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ABSTRACT

Analog methods are based on a statistical relationship between synoptic meteorological variables (predictors)

and local weather (predictand, to be predicted). This relationship is defined by several parameters, which are often

calibrated by means of a semiautomatic sequential procedure. This calibration approach is fast, but has strong

limitations. It proceeds through successive steps, and thus cannot handle all parameter dependencies. Further-

more, it cannot automatically optimize some parameters, such as the selection of pressure levels and temporal

windows (hours of the day) at which the predictors are compared. To overcome these limitations, the global

optimization technique of genetic algorithms is considered, which can jointly optimize all parameters of the

method, and get closer to a global optimum, by taking into account the dependencies of the parameters. More-

over, it can objectively calibrate parameters that were previously assessedmanually and can take into account new

degrees of freedom. However, genetic algorithms must be tailored to the problem under consideration. Multiple

combinations of algorithms were assessed, and new algorithms were developed (e.g., the chromosome of adaptive

search radius, which is found to be very robust), in order to provide recommendations regarding the use of genetic

algorithms for optimizing several variants of analog methods. A global optimization approach provides new

perspectives for the improvement of analogmethods, and for their application to new regions or new predictands.

1. Introduction

Analog methods (AMs) rely on the hypothesis that

similar situations, in terms of atmospheric circulation,

are likely to result in similar local weather conditions

(Lorenz 1956, 1969; Duband 1970; Bontron and Obled

2005). These methods consist of sampling a certain

number of past situations, based on different synoptic-

scale meteorological variables (predictors), in order to

construct a probabilistic prediction for a local weather

variable of interest (predictand). Some common usages

of AMs are for operational precipitation forecasting

(e.g., Guilbaud 1997; Bontron and Obled 2005; Hamill

and Whitaker 2006; Bliefernicht 2010; Marty et al. 2012;

Horton et al. 2012; Hamill et al. 2015; Ben Daoud et al.

2016), or more recently for precipitation downscaling

in a climate perspective (e.g., Radanovics et al. 2013;

Chardon et al. 2014; Dayon et al. 2015). However, AMs

or equivalent methods are also employed to predict

temperatures (Radinović 1975; Woodcock 1980;

Kruizinga and Murphy 1983; Delle Monache et al. 2013;

Caillouet et al. 2016), wind (Gordon 1987; Delle Monache

et al. 2013, 2011; Vanvyve et al. 2015; Alessandrini et al.
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2015b; Junk et al. 2015a,b), solar power (Alessandrini

et al. 2015a; Bessa et al. 2015), snow avalanches (Obled

and Good 1980; Bolognesi 1993), insolation (Bois et al.

1981), and the trajectories of tropical cyclones (Keenan

and Woodcock 1981; Sievers et al. 2000; Fraedrich

et al. 2003).

Although the method is rather simple, it contains

several parameters to be optimized, such as the choice

of the predictor variables, pressure levels and temporal

windows (hours of the day) at which the predictors

are compared along with the spatial domains used for

the comparison, the analogy criteria (distance mea-

sure), and finally the number of analog situations to

retain.

AMs must be adapted to every newly considered re-

gion because the leading meteorological influences may

be location specific. Even the selection of the pressure

levels and the temporal windows should be reconsid-

ered, if not the predictor variable itself. Thus, before

being applied within a forecasting or downscaling

context, AMs must be calibrated for the given region,

which is performed here within the perfect prognosis

framework (Klein 1963), in line with the majority of the

previously cited AM calibration procedures for pre-

cipitation predictions [with the exception of Hamill and

Whitaker (2006) and Hamill et al. (2015)].

A common approach to optimizing this method is by

means of a semiautomatic sequential calibration pro-

cedure, which was developed by Bontron (2004), and is

also described inBenDaoud et al. (2016) and extended by

Radanovics et al. (2013). This approach determines some

parameters of the method sequentially for each consec-

utive analogy level (e.g., on the atmospheric circulation or

on a moisture index). It begins with a manual selection of

the meteorological variables (e.g., geopotential height

and relative humidity), the pressure levels, the temporal

windows, and the initial analog numbers. Then, the spatial

window over which the predictors are compared is opti-

mized through an iterative growth of the domain, and the

number of analogs is finally reassessed. A successive level

of analogy can then be introduced, and its spatial window

be optimized. The parameters of the preceding levels of

analogy are not reassessed, except for the number of

analog situations to preserve.

Thus, the sequential calibration procedure allows for

the optimization of a limited number of parameters

(spatial windows and analog numbers), but the selec-

tion of predictor variables, pressure levels, and tempo-

ral windows must still be made manually. Testing

multiple combinations of these parameters presents a

very combinatorial problem, which quickly becomes

cumbersome, especially when considering multiple pre-

dictors within the same level of analogy. Thus, optimizing

AMs by means of this sequential technique is laborious if

little knowledge is available regarding the predictor–

predictand relationship or the leading meteorological

influences. Indeed, many combinations of parameters

(predictor variables, pressure levels, and temporal win-

dows) must be assessed. Moreover, proceeding to the

optimization sequentially ignores potential dependencies

between the parameters of the method, whether they are

within a single level of analogy or between multiple

levels, which could lead to another configuration if the

parameters were calibrated together. Thus, there is a high

risk of ending in a local optimum, and this cannot be

avoided.

When creating this sequential calibration procedure,

Bontron (2004) was aware of the problem of dependen-

cies between parameters, and wrote the following: ‘‘We

perceive here the combinatorial aspect of our problem:

variables and spatial windows are not independent. We

will present our results by first searching the best variable

(e.g., selection of the pressure level and the temporal

window for the geopotential height) on a chosen spatial

window, and next, the best window for the chosen vari-

able.However, even by repeating the process, are we sure

to obtain the optimal combination?’’ Later in his work, he

also wrote: ‘‘Our approach, which is again to vary the

parameters one by one—the others being fixed in a more

or less arbitrary manner—may therefore not exactly lead

us to the optimal solution.’’ Bliefernicht (2010) has also

confronted the combinatorial issue for the parameters of

AMs, and concluded that one must be an expert in order

to have a sense of their respective influence, sensitivity,

and nonlinear interactions.When calibrating anAM,Ben

Daoud (2010) also stated that ‘‘the combinatory aspect

related to the calibration was found to be too high for all

the parameters to be calibrated simultaneously.’’ The

simultaneous calibration of all parameters has not been

undertaken so far.

