if this facet is alsomaximally violated by 3∣F ñ+ , onewill have

obtained amore-promising candidate for the self-testing of amaximally entangled two-qutrit state.
How then dowe look for the constituent facet-defining Bell inequalities which give rise to inequality I3

+? It

turns out that in computing the critical visibility vCr of any given nonlocal correlation P

, the (dual of the) linear

program also outputs a Bell inequality  such that P

has a visibility of vCr with respect to  (see appendix A for

details). For a genericnonlocal correlation P

, as we decrease theweight v, the convex combination given in

equation (7) enters the local polytope  via one of its facets and the Bell inequality outputted by the linear
program is thus also facet-defining.

Indeed, by solving the linear programof equation (A1)using the correlation P
I3


+
, we obtain the 16th facet-

defining Bell inequality listed in table 1with the same critical visibility offered by I3
+.More generally, by

maximizing the quantumviolation of I3
+ using two-qutrit entangled states of the form

,
0 0 1 1 2 2

1
, 11A B A B A B

2 2
∣ ( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )y g g

g g

g g
¢ ñ =

ñ ñ + ñ ñ + ¢ ñ ñ

+ + ¢

with 0, 1[ ]g Î and 1g¢ = , we obtain nonlocal correlations that exhibit v 0.8794, 0.9683I
Cr

3 [ ]Î
+

. Then, using
these correlations as input to the linear program given in equation (A1), we obtain another 15 facet-defining Bell
inequalities, listed as inequality 1–15 in table 1. Interestingly, among these 16 facets, only 12 are genuinely novel
facets for the Bell scenario 3 3 3 3 3 3{[ ] [ ]}while inequality 12, 13, 15, and 16—as can be verified using the
online platform [76] (see also [77])—are reducible, respectively, to the simpler4 Bell scenario 3 3 2 3 3 2{[ ] [ ]}
and 3 2 2 2 2{[ ] [ ]}. Finally, we find two other facets by using the (post-processed) experimentally observed
correlations (see section 5) as input to the linear program (equation (A1)). Hereafter, we denote all these
inequalities by n

max with n 1, 2, , 18Î ¼ , i.e.,

P: . 12n n n n
max

max· ( ) ( )  


b bº
  

3.2.Quantumviolation of Bell inequalities
Evidently, as can be seen in table 2, all the 18 Bell inequalities presented can be violated quantummechanically

with a visibility v vCr max= much better than the starting visibility v 0.8794, 0.9683I
Cr

3 [ ]Î
+

.Moreover, except for

16
max and 17

max —both of which can be reduced to a simpler Bell scenario involving a combination of binary-
outcome and ternary-outcomemeasurements—themaximal quantum violation5 of the rest can already be
achieved using two-qubit entangled states, including themaximally entangled two-qubit state

1, 0∣ ∣ ( )yF ñ = ñ+ , see equation (11). These inequalities therefore serve, to our knowledge, thefirst examples of
non-lifted facet-defining Bell inequalities whosemaximal quantumviolation is attainable using aHilbert space
dimension smaller than the number of possible outcomes involved.

Given the above observation, a natural question that onemay now ask is whether a genuine POVM (i.e.,
measurement involving non-projective operators) is ‘needed’ to achieve thesemaximal quantum violations. Of
course, if there is no restriction in theHilbert space dimension, themaximal quantumviolation of a Bell
inequality can always be achieved by performing only projectivemeasurements in a sufficiently largeHilbert
space (see, for instance, [82, 83]). The above question is thus relevant only if we restrict ourselves to theminimal
Hilbert space dimensionwhere themaximal quantum violation of a given Bell inequality is known to be
achievable.

Interestingly, we have found that for all but one of these ‘qubit’ inequalities, it is already sufficient to allow
the trivial projector 02, i.e., the 2×2 zeromatrix in the three-outcomemeasurement in order to recover the
maximal quantum violation. The only exception to these is 12

max , wherewe could show—by considering all
possible combinations of trivial-projector assignments and using a suitablemodification of the SDP of[79] as
well as the SDPdiscussed in [81]—that to achievemaximal quantumviolation of 12

max using a quantum state of
the lowest possible dimension necessarily requires non-projectivemeasurements. In contrast with previous

4
It turns out that the 16th inequality was already discovered in [65] and is the only non-CHSH-type facet for the scenario 3 2 2 2 2{[ ] [ ]}.

5
These quantumviolationswere obtained using the optimization techniques presented in [69, 81] and verified to be the quantummaximum

using a convergent hierarchy of semidefinite programs (SDP) proposed byNavascués–Pironio–Aciń (NPA) [79] (see also [23, 80]).
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Table 1.Coefficients of facet-defining Bell inequalities P:n n
max

max·  b=
 

found by solving the linear program given in equation (A1). The left-most column gives the inequality number, i.e., n in n
max , whereas the second column

gives the local bound max , i.e., themaximumvalue of the Bell expression allowed by all P Î


, see equation (5). The coefficients b

of the Bell inequalities are sorted according to the order inwhich they appear in the table of equation (6),

i.e., first from the top row to the bottom row, then from the left-most column to the right-most column: A,0
0b , A,1

0b , A,0
1b ,K, 11

22b .

n max nb


1 2 0 1 0 1 −1 0 0 1 0 1 −2 1 −1 1 0 0 0 −1 0 −1 −1 1 0 0 1 0 −1 0 −2 −1 1 0 −1 1 0 1 0 −1 −1 0 1 1 −1 −1 −1 0 1 −1

2 2 −1 1 0 1 −1 0 0 2 0 1 −2 1 −2 1 1 0 0 −1 0 −1 −1 1 0 0 1 0 0 0 −1 −1 1 0 −1 1 0 1 0 −1 −1 0 1 1 −1 −1 −1 0 1 −1

3 2 0 1 0 1 −1 0 0 1 0 1 −2 1 −2 1 0 0 0 −1 0 −1 −1 1 0 0 1 0 −1 0 −1 −1 1 0 0 1 0 1 0 −1 −1 0 1 1 −1 −1 −2 0 1 −1

4 2 0 1 −1 0 0 1 −1 2 1 1 −1 1 −2 1 0 0 0 −1 0 −1 0 1 0 0 1 −1 −2 1 −1 −1 1 0 −1 0 −1 1 0 0 0 0 1 0 −2 −1 0 1 1 −1

5 2 0 1 0 1 −1 0 0 1 0 1 −2 1 −2 1 0 0 0 −1 0 −1 −1 1 0 0 1 0 0 0 −1 −1 1 0 0 1 0 1 0 −1 −2 0 1 1 −1 −1 −2 0 1 −1