Another optimization strategy, proposed by Junk

et al. (2015b), allows for an automatic calibration of

weights applied to the different predictors when pro-

cessing the analogy criteria (distance function). Their

strategy consists of a brute-force assessment of all pos-

sible combinations. This approach is possible in their

implementation because predictors are considered at a

unique point (interpolated to the location of interest), at

fixed hours, and at preselected pressure levels, leaving

only the weights to be optimized. In the presently em-

ployed AM (described in section 3), the number of pa-

rameters to optimize makes it impossible to proceed

with a brute-force strategy.

To overcome these limitations, two optimization

techniques have been assessed. First, Horton (2012)

assessed the abilities of the Nelder and Mead (1965)
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method, based on a simplex algorithm. This technique

did not provide satisfying results and failed to converge

toward a unique solution. The parameter space of the

AMs can be very complex and is inappropriate for a

linear optimization technique. Thus, global optimization

techniques are likely to be necessary in order to cali-

brate most AM variants, as they can optimize all pa-

rameters of all analogy levels simultaneously. In

addition, they can avoid the systematic manual assess-

ments of all pressure levels and temporal windows. Fi-

nally, they allow the testing of new degrees of freedom in

AMs. The relevance of genetic algorithms (GAs) is

demonstrated here, which does not exclude that other

global optimization techniques could also work. Although

using GAs to optimize AMs may be computationally

intensive, once an AM is calibrated, its employment in

real-time operations or climate downscaling is very fast

and lightweight.

This paper specifically describes how GAs should

be used in order to successfully optimize several AMs.

Indeed, the variants of GAs are numerous, and always

need to be tailored to the addressed problem. This re-

quires intensive and systematic comparisons of opera-

tors and options, in order to identify the key factors

influencing the optimization, as well as the respective

sensitivities of the options. Such analyses are presented

here, resulting in recommendations for the use of

GAs in optimizing several AM implementations. The

in-depth analysis of the benefits of such an approach in a

specific case study will be the topic of a forthcoming

paper.

This paper begins by presenting the area of the case

study and the relevant data (section 2), the considered

AM variants (section 3), and the assessed GA options

(section 4). Comparative analyses of these options are

presented in section 5, leading to the recommendations

formulated in section 6, and finally the conclusions

presented in section 7.

2. Case study and data

The area of study is the alpine upper Rhône catch-

ment in Switzerland (Fig. 1). The altitude ranges from

372 to 4634m MSL, and the area is 5524km2. Based on

various climatological analyses [see Horton (2012) for

the details], the gauging stations in the catchment were

clustered in 10 subregions (Fig. 1).

This region is the target of the Modélisation des In-

tempéries de Nature Extrême sur les Rivières Valaisannes
et de leurs Effets (MINERVE) project, which aims to

provide real-time floodmanagement on the upperRhône

catchment (García Hernández et al. 2009). AMs are

used to provide real-time probabilistic precipitation

forecasts, based on numerical weather prediction (NWP)

model output.

Data

AMs rely on two types of data: predictors, which are

meteorological variables describing the state of the at-

mosphere at a synoptic scale, and the predictand, which

is the local weather time series that is to be predicted.

When working within the perfect prognosis frame-

work (Klein 1963), the meteorological archive from

which the predictors are extracted is usually a reanalysis

dataset. Conversely, other applications of AMs for wind

forecasting are based on a model output statistics

framework (MOS; see Glahn and Lowry 1972) and,

thus, employ forecast archives or reforecast products

(e.g., DelleMonache et al. 2013, 2011; Alessandrini et al.

2015b; Junk et al. 2015a,b).

In the present study, the NCEP–NCAR reanalysis

dataset [6 hourly, 17 pressure levels at a resolution of

2.58; see Kalnay et al. (1996)] is employed, but this could

be replaced with any other reanalysis dataset. This

dataset is relatively old, although it is still widely used,

and better results may be expected with more recent

datasets. However, we can safely assume that if an op-

timization technique works for this reanalysis dataset, it

will also work for an improved one, although the re-

sulting parameters might differ.

Here, the predictand (which is to be predicted) is the

daily precipitation (0540–0540 UTC the following day)

measured at the MeteoSwiss network of stations in the

catchment of interest. The time series from every

available gauging station were averaged over subregions

of approximately 500 km2 [seeHorton (2012) for details]

FIG. 1. Location of the alpine Rhône catchment in Switzerland,

and its discretization into 10 subregions: 1) Swiss Chablais, 2) Trient

valley, 3) west Bernese Alps, 4) lower Rhône valley, 5) left side val-

leys, 6) southern ridges, 7) upper Rhône valley, 8) southeast ridges,

9) east Bernese Alps, and 10) Conches valley (source: Swisstopo).

APRIL 2017 HORTON ET AL . 1277



in order to smooth local effects (Obled et al. 2002;Marty

et al. 2012). The time series must be split into calibration

and independent validation periods.

3. The considered analog method

AMs are based on the principle that two similar syn-

optic situations over a certain domain may result in

similar local effects (Lorenz 1956, 1969). Thus, they are

built upon the concept of searching for a certain number

of past situations in a meteorological archive that pres-

ent similar properties for chosen predictors, according to

an analogy criterion, in order to extract the observed

values of the local weather variable of interest from

another archive (predictand time series; see section 2a).

Based on these analog observations, the conditional

empirical distribution to be considered as the probabi-

listic prediction for the target day (the day one wishes to

predict) is constructed.

Predictors for precipitation predictions can be varied.

For example, geopotential heights at different pressure

levels and temporal windows, or humidity variables [see

Ben Daoud et al. (2016) for a more detailed list of pre-

dictors]. This method often contains several levels of

analogy, which constitute of successive subsamplings of

predictors of differing natures (e.g., atmospheric circu-

lation, moisture variables, vertical motion, and air

temperature).

The basis of theAM implementation considered here is

the following [the same approach as in Guilbaud (1997),

Bontron and Obled (2005), Marty et al. (2012), Horton

et al. (2012), Radanovics et al. (2013), Chardon et al.

(2014), Dayon et al. (2015), and Ben Daoud et al. (2016)]:

1) Preselection—To cope with seasonal effects, n0

candidate dates are extracted from the archive

within a period of 4 months centered around the

target date, for every year of the archive. Alterna-

tively, the candidate dates can be selected based

on similar air temperatures (see Ben Daoud

et al. 2016).

2) First level of analogy—n1 dates are selected out of

the preselected n0, by means of an analogy ranking.

The first level of analogy for precipitation prediction

is often based on the atmospheric circulation. The

similarity between the atmospheric circulation of the

target date and the candidate situations is assessed

based on geopotential heights (at specific pressure

levels, such as 500 and 1000hPa, and at different

hours, e.g., 12 and 24h) by means of the S1 criterion

[Eq. (1), Teweles and Wobus (1954); Drosdowsky

and Zhang (2003)]. This criterion is a comparison of

gradients over a defined spatial window. Various

studies have found the S1 criterion to be more

relevant than Euclidean distances for pressure

fields (Wilson and Yacowar 1980; Woodcock

1980; Guilbaud and Obled 1998; Bontron 2004):

S15 100

�
i

jDẑ
i
2Dz

i
j

�
i

max(jDẑ
i
j, jDz

i
j), (1)

where Dẑi is the forecast geopotential height differ-

ence between the ith pair of adjacent points from the

grid of the target situation and Dzi is the correspond-
ing observed geopotential height difference in the

candidate situation. The differences are processed

separately in both directions. The smaller the S1

values, the more similar the pressure fields are.

The n1 dates with the lowest S1 values are consid-

ered to be analog situations, in terms of the atmo-

spheric circulation, for the target day. The analog

number n1 is a parameter to be calibrated.

3) Subsequent level(s) of analogy—Beyond the simi-

larity of airflows, one may look for analogies in other

variables of interest, such as moisture variables.

Therefore, the n1 analogs are subsampled once more

on the basis of another variable, in order to obtain a

lower number of analog dates n2. When the predictor

is not a pressure field, the analogy criterion usually

represents absolute distances, such as mean absolute

error (MAE) or root-mean-square error (RMSE),

with the latter being most often employed.

A second level of analogy, based on thermody-

namic variables, was introduced byVallée (1986) and
Gibergans-Báguena and Llasat (2007). After a sys-

tematic assessment of variables, Bontron (2004)

pointed out that a moisture index consisting of the

product of the relative humidity at 850 hPa and the

total precipitable water achieves the best perfor-

mance. This index does not represent an actual

physical quantity, but expresses the water content

of the air column and its proximity to saturation.

This process can be repeated by subsampling a

decreasing number of analog dates ni, when intro-

ducing successively more meteorological variables.

4) Probabilistic prediction—Then, the daily observed

amounts of precipitation for the ni resulting dates

provide an empirical conditional distribution, con-

sidered to be the probabilistic forecast for the target

day, eventually after the fitting of a probability law.

The parameters to be defined (manually or automat-

ically), for every level of analogy, are the following:

d the selection of meteorological variables (predictors),

containing synoptic-scale information, and having
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a direct or indirect dependency with the target

predictand;
d the pressure level, or height, at which the predictor is

selected;
d the temporal window is the hour(s) of the day at which

the predictors are considered;
d the spatial window is the domain on which predictors

are compared; the ideal size of this area is that which

maximizes the useful information and minimizes

noise; it may differ according to the meteorological

variable used or with the number of analogs;
d the analogy criterion, needed to compare the variables

on the chosen spatial and temporal windows, is a

distance measure, used to rank observed situations

according to their degree of similarity with the target

situation;
d eventual weights between the predictors (e.g., Horton

2012; Junk et al. 2015b); and
d the optimal number of analog situations, which is the

best compromise in order to take into account local

variability and maximize useful synoptic information

(Bontron 2004).

To calibrate the method, the continuous ranked

probability score (CRPS; Brown 1974; Matheson and

Winkler 1976; Hersbach 2000) is often employed to as-

sess the performance of AMs (see, e.g., Bontron 2004;

Bontron andObled 2005; BenDaoud et al. 2008; Horton

et al. 2012; Marty et al. 2012; Radanovics et al. 2013;

Chardon et al. 2014; Junk et al. 2015b; Ben Daoud et al.

2016; Caillouet et al. 2016). This allows for the evalua-

tion of predicted cumulative distribution functions F(y)

(e.g., of the precipitation values y from analog situa-

tions) compared to the observed value y0. The better the

prediction, the smaller the score. The mean CRPS of a

prediction series of length l can be written as follows:

CRPS5
1

l
�
l

i51

�ð1‘

2‘

[F
i
(y)2H

i
(y2 y0i )]

2 dy

�
, (2)

whereH(y2 y0i ) is the Heaviside function, which is zero

when y2 y0i , 0 and has a value of one otherwise. The

mean CRPS is averaged over the calibration or the

validation period.

To compare the value of the score with regard to a

reference, one often considers its skill score expression,

and employs the climatological distribution of daily pre-

cipitation as the reference. The continuous ranked

probability skill score (CRPSS) is thus defined as follows:

CRPSS5 12
CRPS

CRPS
r

, (3)

where CRPSr is the score value for the reference. An

increase in the CRPSS indicates a better prediction.