6 2 −1 1 0 1 −1 0 0 2 0 1 −2 1 −2 1 1 0 0 −1 0 −1 −1 1 0 0 1 0 0 0 −1 −1 1 0 0 1 0 1 0 −1 −1 0 1 1 −1 −1 −2 0 1 −1

7 2 0 1 0 1 −1 0 0 1 0 1 −2 1 −2 1 0 0 0 −1 0 −1 −1 1 0 0 1 0 −1 0 −1 −1 1 −1 0 1 0 1 0 −1 −1 0 1 1 −1 −1 −2 0 1 0

8 2 −1 1 −1 0 0 1 0 2 0 1 −2 1 −2 1 1 0 0 −1 0 −1 0 1 0 0 1 −1 −1 1 −1 −1 1 0 −1 0 −1 1 0 0 0 0 1 0 −1 −1 −1 1 1 −1

9 2 0 1 −1 0 0 1 0 1 0 1 −2 1 −2 1 0 0 0 −1 0 −1 0 1 0 0 1 −1 −2 1 −1 −1 1 0 −2 0 −1 1 0 0 0 0 1 0 −1 −1 0 1 1 −1

10 1 0 1 −1 0 −1 0 0 1 0 1 −2 1 −1 1 0 −1 0 −1 0 −1 −1 1 0 0 1 0 0 0 −2 −1 1 −1 0 1 −1 1 0 0 −1 0 1 0 −1 −1 −1 1 1 0

11 2 0 1 0 1 −1 0 0 1 0 1 −2 1 −1 1 0 0 0 −1 0 −1 −1 1 0 0 1 0 −1 0 −2 −1 1 0 0 1 0 1 0 −1 -1 0 1 1 −1 -1 −2 0 1 −1

12 2 0 1 0 1 −1 0 1 1 0 0 −2 1 −1 1 1 0 0 −1 0 −1 0 0 0 0 0 0 0 1 −2 −1 0 −1 −1 1 −1 1 0 0 0 0 1 0 −1 −1 0 1 1 −1

13 2 −1 1 −1 0 0 1 0 2 0 1 −2 1 −2 1 1 0 0 −1 0 −1 0 1 0 0 1 −1 −1 1 −1 −1 1 0 −2 0 −1 1 0 0 0 0 1 0 −1 −1 0 1 1 −1

14 2 0 1 0 1 −1 0 0 1 0 1 −2 1 −1 1 0 0 0 −1 0 −1 −1 1 0 0 1 0 0 0 −2 −1 1 0 0 1 0 1 0 −1 −2 0 1 1 −1 −1 −2 0 1 −1

15 1 −2 1 0 0 0 −1 0 2 −1 0 −1 1 −1 1 1 −1 0 −1 0 −1 −1 1 −1 0 2 −1 1 0 0 −1 0 1 0 1 0 1 0 0 −1 −1 1 0 0 0 0 0 0 0

16 1 0 1 0 0 0 0 −1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 0 0 0 1 0 −1 −1 0 0 0 1 0 −1 -1 0 0 0

17 1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 −1 −1 −1 0 −1 −1 0 0 0 −1 0 0 1 0 −1 −1 −1 0 1 1 0 0 0 0 0 0 0 0 −1 -1 1 0 0 1

18 1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 −1 −1 0 0 −1 −1 0 0 0 −1 0 0 1 0 −1 −1 −1 0 1 1 0 0 0 0 0 0 0 −1 −1 −1 1 0 1 2

19 1 0 1 0 0 0 0 0 0 −1 0 −1 1 0 1 −1 −1 −1 −1 0 −1 0 0 −1 1 0 −1 0 0 −1 −1 0 −1 0 1 0 1 0 −1 0 −1 0 0 0 −1 0 1 0 0
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Table 2. Summary of some of the properties of the Bell inequalities :n n
max

max   (3rd-7th column) and :n n
min

min   (8th-12th column) for the Bell expression n presented in table 1. The second column gives the simplest Bell
scenario towhich n can be reduced.Within each block column,we list themaximum (minimum) local value max ( min ), themaximum (minimum) quantumvalue max , the (Schmidt coefficients of the) state max∣y ñ ( min∣y ñ) found to
achieve max ( min ), the corresponding state visibility I

Crn andwhite-noise visibility v I
Cr . The dimension spanned by the set of local extreme points saturating theminimal local value min is given in the last column. Entriesmarkedwith †

means that within the numerical precision of the solver, the corresponding Bell inequality n
min is provably satisfied by quantum theory. For the entrymarkedwith ‡, there remains a gap of the order of 2.7 10 3´ - between the max

presented and the best upper bound that we obtained from local level 2 of the hierarchy considered in [23].

n Scenario max max max∣y ñ maxn vmax min min min∣y ñ minn vmin dmin

1 3 3 3 3 3 3{[ ] [ ]} 2 2.6972 ∣F ñ+ 0.7819 0.7415 −4 † −4.0000 — — — 1

2 3 3 3 3 3 3{[ ] [ ]} 2 2.6712 ∣F ñ+ 0.7884 0.7487 −4 † −4.0000 — — — 1

3 3 3 3 3 3 3{[ ] [ ]} 2 2.6586 [0.7278; 0.6857] 0.7915 0.7523 −5 † −5.0000 — — — 2

4 3 3 3 3 3 3{[ ] [ ]} 2 2.6586 [0.7278; 0.6857] 0.7915 0.7523 −5 † −5.0000 — — — 2

5 3 3 3 3 3 3{[ ] [ ]} 2 2.6488 [0.7129; 0.7013] 0.7940 0.7551 −4 † −4.0000 — — — 4

6 3 3 3 3 3 3{[ ] [ ]} 2 2.6577 [0.7222; 0.6917] 0.7917 0.7525 −4 † −4.0000 — — — 4

7 3 3 3 3 3 3{[ ] [ ]} 2 2.6577 [0.7222; 0.6917] 0.7917 0.7525 −4 † −4.0000 — — — 5

8 3 3 3 3 3 3{[ ] [ ]} 2 2.6577 [0.7222; 0.6917] 0.7917 0.7525 −4 −4.0010 [0.7925; 0.5893; 0.1568] 0.9997 0.9997 5

9 3 3 3 3 3 3{[ ] [ ]} 2 2.6720 [0.7150; 0.6992] 0.7881 0.7485 −4 −4.0171 [0.7468; 0.6175; 0.2470] 0.9941 0.9941 6

10 3 3 3 3 3 3{[ ] [ ]} 1 1.6720 [0.7150; 0.6992] 0.7881 0.7485 −5 −5.0171 [0.7468; 0.6175; 0.2470] 0.9941 0.9941 7