4. Assessed genetic algorithm variants

Genetic algorithms (Holland 1992; Goldberg 1989)

are part of the family of evolutionary algorithms (Bäck
and Schwefel 1993; Schwefel 1995), which are inspired

by some mechanisms of biological evolution, such as

reproduction, genetic mutations, chromosomal cross-

overs, and natural selection. Unlike linear or local op-

timizations, GAs seek the global optimum on complex

surfaces, theoretically without restriction, but with no

guarantee of reaching it (Haupt and Haupt 2004). The

objective function to be optimized (often named the

fitness function within this context) can be of various

types (Joines et al. 1996), but GAs must be adapted in

order to perform optimally.

A key element of the configuration of GAs is de-

termining the correct balance between exploration and

exploitation (Bäck 1992a; Smith and Fogarty 1997).

Exploration is characterized by a relatively high prob-

ability of assessing the regions of the parameter space

that have not yet been visited. This probability must be

sufficiently large at the beginning of the optimization, so

that the algorithm is capable of identifying the region

where the global optimum is likely to be located. Ex-

ploitation is characterized by a local search in an area of

interest and, generally, makes small movements. The

latter aims at finding small improvements at the end of

the optimization.

a. Structure and operators

GAs optimize a population of N individuals. Each in-

dividual contains a chromosome, which here is a vector of

the AM parameters. Genes are the individual parameters

constituting the chromosome. These can be categorical

(e.g., choice of themeteorological variable), discrete (e.g.,

number of analog dates to select), or continuous.

There are numerous implementation variants of GAs,

which are often optimal for a given problem (Hart and

Belew 1991; Schraudolph and Belew 1992). The differ-

ences are found in the implementation of the operators,

through significantly different algorithms, which has an

important effect on the results (Gaffney et al. 2010).

Here, operators are defined as the mechanisms that

modify the values of the genes, to try to bring individuals

(or chromosomes) closer to an optimum of the fitness

function. The structure of the method (see Fig. 2) that

results from the work of Holland (1992) is common to

most applications (Bäck and Schwefel 1993), and con-

sists of the following steps. 1) A population of N in-

dividuals (parameter sets of the AM to be optimized) is

randomly generated, which constitutes the initial pop-

ulation. The fitness (performance score or objective

function) of every individual is assessed. 2) A natural
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selection algorithm is applied, after which only the best

individuals remain. This constitutes the intermediate

generation (IG), from which 3) couples are formed ac-

cording to given rules. Then, 4) these couples proceed to

the reproduction or chromosome crossover stage, to mix

their genes according to the selected operator version.

New children are generated, in order to refill the IG

back to N individuals. 5) Parents and children are then

subjected to mutation, where some genes are randomly

changed. 6) Finally, the new generation is then re-

assessed, and the best individual restored if degraded (so

that a superior solution is never lost). Then, 7) according

to the ending criterion, the optimization either ends or

begins again for another iteration.

All of the considered operators and their options are

described in the following sections (only briefly for op-

erators of less importance). Many other operators exist,

but only those that are evaluated are described here.

1) GENESIS OF THE POPULATION

The most current version of the initial population

generation is a random initialization based on a uniform

sampling. The size N of the population is often a com-

promise between the computation time and the quality of

the solution. The chosenNmust allow sufficient sampling

of the solutions field (Beasley and Chu 1996) and, thus,

should vary as a function of the chromosome size (i.e., the

number of genes or parameters to be optimized).

2) NATURAL SELECTION

Natural selection is performed on the basis of the

objective function values. The selection allows for only a

certain portion of the population to be kept, usually half

(N/2), which can access the IG (with NIG members).

Several techniques exist, such as

d NIG elitism (Michalewicz 1996), where only the better

half is preserved, and
d tournament selection (Michalewicz 1996; Zitzler et al.

2004), where two individuals are randomly selected,

and the best of these is chosen, but with a certain

probability.

3) SELECTION OF THE COUPLES

Individuals of the IG can then reproduce, which be-

gins with the selection of pairs (the parents). The tech-

niques implemented in this study are the following (see

Fig. 3):

d rank pairing, where individuals are gathered into pairs

according to their ranks;
d random pairing, where individuals are randomly se-

lected, according to a uniform law;
d roulette wheel selection (Goldberg 1989), where the

selection probability assigned to each individual is

proportional to its fitness, so that the most adapted

individuals have a greater probability of reproduction;

there are two weighting techniques with this option—the

first proceeds according to the rank and the second

according to the fitness value; and
d tournament selection, where a number of individuals

(two or three) are randomly picked and the best is

kept, with a certain probability. This operation is

performed twice, once for each partner.

4) CHROMOSOME CROSSOVER

Once the two parents have been selected for breeding,

they combine their chromosomes and produce two chil-

dren, bringing the number of individuals in the pop-

ulation back to N. The combination of chromosomes is

carried out using a crossover operator, thereby generat-

ing two offspring that have characteristics derived from

both parents. This allows the mixing of genes and the

potential accumulation of positive mutations. The eval-

uated crossover operators are the following (see Fig. 4):

FIG. 2. Genetic algorithms operational flowchart.
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d single-point crossover (Goldberg 1989), where the genes

located after a randomly chosen point within the

chromosome are exchanged between the two parents;
d two-point crossover, which is similar to the single-

point crossover, but with two intersections defining

the segments to be exchanged; this approach is con-

sidered to be more efficient than the previous method

(Beasley et al. 1993);

d multiple-point crossover (De Jong 1975), which is a

generalization of the previous method, with any

number of crossover points up to the number of genes;
d uniform crossover (Syswerda 1989), where for each

gene of the chromosome, a randomdecision ismade to

exchange the values between the parents or not;
d binarylike crossover (Haupt and Haupt 2004), where

to reproduce the behavior present in the canonical

crossover algorithm, which is applied to a binary

representation of the genes (Goldberg 1989, 1991;

Herrera et al. 1998), Haupt and Haupt (2004) propose

an operator that combines the standard crossover

operation with an interpolation approach; the genes

located after a crossover point are exchanged, but the

gene located at the intersection is modified as

8<
:
g
o1,n

5 g
p1,n

2b(g
p1,n

2 g
p2,n

)

g
o2,n

5 g
p2,n

1b(g
p1,n

2 g
p2,n

)
, (4)

where go1,n and go2,n are the nth genes of the two new

offspring, and gp1,n and gp2,n are those of the two

parents; b is a random value between zero and one,

which can either be unique for the whole chromosome

or can change for every gene;

d blending method (Radcliffe 1991), where instead of

exchanging the genes between the chromosomes after

some crossover points, they are combined through a

linear combination, also using a random value b;
d linear crossover (Wright 1991), which widens the

range of gene values and produces three children from

two parents;
d heuristic crossover (Michalewicz 1996), which is a

variation of the blending method;
d linear interpolation, where unlike the previous tech-

niques, this approach does not rely on crossover

FIG. 4. Illustration of the different chromosome crossover variants assessed in this study.

FIG. 3. Illustration of the different couples selection variants

assessed in this study. Distributions on the left illustrate the

probability of selection depending on the rank of the individual.
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points, but rather on a linear interpolation on every

gene of the couple; this method also uses a random

value b, which is the same for every gene; and
d free interpolation, which performs interpolation on

each gene, like the previous one. However, in this case

the weighting factor b changes for each gene.

5) MUTATION

The combination of strong genes through the chro-

mosomes crossover operation is theoretically the most

important operating mechanism in conventional GAs

(Holland 1992; Bäck and Schwefel 1993). However,

many studies identify the mutation process as the key

operator, and crossovers as secondary (see Bäck 1992a,

1996; Bäck and Schütz 1996; Smith and Fogarty 1997;

Deb and Beyer 1999; Costa et al. 2005, 2007).

The mutation operator modifies some gene values. It

adds diversity to the population and prevents a freeze of

the evolution, or a genetic drift to a local optimum.

Thus, it makes the convergence to the global optimum

theoretically possible (Beasley et al. 1993), as it allows

exploration beyond the current region of the param-

eters space by introducing new characteristics that

were not present in the original population (Haupt and

Haupt 2004).

The evaluated and developed mutation operators are

listed in the following (equations are only provided for

the operator versions that were found to be relevant; the

reader may refer to the corresponding literature for

details regarding the other options). These apply to

genes formed of continuous or discrete variables, but

not to those that are categorical (e.g., the choice of the

meteorological variable or analogy criterion). In the

latter case, the random choice of a new value is always

based on a uniform distribution, without a notion of

distance in the parameters space.

d Uniform mutation—the mutation rate (pmut) is con-

stant and equal for every gene of each individual. They

each have the same probability of mutating. When a

gene is selected for mutation, a new random value is

assigned, according to a uniform law.
d Variable uniformmutation (Fogarty 1989)—avariable

mutation rate over the generations was evaluated by

Fogarty (1989). In most applications, the mutation

rate decreases with each generation, in a deterministic

and global (for all individuals) manner (Bäck 1992b).
d Constant normal mutation—this method employs

normal distributions to generate new values of the

gene, based on an estimated standard deviation.
d Variable normal mutation (Horton 2012)—with the

same logic as the variable uniformmutation, amutation

operator is tested using a normal distribution with a

variable mutation rate and standard deviation, which

decrease linearly over generations. This operator has

six parameters.
d Nonuniform mutation (Michalewicz 1996)—two ran-

dom numbers are chosen based on a uniform law: r1,

which determines the direction of the change, and r2,

which determines its magnitude. The new value of the

gene is given by the following equation, according to a

predefined number of generations:
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u5 12
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where an and bn are the lower and upper bounds,

respectively, of the nth gene; G is the present gener-

ation; andGm is the maximum number of generations.

This operator is adapted for this application, which is

not based on a predefined number of generations, by

swapping u with u0:

u0 5 12min

 
G

G
m,r

, 1

!
(12v) , (7)

where Gm,r is the maximum number of generations

during which the magnitude of the research varies and

v is a chosen threshold to maintain a minimum search

radius whenG.Gm,r. During the first generations, the

extent of the exploration covers the entire parameters

space. However, this area is reduced over generations,

allowing the exploitation of local solutions.
d Individual adaptive mutation rate (Bäck 1992a)—based

on the ideas of evolution strategies (see Rechenberg

1973; Schwefel 1981), Bäck (1992a) introduced the

concept of self-adaptive GAs. The idea is to distribute

the control parameters within the individuals them-

selves, which partially decentralizes the control of the

evolution. This allows for a reduction in the manual

tuning of GAs, and introduces a notion of self-

management. The first approach is the introduction

of a mutation rate for each individual, which mutates

itself under its own probability (Bäck 1992a). Then,

the resulting new rate is employed tomutate the genes

of the individual. Thus, as this rate decreases, it has a

lower probability of being mutated itself. Mutations

are performed according to a constant uniform distri-

bution. The initial mutation rates are randomly cho-

sen (Bäck 1992a), and the method has no parameters.
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Other approaches exist for introducing a self-adaptation

(see Smith and Fogarty 1997; Deb and Beyer 1999,

2001).
d Individual adaptive search radius—based on the idea

of nonuniform mutation, we introduced a search

radius to the approach of individual adaptivemutation

rates. This search radius ra, bounded between zero and

one (relative to the parameter ranges), is also adaptive

and behaves similarly to the adaptive mutation rates.