11 3 3 3 3 3 3{[ ] [ ]} 2 2.6955 [0.7230; 0.6908] 0.7824 0.7420 −4 −4.0138 [0.7932; 0.5571; 0.2457] 0.9952 0.9952 8

12 3 3 2 3 3 2{[ ] [ ]} 2 2.5820 [0.7258; 0.6879] 0.7746 0.7277 −3 −3.0005 [0.8957; 0.4328; 0.1023] 0.9998 0.9998 8

13 3 3 2 3 3 2{[ ] [ ]} 2 2.6712 ∣F ñ+ 0.7884 0.7487 −3 −3.6712 ∣F ñ+ 0.7884 0.8172 26

14 3 3 3 3 3 3{[ ] [ ]} 2 2.6972 ∣F ñ+ 0.7819 0.7415 −3 −3.6972 ∣F ñ+ 0.7819 0.8114 27

15 3 3 2 3 3 2{[ ] [ ]} 1 1.5923 ∣F ñ+ 0.7715 0.7242 −3 −3.5923 ∣F ñ+ 0.7715 0.8050 29

16 3 2 2 2 2{[ ] [ ]} 1 1.2532 [0.6608; 0.5307; 0.5307] 0.7247 0.7247 −1 −1.0328 [0.6773; 0.6769; 0.2882] 0.9682 0.9682 30

17 3 2 2 3 2 2{[ ] [ ]} 1 1.3090 [0.6388; 0.5860; 0.4985] 0.7639 0.7639 −3 † −3.0000 — — — 4

18 3 2 2 3 2 2{[ ] [ ]} 1 1.4142 ∣F ñ+ 0.7071 0.7071 −2 † −2.0000 — — — 16

19 3 3 3 3 3 3{[ ] [ ]} 1 1.3782‡ [0.6069; 0.6064; 0.5137] 0.7925 0.7925 −3 −3.2071 ∣F ñ+ 0.7071 0.9250 13
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example [84]where a genuine POVMwas found to be relevant, our example here actuallymakes use of a facet-
defining Bell inequality, thus answering a stronger formof the opened problem (fundamental question no. 10)
posed byGisin in [85].Moreover, our example is also considerablymore noise-resistant than that of[84], as we
can tolerate6 between 6.66%–17.54%ofwhite noise, before losing the advantage of genuine POVMover
projectivemeasurements using 12

max . For an explicit set of genuine POVM leading to themaximal quantum
violation of 12

max , see appendix B.
For completeness, we also analyze the quantum violation of the only 3 3 3 3 3 3{[ ] [ ]} facet known in the

literaute [36], whichwe list as 19
max (and cast in amore symmetrical form) in table 1 . Likewise, we also carry out

detailed analysis of the Bell inequality that result from theminimum (see equation (5)) of the Bell expression
given in table 1 over all correlations in , i.e.,

S P: . 13n n n n
min

min· ( ) ( ) 


b b=
  

The results of these investigations are also summarized in table 2.Not surprisingly, all the Bell inequalities n
min

with n 1, 2, , 19{ }Î ¼ are not facet-defining.Moreover, from the numerical upper bound obtained from [79],
nine of these inequalities cannot even be violated quantummechanically, whilefive others can be violatedwith
rather poor visibility vI

Cr using some partially entangled two-qutrit states. The remaining four inequalities 13
min ,

14
min , 15

min , and 19
min turn out to bemaximally violated by ∣F ñ+ .Moreover, themaximal quantum violation of

n
min with n 13, 14, 15{ }Î turns out to give exactly the same state visibility as their counterpart n

max .
For 19

max , the best quantumviolation that we have found is attained using a partially entangled two-qutrit
state. However, sincewe cannot close the gap between this quantumviolationwith the upper bound coming
from theNPAhierarchy [79] (or the hierarchy considered in [23]), we cannot yet conclude that the presented
value indeed represents themaximal quantum violation of 19

max . Finally, let us note from table 2 that the Bell
inequalities listedwithin each of the three sets ,3

max
4
max{ }  , , ,6

max
7
max

8
max{ }   , ,9

max
10
max{ }  share

surprisinglymany common properties. In fact, it is impossible to know that inequalities 3
max and 4

max are
inequivalent [36] (i.e., cannot be transformed fromone to the other via equation (4) and/or relabeling of
parties, inputs and outputs) based on the properties that we have analyzed. Their inequivalence is eventually
confirmed by computing their canonical representation [77] via the platformprovided in [76].

4. Experimental demonstration of Bell inequality violation

In this section, we present how energy–time entangled photon pairs can be realized experimentally in order to
demonstrate the quantumviolation of Bell inequality I3

+ (equation (9)) using a one-parameter family of
entangled two-qutrit states, i.e., equation (11)with 1g¢ = , as well as the violation of 12

max and 14
max (table 1)

using a one-parameter family of entangled two-qubit states, i.e., equation(11)with 0g¢ = . Note that I3
+ is the

only knownBell inequality withmaximal quantum violation achieved by amaximally entangled two-qutrit
state, while 14

max is a ternary-outcomeBell inequality that ismaximally violated by amaximally entangled two-
qubit state, whereas 12

max ismaximally violated by performing a genuine POVM, or in other words, non-
projectivemeasurements on a partially entangled two-qubit state.

4.1. Experimental setup
As depicted infigure 1, our experimental setup [86, 87] can be subdivided into three parts: preparation,
manipulation and detection of entangled photons. By pumping a periodically poled KTiOPO4 (PPKTP) crystal
with a quasi-monochromatic ND:YVO4 (Coherent Verdi V5) laser with a central wavelength 532 nmp c,l = ,
collinearly phase-matched type-0 spontaneous parametric down-conversion (SPDC) is exploited. Up tofirst-
order in perturbation theory, the corresponding biphoton state is described by

a ad 0 0 , 14i s i s∣ ( ) ˆ ( ) ˆ ( )∣ ∣ ( )† †òy w w w wñ = L - ñ ñ
-¥

¥

where the leading order vacuum state is omitted. By acting on the composite vacuum state 0 0i s∣ ∣ñ ñ , the operators
ai s,ˆ ( )† w create the idler (i) and signal (s) photon at relative frequencyω (with respect to

2

p c,w
). Sincewe assume a

continuous pumpfield aswell as degenerate center frequencies i c s c, , 2

p c,w w= =
w

, for idler and signal photon,
respectively, the joint spectral amplitude (JSA), in general being a two-dimensional function denoted by

,i s( )w wL , simplifies to ( )wL with s iw w wº = - , as used in equation (14).
The subsequentmanipulation part is realized via a prism-based pulse shaping configuration including a

spatial lightmodulator (SLM, Jenoptik, SLM-S640d) as a reconfigurablemodulation device. The SLM is
endowedwith twonematic liquid crystal displays and is used in transmissionmode. The respective effect on