To separate its evolution from that of the mutation

rate, its own value is also considered as a self-mutation

rate for eventually mutating before being used as a

normalized search radius. The value of amutated gene

is given by the following equation, which is a simpli-

fication of the nonuniform mutation:
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where r1 and r2 are randomly selected, such as in

nonuniform mutation. Therefore, no external param-

eter is necessary.
d Chromosome of adaptive mutation rate [or n adaptive

mutation rate; Bäck (1992a)]—analogously to the in-

dividual adaptive mutation rate, this approach leaves

the control of the evolution rate to individuals. The

difference here is that each gene has a specific muta-

tion rate. The main advantage is that the automatic

tuning of the mutation can be made much more

precise (Smith and Fogarty 1997). Thus, a second

chromosome containing the mutation rate for each

gene of the first chromosome is considered. The

operations of mutation and self-mutation are similar

to the case of the individual adaptive mutation rate,

but proceed in a distributed manner within the chro-

mosome. Moreover, the same crossover operations

are applied to this new chromosome as to the main

chromosome, and for the same crossing points. Thus,

during an exchange of genes, children also inherit the

mutation rates specific to each of these genes.
d Chromosome of adaptive search radius—in this oper-

ator, we combined the operations of the chromosome

of the adaptive mutation rate with the adaptive search

radius approach. Similarly, an individual has three

chromosomes. The first contains the values to be

optimized, the second the distributed mutation rate,

and the third the distributed search radius. Again, no

external parameter is required.
d Multiscale mutation—finally, we developed another

approach that is also based on the search radius

concept. However, in this one the radius does not

decrease with time. Methods based on a reduction of

themutation rate or radius simulate a transition from the

exploration phase to the exploitation phase. Here, the

idea is to test an approach that combines both explora-

tion and exploitation during the whole optimization

process. Thus, the search radius ra from Eq. (8) is

considered to be a random value for each individual,

but is restricted to four equiprobable values, 1, 0.5, 0.1,

and 0.02, representing a range from full exploration to

fine exploitation. The only external parameter is the

mutation rate, which is fixed.

6) ELITISM

The process of elitism is introduced after both nat-

ural selection and mutations. This ensures the survival

of the best individual, so that a superior solution is

never lost. After the natural selection operation, if the

previous best individual has not been selected, then it is

copied to the IG in place of a randomly selected indi-

vidual. After mutation, if the previous best individual

has mutated and its new version has a lower perfor-

mance score than the original, then the original is also

reinserted into the IG in place of a randomly selected

individual.

7) ENDING THE OPTIMIZATION

The convergence check determines whether the so-

lution is acceptable, and if the algorithmmay stop. Here,

the optimization is stopped if the best individual does

not change for x generations. This value should not be

too low, in order to allow the algorithm to escape from

local optima, and because the rate of improvement de-

creases with the progression of the optimization. Thus, it

is common that the best individual does not evolve over

several generations when getting closer to the global

solution. A value of x 5 20 generations is chosen.

b. Implementation and constraints

GAs are computationally very intensive because they

require many evaluations of the objective function.

These assessments require some time (a couple of sec-

onds each) in this application, as they require the cal-

culation and assessment of a prediction for every day of

the calibration period, which spans several decades. To

reduce the computation time, the performance score of

an individual, who has previously been evaluated and

has not changed, is preserved. Thus, the score of each

individual living in the selection is preserved until it

mutates.

Because the calculation of the objective function

for each member of the population of a generation is

completely independent, they are processed in par-

allel on different CPUs. To perform optimizations for

multiple time series, the use of a computer cluster is

necessary.
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Some constraints must also be taken into account. For

example, when a crossover ormutation operation results

in a parameter value that is outside of the authorized

bounds, this must be brought back within the limits.

Moreover, the parameters are of different types: con-

tinuous, discrete, or categorical (e.g., the selection of

the meteorological variable). Other constraints exist

between the parameters; for example, the temporal

windows of the relative humidity and the precipitable

water predictors must match when processing the

moisture index.

5. Assessment process and results

Choosing GA options, such as the mutation rate,

population size, and natural selection, appears to be

difficult given the high number of existing variants, each

developed for a specific problem (Haupt and Haupt

2004; Costa et al. 2007). Thus, different studies suggest

significantly different configurations (De Jong 1975;

Grefenstette 1986; Bäck 1996; Bäck and Schütz 1996).
In the present study, the choice of meteorological

variables (predictors) was still imposed. Then, GAs

were required to jointly optimize, for all levels of anal-

ogy, (i) the spatial windows (position and size, which can

differ between the pressure levels), (ii) the temporal

windows (hours of observation of the predictors),

(iii) the number of analog situations, and (iv) eventually

the selection of the pressure levels (two in this case). The

first experiments considered a single level of analogy (on

geopotential heights; see section 3), and a second level

(on moisture) was added later in section 5c(2).

a. Comparison process

With the main goal of the present paper being to

provide recommendations regarding the use of GAs to

optimize different AM variants, a systematic procedure

was adopted. The results are summarized in the fol-

lowing [see Horton (2012) for the details]. To compare

different configurations of GAs, a factorial design ap-

proach was applied, in a similar manner to that in Costa

et al. (2005, 2007) and Mariano et al. (2010). This allows

the isolation of the effects of a parameter under differ-

ent combinations of the other options.

To evaluate a combination of operators/options, 10

optimizations were processed per configuration of GAs.

For all combinations of GA options, 21 630 optimiza-

tions were performed on a small Intel Xeon-based high-

performance computing (HPC) cluster with eight nodes

(Xeon 5670, 2.97GHz, 12 cores), running Linux Red-

Hat. Such an assessment was not possible over the whole

archive length, and the work had to be performed over a

reduced calibration period of 5 yr from 1998 to 2002,

while looking for analog dates over a 48-yr period

(1961–2008). The total resources required for this com-

parison amounted to 229 539h of CPU time. One should

remember that these intensive resources were required

in order to assess multiple combinations of GA options,

to provide recommendations. Based on these consider-

ations, applying GAs to optimize AMs requires some

computational power, but to a lesser extent (the re-

quired time is a function of the archive length, the

population number, GA options, and the complexity of

the AM to be optimized).

The performances were characterized by four indi-

cators: (i) mean performance score, which is an average

of the final scores of the 10 optimizations; (ii) convergence,

which is the number of optimizations that converged;

(iii) number of generations, which is a characterization

of the convergence speed; and (iv) number of evalua-

tions of the objective function, which is a characteriza-

tion of the required calculation time.

b. Convergence

After a first quick assessment, GAs were found to

be successful in optimizing the considered AM

implementations. Figure 5 illustrates the evolution

of the score of the best individual over progressive

FIG. 5. Evolution of the score of the best individual over each

generation for the 10 optimizations processed for a given configu-

ration. The continuous bottom line represents the score of the se-

quential approach, and the dashed line (at the top of the figure)

shows the supposed global optimum. The circles represent the end

of the optimization (when the best individual did not progress

during 20 generations). Seven out of 10 optimizations converged to

the global optimum.
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generations for the 10 optimizations processed for a

given configuration of GAs (with the same operator

options). Seven out of 10 optimizations converged to

the global optimum (dashed line at the top of the plot

in Fig. 5) after between 40 and 55 generations, which is

not even the best performance we will observe. The

performance score of the sequential approach (bot-

tom line) was quickly exceeded, without introducing

any new parameters to the method (Fig. 5). The im-

provement was around 8.8% in this case, which is

substantial.

Even GA configurations that were later rejected, be-

cause they did not converge (Fig. 6), performed signifi-

cantly better than the sequential approach. GAs

displayed a promising potential for optimizing AMs

automatically, globally, and objectively.

c. Results of the comparison

The results of the factorial design procedure illustrate

the effect of an operator (e.g., mutation) when its con-

tribution is isolated from the other operators. This

means that we analyzed the effects of a given operator

for equivalent conditions (with the same settings for

other operators), while assessing multiple combinations

of these. This contribution was then summarized as a

percentage of gain–loss with respect to the mean of all

variants, for equivalent external conditions. For exam-

ple, to evaluate the performance of the uniform cross-

over operator, its performance was compared to the

average of all crossover operators, while retaining the

same population size, same mutation, natural selection,

and couples selection operators.

From the start of the assessments, the importance of

the mutation operator was obvious [see Horton (2012)

for details], and its leading influence on the optimization

performance was evident. Its role is analyzed later

[section 5c(2)].

1) BREEDING OPERATORS

Each combination of the six options for the couples

selection (Fig. 7) and 21 options for the chromosome

crossover operators (Fig. 8) was evaluated, along with

variants of the other operators. This resulted in 1008

combinations, requiring 10 080 optimizations.

The performances of the couples selection operators

were relatively similar (Fig. 7). Overall, the tournament

selection with three candidates performed slightly better

than the others, along with the roulette wheel weighting.

However, the latter was a little less effective in terms

of convergence and the number of evaluations (not

shown). To summarize, the couples selection operator

played no significant role in this application.

FIG. 6. As in Fig. 5, but for a GA configuration considered to be

less relevant and later rejected, because the optimizations did not

converge. However, it still performed significantly better than the

sequential approach (continuous bottom line).

FIG. 7. Influence of the couples selection operators [section 4a(2)]

on the optimization performance (improvement of the score). The

box extends from the lower to upper quartile values of the data,

with a line at the median. The whiskers extend from the box to

1.5 times the interquartile range. Flier points are those past the end

of the whiskers. The star represents the median. The gray box

highlights the best options.
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As for the crossover operators (Fig. 8), binarylike

crossover (especially with two points of intersection,

whether b is shared or not) performed slightly better

than the others, especially in terms of convergence

(not shown).

2) MUTATION OPERATOR

Having identified the leading role of the mutation

operator, the following sensitivity analysis focuses on it.

The 10 different implementations [see section 4a(5)]

were tested with different options (Fig. 9), bringing the

number of variations to 109. Some optimizations with no

mutation were also performed as a reference. Along

with variants of the other operators [see Horton (2012)

for details], this resulted in 660 combinations (and so

6600 optimizations).

Figure 9 presents the results of this analysis, and il-

lustrates the important role of mutation in the optimi-

zation performance. Configurations without mutation

(the last box in Fig. 9) achieved an inferior level of

performance compared to most mutation operators, and

the magnitude of this operator influence was signifi-

cantly higher than those of the other options. The details

of the analysis (see Horton 2012) indicate that the other

reproduction operators seem to be of secondary im-

portance. This observation is in line with the conclusions

reached by several other authors [see section 4a(5)].

The mutation operators based on variable normal or

variable uniform laws performed particularly poorly

here and were difficult to setup. Many operators

presented more or less similar performance scores

and required a variable amount of assessments. The

convergence analysis (see Horton 2012) highlighted the

three best operators: nonuniform mutation, chromo-

some of adaptive search radius, andmultiscalemutation.

Thus, further optimizations (an additional 4950) were

performed, using variants of these three operators

(Figs. 10–13).

The first analysis was the optimization of the pre-

cipitation prediction over a subcatchment (the Binn–

Simplon region) in the SwissAlps (Fig. 10). The optimizer

also chose the two pressure levels of the atmospheric

circulation analogy (this method has a single level of

analogy). The resulting CRPSS performance score (see

section 3) was obviously superior to that obtained using

the sequential calibration (bottom line in Fig. 10). For

most options, it also achieved slightly better results than

the optimization without the selection of the pressure

levels (dashed line). A clear breakthrough in perfor-

mance was not expected, as the former selection of

pressure levels is the result of intensive comparative

work (Bontron 2004). However, this application dem-

onstrates that when correctly configured, GAs can au-

tomatically and successfully choose the pressure levels.

However, the automatic selection of the pressure levels

significantly increased the difficulty for the GAs to con-

verge to a unique solution, ideally the global optimum.A

likely explanation for this is that the pressure levels were

considered to be categorical values within the optimi-

zation (sampled with a uniform law), and thus the ap-

proaches relying on a distance in the parameters space,

such as the search radius, could not fully exploit the

properties that made them efficient. However, even

though the results exhibit a certain variability, most of

FIG. 8. Influence of the chromosome crossover operators [section 4a(4)] on the optimization performance (im-

provement of the score); bs represent a shared b parameter and bu the unshared version. The same conventions

apply as in Fig. 7.