6
The uncertainty in this critical value of white noise stems from the gap between the best lower bound on quantumviolation that we could

find and the best upper bound that we could obtain assuming projectivemeasurements.
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each photon spectrum can be described by a complex transfer function M i s, ( )w which transforms the JSA
according to

M , 15˜ ( ) ( ) ( ) ( )w w wL = L

where M M Mi s( ) ( ) ( )w w w= - . Finally, coincidences between entangled photons aremeasured by sum-
frequency generation (SFG) using a second PPKTP crystal. The resulting up-converted photons are then imaged
onto the photosensitive area of a single photon countingmodule (SPCM, IDQuantique id100-20-uln).
Accordingly, the signal detected by the latter is described by the first-order coherence function

S Md , 16
2

( ) ( ) ( )ò w w wµ G
-¥

¥

where the JSA ismodified by the acceptance bandwidth of the detection crystal ( )wF such that
( ) ( ) ( )w w wG µ L F . To incorporate thefinite spectral resolution at the SLMplanewe further convolute the JSA

with aGaussianmodeled point-spread function (PSF) denotedwith PSF( )w¡ according to

. 17PSF PSF( ) ( ) ( )( ) ( )w w wG  G µ G Ä ¡

4.2. Projectivemeasurements in a frequency-bin basis
To access entangled two-qudit states we project the continuous biphoton state of equation (14) onto a d2-
dimensional discrete subspace spanned by orthonormal basis states j ki s∣ ∣ñ ñ , where

j f a 0i s j
i s

i s i s,
,

, ,∣ ( ) ˆ ( )∣†ò w wñ º ñ
-¥

¥
(see [55] for details). Here, the corresponding basis functions f

j
i s, ( )w are

chosen according to a frequency-bin patternwhich is given by

f
1 for 2,

0 otherwise.
18

j
i s j j j, ( ) ∣ ∣ ( )

⎧⎨⎩w w w w w= D - < D

If we impose that adjacent bins do not overlap, the (normalized) projected state can be rewritten in the formof a
discrete two-qudit state

c j j . 19d
j

d

j i s
0

1

∣ ∣ ∣ ( )åy ñ = ñ ñ
=

-

For d=3 the corresponding frequency-bin pattern, together with the associated basis states, is shown
exemplarily infigure 1.We further, decompose the transfer functions M i s, ( )w in terms of the basis functions
f

j
i s, ( )w such that

Figure 1. Left: schematic overview of the experimental setup. Preparation: pumpbeam is focused (L0, f=150 mm) into a nonlinear
PPKTP crystal for SPDC.Manipulation: the pulse shaper consists of a symmetric two-lens imaging arrangement (L1, L2,
f=100 mm) and a four-prism (P1–P4) compressor. At its symmetry axis an SLM is located and used in transmissionmode. The
residue of the pumpbeam is chocked off by a beamdumpBD.Detection: identical nonlinear crystal for SFGused such that after a two-
lens imaging system (L3, L4 , f = 60 mm, f=11 mm) the up-converted photons are detected via a SPCM. The entangled photons pass
through the imaging sequence 0 1 2S  S  S with correspondingmagnification factors 1:6:1 and the bandpass filter BF is used to
filter out the non-up-converted photons. Right: simulated SPDC spectrumoverlaidwith a schematic frequency-bin pattern. Bymeans
of the SLM, the transmitted amplitude uj

i s,∣ ∣ (white bars) and phase j
i s,f of each bin can be controlled independently according to

equation (20).
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M u f u fe . 20i s

j

d

j
i s

j
i s

j

d

j
i s

j
i s,

0

1
, ,

0

1
, i ,

j
i s,( ) ( ) ∣ ∣ ( ) ( )å åw w w= = f

=

-

=

-

Experimentally, the SLMconsists of two liquid–crystal displays. This allows us tomanipulate the spectral phase

j
i s,f and amplitude uj

i s,∣ ∣of the signal and idler photon independently [88]. The latter is realized by an SLM
induced polarizationmodulation on the entangled photons and an SFG crystal which only up-converts h-
polarized photons. The combination of the SLMand the SFG coincidence detection finally realizes a projective
measurement of d∣y ñonto a direct product state ∣cñ to be defined below. Accordingly, the discretized expression
of equation (16) reads

S u u c . 21d

j

d

j
i

j
s

j d
0

1
2

2∣ ∣ ∣ ( )( ) å c yµ = á ñ
=

-

To be consistent with the framework of a Bell scenariowe identify fromnowon the idler photonwith Alice
A i( )« and the signal photonwith Bob B s( )« . The set of correlations P a b x y, ,( ∣ ) is then related to S d( )

according to P a b x y S, , d( ∣ ) ( )µ with a state ∣cñgiven by

a b

u j u j , 22

a x b y A
x

B
y

j

d

j
x

k
x

A
j

d

j
y

k
y

B

,

0

1

0

1

∣ ∣ ∣

({ })∣ ({ })∣ ( )

∣ ∣

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å å

c

h q

ñ = ñ ñ

= ñ ¢ñ
=

-

¢=

-

¢

where M M a a b ba x b y A
x

A
x

B
y

B
y∣ ∣ ∣ ∣Ä = ñ á Ä ñ á . Each set of states a A

x{∣ }ñ , b B
y{∣ }ñ in equation (22) represents the

most general d-dimensional orthonormal basis according to SU(d) and the optimalmeasurement settings k
x{ }h

and k
y{ }q with k d1 ,..., 12{ }Î - are obtained bymaximizing the violation of the Bell inequality under

consideration. Experimentally, the set of correlations Pexp


is determined bymeasuring an average count rate

N S d( )µ over a certain timeT. In particular, under the assumption that the source andmeasurements are both
independent and identically distributed (i.i.d.), the observed correlation components P a b x y, ,exp ( ∣ ) are finally
estimated via the relative frequencies

P a b x y
N a b x y

N a b x y
, ,

, , ,

, , ,
23

a b

exp

,

( ∣ ) ( )
( )

( )
å

=
¢ ¢

¢ ¢

for all a b x y, , , .

4.3. Experimental results
In this section, experimental results obtained for the Bell inequality violation of I3

+, 12
max and 14

max are
provided. The quantumvalue for each of these inequalities is calculated using a representation of the
corresponding Bell inequality expressed in the formof equation (2). Specifically, to obtain the Bell coefficients

ab
xya of 12

max and 14
max from the coefficients given in table 1, we apply the following transformation

a b x y

a b

a b x

a b y

if , 0, 1, 2 and , 1, 2 ,

if , 0, 1, 2 ,

if , 0, 1, 2 and 1, 2 ,

if , 0, 1, 2 and 1, 2 , 24

ab
xy

ab
xy

ab ab A a B b

ab
x

ab
x

A a
x

ab
y

ab
y

B b
y

00 00
,

0
,

0

0 0
,

0 0
,

{ } { }
{ }

{ } { }

{ } { } ( )

a b

a b b b

a b b

a b b

= Î Î

= + + Î

= + Î Î

= + Î Î

where all coefficients that were not defined in table 1, such as xy
22b , A

x
,2b , B

y
,2b etc., are understood to be zero in the

above equation.
The experimental results—obtained by performing the optimizedmeasurements for each inequality and for

eachfixed value of γ—are shown infigure 2 as a function of γ. Note that for the experiment on I3
+ and 14

max , the
preparation of amaximally entangled two-qutrit state 3∣F ñ+ and two-qubit state ∣F ñ+ , respectively, are of
particular interest. The characteristic shape of a SPDC spectrum (figure 1), however, naturally leads to a non-
maximally entangled quantum state, due to unequally distributed probability amplitudes. In our experiments,
∣F ñ+ and 3∣F ñ+ are thus prepared by applying the Procrusteanmethod of entanglement concentration [89].
Moreover, for the quantum violation of 12

max , in order to implement the non-projective POVMelement, the
two-qubit state , 0∣ ( )y g ñ is embedded in a two-qutrit space, i.e., after preparing the state 3∣F ñ+ as described
above, the two Schmidt coefficients c0 and c1 are changed according to table 2while setting c2 to zero.

To quantify the imperfection in our setup, we consider the symmetric noisemodel of equation (8)with ρ
being the pure state , 0∣ ( )y g ñor , 1∣ ( )y g ñof equation (11)with the appropriate value of γ. From themeasured
quantumvalue of each inequality and the theoretically computedmaximumquantumviolation for each of the
aforementioned states, we can then determine themixing parameter 0, 1d ( ) [ ]n g Î that gives rise to the
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observed correlations. Thefinalmixing parameter reported in the caption offigure 2 is themean value obtained
by averaging d ( )n g over different values of γ.

5. Source characterization fromoutcome correlations

One of themost important features of device-independent quantum information is that all conclusions—such
as the security of the distributed key, generated randomness or characteristics of the underlying state—are
drawn directly from the observed correlations between themeasurement outcomes, without invoking any
assumption about the internal workings of the device, nor the quantum state that gives rise to these correlations.
Implicit in the analysis of device-independent quantum information is thus the assumption that the observed
correlation is quantum realizable, see equation (3a), and hence non-signaling, equation (4).Moreover, for
device-independent analysis tomake sense, it is paramount to ensure that the experiment is free fromdetection
loophole (see, e.g., sectionVII B1a of[3]). Since our experiments clearly did not address any of the loopholes of a
Bell test, the data collected, strictly speaking, cannot be used for a device-independent analysis. Rather, the
analysis discussed hereaftermerely serves ameans for us to analyze our experimental systems—under the
assumption that equation (3a) holds—without having to trust themeasurement nor preparation device (see [90]
for a discussion of why this is relevant). In otherwords, our analysis in this section, though being in the spirit of
device-independence, does require the additional assumptions of (a) i.i.d., (b) fair sampling and (c) that any
effect that could have arisen from signaling (due to the close proximity of our systems) is negligible.

Nonetheless, due to statistical fluctuations infinite sample size, the raw correlation Pexp


estimated from

equation (23) essentially always deviates from the non-signaling conditions given in equation (4). In this section,
we investigate the extent towhich our data is compatible with the non-signaling conditions, and hence
assumption (c) stated above, and also discuss how the (signaling) raw correlationsmay be post-processed so that
we canmake full use of themeasurement statistics to characterize our experimental systems.

5.1. Signaling in the raw correlation
To gain insight into the signaling nature of our experimentally determined correlations, we show infigure 3 the
differences

P a x y P a x y P a x y y y, , , 251,2 1 2 1 2( ∣ ) ≔ ∣ ( ∣ ) ( ∣ )∣ ( )D - ¹

for all a x y y, , , 0, 1, 21 2 { }Î aswell as

P b x y P b x y P b x y x x, , , 261,2 1 2 1 2( ∣ ) ≔ ∣ ( ∣ ) ( ∣ )∣ ( )D - ¹

for all b x x y, , , 0, 1, 21 2 { }Î derived from Pexp


for themeasurement of 12 when 1g = . In particular, each

subplot on the left (blue) shows equation (25)whereas each subplot on the right (red) shows equation (26),
thereby indicating the extent of signaling, respectively, fromBob toAlice and fromAlice to Bob. If the non-

Figure 2.Experimentallymeasured Bell parameters n
exp with n 0, 12, 14{ }= shown as a function of the entanglement parameter γ

with 1s uncertainty. Left: experimentallymeasured Bell parameter n
exp for the Bell inequality 12

max (green downturned triangles)
and 14

max (red upturned triangles) using a two-qubit state , 0∣ ( )y g ñwith 0, 1[ ]g Î and step-size 0.1gD = . The average state
visibility d

In , see (8), for 12
max is 0.9182 0.00733

12n =  whereas for 14
max we obtain 0.9561 0.00892

14n =  . Right: experimentally
measured Bell parameter 0

exp for the Bell inequality I3
+ using two-qutrit state , 1∣ ( )y g ñwith 0.8, 1.2[ ]g Î and step-size 0.05gD = .

The average state visibility is 0.8876 0.0032I
3
3n = 
+

. In both plots, the (horizontal) blue dashed line indicates the local bound

n nmax( )  b=


whereas the colored dashed lines show the theoretical predictions, scaledwith the corresponding state visibility.
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signaling condition is respected but only deviates from equation (4) due to statistical fluctuations, one expects all
these differences to vanishwithin the statistical uncertainty. This is indeed the case for the correlation Pexp



obtained during themeasurement of 12 for 1g = (figure 3) as well as other values of 0, 1[ ]g Î (not shown).
Likewise, the signaling nature of correlations Pexp


obtained during themeasurement of 14 for 1g = (figure 4)

aswell as other values of 0, 1[ ]g Î (not shown) can essentially be understood via statisticalfluctuations.
On the contrary, as can be seen infigure 5, even by considering a statistical uncertainty of two standard

deviations, some of the differences in the conditionalmarginal distributions obtained for 1g = during the
measurement of 0 (i.e., for inequality I3

+) do not vanish. As such, it is unlikely that the signaling observed in
these correlations can be accounted for entirely through statistical fluctuations. Indeed, as separate numerical
simulations indicate, the amount of signaling in these data collected for the qutritmeasurement ismore a
consequence of the imaging arrangement. Due to the existing PSF,mentioned in section 4.1, the idler and signal
photon are not completely spatially separated at the SLMplane. Consequently, themodulation of one photon
could influence the other photon, yielding signaling data.Moreover, due to the limited transverse spread of the
total spectrum, a stronger overlap of different spectral components naturally occurs since the spacing wD of the
frequency-bin pattern, given in equation (18), is smaller for qutrits than for qubits.

5.2. Removing signaling by quantumapproximation
Having established confidence that ourmeasured correlations for 12

max and 14
max do not contradict the non-

signaling conditions, we can nowproceedwith further analysis based on thesemeasured correlations. To this
end, if we nowmake the assumption that the underlying true quantumdistribution also violates themeasured
Bell inequality by the same amount, then some simple statements, such as the amount of entanglement present
in the quantum states prepared, can already bemade based on the extent towhich the observed correlation
violates the respective Bell inequalities [23]. Not surprisingly, better estimates can often be obtained if, instead,
fullmeasurement statistics are employed in the analysis (see, for instance, [91, 92] in the context of randomness
evaluation).

The tools that have been developed for such purposes—such as the linear program given in equation (A1), or
the semidefinite programs described in [19, 23, 25, 91, 92]—however, require explicitly that the correlation to be
analyzed satisfies the non-signaling condition, equation (4). As described above, although the correlations that
we obtained are compatible—within statistical uncertainty—with the non-signaling conditions, the raw
correlations themselves do not. In order to take advantage of the full probability distribution for subsequent
analysis of the source, some formof post-processing of the raw correlationwould be necessary. In [92], the
authors removed the signaling in the raw correlation by projecting it into the non-signaling subspacewhereas in

Figure 3.Differences inmarginal probability distributions P a x y, 1,2( ∣ )D for Alice (blue plots on the left) and P b x y,1,2( ∣ )D for Bob

(red plots on the right), evaluated for Pexp


obtained from themeasurement of the Bell inequality 12

max using qubits, with 1g = (1s
uncertainties). The number pair y x, 0, 1, 21,2 1,2 { }Î refers to the pair of settings forwhich the difference according to equations (25)
and (26), respectively, is evaluated.
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[86], the authors achieved this by computing the non-signaling distribution that is closest to the raw distribution
according to the relative entropy.While the former approachworks for the correlations analyzed in [92], both
these approaches suffer from the immediate risk that the non-signaling correlation derivedmay not be quantum
realizable, see equation (3a). Tominimize this risk, wewill compute instead the quantum correlation nearest to
the experimentally determined correlation.

Figure 4.Differences inmarginal probability distributions P a x y, 1,2( ∣ )D for Alice (blue plots on the left) and P b x y,1,2( ∣ )D for Bob

(red plots on the right), evaluated for Pexp


obtained from themeasurement of the Bell inequality 14

max using qubits, with 1g = (1s
uncertainties). The number pair y x, 0, 1, 21,2 1,2 { }Î refers to the pair of settings forwhich the difference according to equations (25)
and (26), respectively, is evaluated.

Figure 5.Differences inmarginal probability distributions P a x y, 1,2( ∣ )D for Alice (blue plots on the left) and P b x y,1,2( ∣ )D for Bob

(red plots on the right), evaluated for Pexp


obtained from themeasurement of the Bell inequality I3

+ using qutrits, with 1g = (2s
uncertainties). The number pair y x, 0, 1, 21,2 1,2 { }Î refers to the pair of settings forwhich the difference according to equations (25)
and (26), respectively, is evaluated.
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In practice, however, there are two other technical difficulties that need to be overcome before we can apply
existing techniques for further analysis. Firstly, the exact characterization of the set of quantum correlations for
any given Bell scenario is not known and appears to be a formidable task (see, e.g., [79, 80]). To overcome this,
we shall consider instead a converging hierarchy of relaxations to the set of quantum correlation, such as that
discussed in [79, 80] or [23]—each of these relaxations defines a superset to and in the asymptotic limit, one
recovers.

Secondly, to compute the ‘nearest’ quantum7 approximation to the experimentally determined correlation,
we need to choose an appropriatemetric, i.e., a distancemeasure and there is apparently no unique choice to
this. To facilitate computation, for the present purpose, we shall consider a distancemeasure based on theℓ1-
norm (which corresponds tominimizing the least absolute deviation). As shown in appendix C, the problemof
determining a correlation P ℓℓ  Î


whichminimizes the distance P Pexp 1∣∣ ∣∣ℓ -

 
—with ℓ being theℓ-level of

the hierarchy defined in [79] or [23]—can then be cast as a semidefinite program,which can be efficiently solved
on a computer. In addition, in order to remove possible degeneracies involved in the computation, we also
impose the condition that the distribution sought for, P ℓ


, reproduces the quantumvalue of the inequalities

that wemeasured in the experiment, i.e., P Pexp· ·ℓb b=
   

.
As an illustration of the above procedures, we show infigure 6 an estimation of the entanglement—

measured according to negativity [58]—present in our source computed using the8 technique introduced in
[23]. Evidently, the negativity lower bound obtained from the (approximated) full data are generally higher than
that arising from the quantumviolation of the respective Bell inequalities. In fact, as can be seen infigure 6, the
negativity estimated from the fullmeasurement data are sometimes even higher than that obtained from the
device-dependent estimation assuming a symmetric noisemodel. Note also that for each of these Bell
experiments, themeasured correlations for certain small values of γ are not good enough to violate the
corresponding Bell inequalities. However, when the full data is taken into account, we are sometimes able to
obtain non-trivial estimates of the entanglement9 present in the underlying state.

To test the reliability of the proposedmethod, we have also computed the negativity (lower bound) by
assuming that the true quantum value is themeasured quantum value plus (minus) one standard deviation (see
dotted (dashed) line infigure 6). As can be seen in the figure, except for one instance, namely for 14

max andwhen
0g = , all negativities estimated using the actual valuefit well between those estimated assuming the shifted

values. For this exceptional instance, the negativity estimated from the full data (and the assumption that the true
quantumvalue is themeasured value less oneσ) turns out to give an even larger (and nonzero) value compared

Figure 6.Plots of negativity estimated directly from correlations obtained in the Bell test of inequality 12
max (left) and 14

max (right) as a
function of γ (see equation (11)with 0g ¢ = ). In each subplot, ‘DI—Quantum value’ and ‘DI—Full statistics’ refer to the device-
independent-inspired estimations of negativity obtained using, respectively, only the (measured) quantumvalue of the corresponding
Bell inequality and the full data (obtained by determining the nearest quantum approximation to the raw data). For each of these
estimations, solid line assumes exactly the quantumvaluemeasured, dashed–dotted line assumes that the quantumvalue equals to the
measured value plus 1σwhereas the dashed line assumes that the quantumvalue equals to themeasured valued less 1σ. Also plotted
are the negativities assuming a symmetric noisemodel (i.e., the underlying state is an isotropic state, see equation (8))with visibility
given in the caption of figure 2.

7
Here, quantum refers to the relaxation of as explained in the previous paragraph.

8
Here, all computations are carried out assuming an intermediate-level relaxation between local level 1 and local level 2 [23], using aχ

matrix of the size of 289×289.
9
Whenever this happens, the corresponding correlation P


has to be outside , albeit this is not reflected by the quantumvalue of the

measured Bell inequality.
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with the case when the assumed quantumvalue is themeasured value (orwith one standard deviation above). A
possible cause for this somewhat unexpected result is that evenwith an assumption of the true quantumvalue,
theremay bemore than one P ℓℓ  Î


thatminimizes theℓ1 distance to the raw correlation, and the solver

happens to have returned a P ℓ


that gives the highest value of negativity (when the assumed quantum value is the
smallest of the three cases considered). Another unusual feature associatedwith this exceptional instance is that,
by right, for 0g = , our system should have produced a separable state and is thus not capable of violating any
Bell inequality (nor producing correlation to be associatedwith non-trivial negativity). Thus, if the estimation
thatwe have obtained using the (approximated) full data (and the assumption that the true quantumvalue is
indeed themeasured valueminus oneσ) is legitimate, then this conclusion obtained from themeasured data
nicely illustrates howour trust in themeasurement and preparation devicesmay bemisguided.

6.Discussion

In this work, starting from the Bell inequality I3
+ presented in [69] and analyzing its quantum violation for a

family of two-qutrit states, we obtain several novel facet-defining Bell inequalities for the Bell scenario
3 3 3 3 3 3{[ ] [ ]}. Interestingly, all these newly obtained Bell inequalities that are not reducible to simpler Bell

scenarios can already be violatedmaximally using entangled two-qubit states, including a Bell state. In contrast,
some of these Bell inequalities that are reducible to Bell inequalities involving fewer number of outcomes require
entangled two-qutrit states to achievemaximal quantum violation. These results show, once again (see e.g.,
[33, 39, 41]), that in analyzing the quantumviolation of given Bell inequalities, thewidely employedwisdomof
setting the localHilbert space dimension to be the same as the number ofmeasurement outcomes is unfounded.

The quantum violations for two of these newly obtained Bell inequalities, together with I3
+, are

experimentally demonstrated using, respectively, a one-parameter family of entangled two-qubit and two-qutrit
states. These are Bell inequalities that aremaximally violated, respectively, by amaximally entangled two-qutrit
state, amaximally entangled two-qubit state and a partially entangled two-qubit state in conjunctionwith
genuine POVM.Not surprisingly, the rawmeasurement statistics deviate from ideal quantum correlations
which ought to satisfy the non-signaling condition. In the case of qubitmeasurements, these deviations are
compatible withwhat onewould expect from finite-size effects (quantifiable through statistical uncertainty)
whereas in the qutrit case, unfortunately, such deviations cannot be entirely accounted for usingfinite statistics.
Separate numerical simulations nevertheless show that this last observation probably stems froman imperfect
implementation of the qutritmeasurements, due to limited optical resolution at the SLMplane. As a result, in
addition to giving amuch lower signal-to-noise ratio, unwanted interferences between specific bins aremore
likely to occur, yielding the appearance of signaling in the data sets.

Naturally, given that the raw correlation exhibits signaling, onemay raise doubts on any conclusions drawn
directly from these correlations. In the eventwhen the deviation (fromnon-signaling) is accountable for by
statisticalfluctuations, such doubtsmay be alleviated, thus allowing one to proceedwith a device-independent-
inspired analysis under the assumptions that (1) the source and themeasurements are i.i.d, (2) the counts
registered represent a fair sample of all themeasurement events. For convenience, we alsomake the commonly
adopted assumption that the true underlying quantumdistribution gives rise to the samemeasured value of Bell
inequality violation. Building on these assumptions, as we discussed in section 5, stronger statementmay be
made if one looks for the nearest quantum approximation to the experimentally determined correlation, and
continue the analysis from there. The essence of this approach is thus in the same spirit as the familiar approach
of quantum state tomography usingmaximum likelihood state estimation—themain difference being that the
‘tomography’ is now applied to the raw correlation ofmeasurement outcomes obtained in experiments.

Let us now comment on some possibilities for future research. Experimentally, ongoingwork aims at
achieving a better optical resolution, a higher signal-to-noise ratio setup and an experimental arrangement in
which the idler and signal photon can bemanipulated individually. Thefinite optical resolution at the SLMplane
leads to the aforementioned, unwanted overlap between spectral components and therefore forbids us from
havingwell-separated subsystems. This overlap can be reduced by incorporating a prismbased pulse shaper in
which the single lens imaging system is replaced by a 4f-imaging arrangement, the latter providing a significantly
better imaging resolution quality. Further, since SFG in a single nonlinear crystal is a local detection process with
both photons taking the same optical path through the experimental setup, another goal in future is to have a
detection scheme based on two delocalized nonlinear crystals. The up-conversion process between the idler and
signal photon is then triggered by a strong seed pulse and the up-converted photons are finally detected in
coincidence electronically [93]. This scheme enhances the signal-to-noise ratio compared to the detection
process presented in this work.Moreover, it would allow formanipulating the idler and signal photon in
separated paths bymeans of a second SLM.
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Coming back to the theoretical side, one of the original goals of the present work is to look for a robust (i.e.,
with good noise tolerance)Bell inequality that can be used for the self-testing of amaximally entangled two-
qutrit state.While 3

+ from [69]may serve, in principle, as such a candidate, its rather poor visibility does not
make it a very attractive candidate for practical purposes. On the other hand, althoughwe did obtain a number of
previously unknown facet-defining Bell inequalities, none of them turn out to be suitable for this purpose either.
The search for such a candidate thus remains as an opened problem.

Secondly, let us remark that the signaling nature of raw correlations observed in a Bell test is an issue that has
been largely overlooked in the studies of device-independent quantum information. In this work, we have
discussed amethod alternative to that of[86, 92] in order to deal with this generic problem faced in the analysis
of real experimental data.While themethod hasworkedmore or less as expected, we have not thoroughly
investigated its reliability. For instance, it seems conceivable that in the generic situation, theremay bemore than
one correlation P ℓℓ  Î


that gives the same distance to the raw correlation Pexp


even after we impose the

condition that P Pexp· ·ℓb b=
   

. Howwould such non-uniqueness affect any device-independent
conclusions, or canwe remove this problem via other choice(s) of distancemeasures or imposing other natural
constraints? In addition, given that ℓ only approaches as ℓ  ¥, howwould this difference from for any
finite value ofℓ affect the validity of our estimation? And even if we can overcome these difficulties, howdowe
properly translate the statistical uncertainty obtained in the raw correlation into the quantities of interest, such
as the entanglement of the underlying state, or the randomness extractable from a certain outcome? Although
the näive approach that we adopted towards the end of section 5 does seem to suggest a confidence region of the
estimated negativity formost of the cases analyzed, it is clear fromour observations that amore thorough
investigation needs to be carried out. Note that similar questions have also been discussed in the context of
quantum state tomographywhere some solutions have been proposed, see, for instance [94]. Can these tools be
adapted for device-independent analysis? These questions are clearly of paramount importance for the future
implementation of device-independent quantum information protocols, thus leaving us plenty to ponder upon
for future research.
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AppendixA. Linear program

For any given correlation P P a b x y, ,G G{ ( ∣ )}=


ofmeasurement outcomes, one can determine its white-noise
visibility vCr with respect to  via the following linear program

v amax , A1( )

v P v P p P bs. t. 1 , A1G
i

n

i i
1

Ext,( ) ( )å+ - =
=

  


v p i p c0, 0 , 1, A1i
i

i ( )  å" =

where P

 is thewhite noise correlation, P iExt,


is the ith extreme point of —each extreme point only has entries

0, 1—pi is theweight associatedwith each of these extreme points and n is the total number of extreme points
of .

Now, recall from [78] that every linear programof the form

A
c x

x b
x

max
s. t. ,

0, A2

T

( )
=
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has a dual programof the form

A

b y

y c

min

s. t. , A3

T

T ( )

where x and y are respectively column vectors collecting all optimization variables of the primal and the dual
linear program,whileµ denotes entry-wise inequality.

The dual program corresponding to equation (A1) is thus

P y y amin , A40· ( )+
 



P y y i n bs. t. 0 1, , , A4iExt, 0· { } ( ) + " Î ¼
 

P y P y c1. A4G · · ( ) -
   



Note that the linear inequality suggested by the dual linear program

P y y 0, A50· ( )+
 

is a Bell inequality, since equation (A4b) guarantees that it holds for all extreme points of , and hence for all P


resulting from convex combinations thereof.
When strong duality holds, the linear program return an optimumvalue satisfying

v v P y y P y yCr 0 0
· · * *= = + = +

   
  , where y y,

0
( )* *


are the optimal dual variables. In particular, if the
optimumvalue vCr is less than 1, we see from equation (A4c) that the Bell inequality given by equation (A5) is
violated.Hence, by solving the linear program given in equation (A1a), we not only obtain the critical white-
noise visibility vCr, but also (in the case when v 1Cr* < ) a Bell inequality, see equation (A5), certifying that the
given correlation is indeed outside .

Appendix B.Optimalmeasurement for 12
max

Here, we provide a set ofmeasurements that can be used in conjunctionwith the two-qubit state

0.7258 00 0.6879 11 B1max
12∣ ∣ ∣ ( )y ñ = ñ + ñ

in order to achieve themaximal quantum violation of 12
max . Specifically, let us consider projective POVM

elements such that Ma x a x
A

a x
A∣ ∣f f= ñá and Mb y b y

B
b y
B∣ ∣f f= ñá , where a x

A∣f ñand b y
B∣f ñare column vectors

which—when expressed in the i i 0
2{∣ }ñ = basis—have entries given, respectively, by the ath and the bth column

vector of thematrix x
AW and y

BW specified below:

0.9835 0 0.1809
0.1809 0 0.9835

0 1 0
,

0.8826 0.4642 0.0742
0.4626 0.8857 0.0389

0.0492 0.0678i 0 0.5851 0.8066i
,

0.9117 0.4108 0
0.4108 0.9117 0

0 0 1
,

0.9974 0 0.0721
0.0721 0 0.9974

0 1 0
,

0.8799 0.2668 0.3932
0.2436 0.9637 0.1089

0.4080 0.0004i 0 0.9130 0.0008i
,

0.7478 0.6639 0
0.6639 0.7478 0

0 0 1
.

1
A

2
A

3
A

1
B

2
B

3
B

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

W =
-

W =
-

- - +

W =
-

W =
-

W =
- -

- - +

W =
-

To obtain a set of genuine POVMwhich reproduces thismaximal quantumviolation, it suffices to perform
the projection 0 0 1 1∣ ∣ ∣ ∣ñá + ñá onto each of these Ma x and Mb y defined in the qutrit space to obtain a set of
Ma x and Mb y defined in the qubit space.
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AppendixC. Semidefinite program

Recall from [23] that at any given level (say,ℓ) of the hierarchy considered therein, we consider amatrix [ ]ℓc r
that can be decomposed as

P a x F u F , C1
a x

a x
v

v v
,

,[ ] ( ∣ ) ( )ℓ
ℓ ℓå åc r = +

 
 

 

i.e., into onefixed part that linearly depends on themeasurable quantities P a x{ ( ∣ )} 
, and a complementary

(orthogonal) part that is known only if the underlying state ρ and themeasurement giving rise to the correlation
P a x{ ( ∣ )} 

is known; in equation (C1), Fa x,
ℓ  and Fv

ℓ are some fixed, symmetric, Booleanmatrices [23].
For any observed raw correlation Pexp


, a correlation P ℓÎ


whichminimizes the least absolution deviation

P a x P a xexp 1∣∣ ( ∣ ) ( ∣ )∣∣-
     

(i.e., according to theℓ1 norm) can be obtained by solving the following semidefinite
program

D a x

P a x P a x D a x a x

P a x P a x D a x a x

min ,

s.t. 0,

, ,

, , C2

P a x u a x, ,

exp

exp

v

( ∣ )

[ ]
( ∣ ) ( ∣ ) ( ∣ )

( ∣ ) ( ∣ ) ( ∣ ) ( )

ℓ

{ ( ∣ )} { }







å

c r

- "

- "

 

         
         

    

where D a x( ∣ ) 
is an array of auxiliary variables having the same dimension as P


. Notice that even if we include in

equation (C2) the additional constraint that P a x( ∣ )
  

must reproduce the quantum value of someBell expression
specified by b


, i.e.,

P P , C3exp· · ( )b b=
   

the resulting optimization problem remains as a semidefinite program, as this constraint is linear in the
optimization variables P a x( ∣ )

  
.
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