1286 MONTHLY WEATHER REV IEW VOLUME 145



them present very good performance scores, despite

different selections of the AM parameters.

The same experiment was performed for another re-

gion (Swiss Chablais; see Fig. 1), which is sensitive to

other meteorological influences (Fig. 11), in order to as-

sess the eventual dependencies of the operators with the

predictand. Even though differences can be observed

with Fig. 10, the same options perform better globally.

Next, a second level of analogy was introduced

(Fig. 12), based on moisture variables (see section 3).

The GAs had to optimize both levels of analogy (geo-

potential heights and moisture index) simultaneously.

Once again, the results were better than those for the

sequential calibration (bottom line in Fig. 12). Finally, a

preselection based on air temperature was added, in-

stead of the fixed calendar window, as proposed by Ben

Daoud et al. (2016). The results showed generally higher

scores (Fig. 13), demonstrating the success of the opti-

mizer in taking advantage of this new degree of freedom,

and its ability to handle the optimization of three anal-

ogy levels simultaneously. Again, the most relevant

options were the same globally.

Following these various tests of the relevance of the

mutation operators, the following advice can be pre-

sented (detailed options are provided in section 6a):

d Nonuniform mutation—this operator performed well

in terms of convergence, mainly when the number of

parameters to optimize was rather low. However, the

number of required evaluations can be fairly sub-

stantial. The main disadvantage of the nonuniform

mutation is the number of parameters it requires,

which is difficult to estimate a priori. The mutation

rate was found to be more important than for the

others. The difficulty is that its optimal value may be

case related.
d Chromosome of adaptive search radius—unlike in the

above case, this proposed operator is very robust, as it

requires no options and is autoadapting. It is interest-

ing to note that the insertion of an extra chromosome

representing the search radius resulted in better

performance than other self-adaptive operators (such

as the chromosome of adaptive mutation rate). If one

had to choose a single option for the mutation

operator, we would recommend this one, as it was

proven effective and requires no parameter.
d Multiscale mutation—finally, the multiscale mutation,

which also performed fairly well, requires one param-

eter, the mutation rate. However, it can also be

difficult to estimate a correct value a priori.

For this application, the mutation operator has a

leading effect and should be chosen with care. It may be

wise to perform multiple optimizations, and to consider

these three operators in parallel, in order to obtain results

from options that are sometimes either more efficient or

more robust. It is interesting to note that the three best

techniques incorporate a notion of search distance. It is

likely that this notion is the key to these algorithms in this

application, and allows them to initially explore the pa-

rameter space and then converge. In fact, the search ra-

dius directly represents the notion of transition between

exploration and exploitation, in our opinion more than a

possible evolution of mutation rates.

3) OTHER OPTIONS

The analysis of the natural selection operator (Fig. 14)

revealed a slight preference for ratio elitism compared

to the tournament selection [section 4a(2)], but this was

not very significant. This operator, or at least the two

assessed versions, did not appear to significantly influ-

ence the optimization performance.

The size of the population (N, the number of initial

parameter sets) had an effect on the optimization per-

formance (Fig. 15). A bigger population led to better

results, but also to longer optimizations. The required

FIG. 9. Influence of the mutation operators [section 4a(5)] on the

optimization performance. In parentheses is shown the number of

variants considered (combination of options). The same conven-

tions apply as in Fig. 7.
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number of evaluations, and thus the required time, was

approximately proportional to the population size.

Thus, if the population size doubled, then the time re-

quired for the optimization also nearly doubled (e.g.,

for a 5-yr calibration period, approximately 4 h of CPU

time was required when N 5 50, and 14 h of CPU time

whenN5 200). The optimal size seems to depend on the

complexity of the AM to be optimized. Amore complex

AM (i.e., with more degrees of freedom) requires a

bigger population size. A rule of thumb based on a

limited number of case studies (not presented here) is

provided as follows:

d N ’ 100 for very simple AM implementations (one

level of analogy with two pressure levels),
d N’ 200 for a slightly more complex AM (one level of

analogy with four pressure levels or two levels of

analogy with fewer pressure levels), and
d N ’ 500 for significantly more complex AMs (two or

three levels of analogy with four pressure levels for the

FIG. 10. Influence of the mutation options [section 4a(5)] on the optimization performance,

letting the optimizer choose the pressure level of the atmospheric circulation analogy (single

level of analogy). For the nonuniformmutation,v5 0:1 in every case. The continuous bottom

line represents the score of the sequential calibration, and the dashed superior line is the score

of the optimization without automatic selection of the pressure levels. The same conventions

apply as in Fig. 7.

FIG. 11. As in Fig. 10, but for another region in the Swiss Alps (Swiss Chablais), with different

atmospheric influences.
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atmospheric circulation and two to four levels for the

moisture analogy).

The influence of the size of the IG (proportion of the

total population) selected for mating was also assessed

(Fig. 16). This option had little influence on the perfor-

mance of the optimizations. A value of 50% seems to

be a wise choice.

6. Use of GAs to optimize AMs

a. Recommended configuration of GAs

Optimizations using GAs of AMs of varying com-

plexities were performed with a large number of

combinations of operators, in order to make recom-

mendations for optimizing AMs (see section 5). The

conclusions are as follows:

d The population size should be in accordance with the

complexity of theAM to be optimized, ranging from 100

for simple cases up to 500 for the most complex AMs.
d The value of the IG ratio is not significantly important.

A value of 50% seems appropriate.
d Ratio elitism performs slightly better than tourna-

ments for the natural selection operator, but this is not

decisive.
d The performance levels of the operators for the

couples selection are relatively similar. The roulette

FIG. 12. As in Fig. 10, but with a second level of analogy on moisture variables.

FIG. 13. As in Fig. 12, but with a preselection on air temperature rather than a fixed

calendar window.
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wheel weighting and the tournament selection are

more efficient in terms of the convergence and the

required number of evaluations.
d Most of the crossover operators yield a relatively

similar level of performance, but the binarylike cross-

over with two points of intersection is slightly better,

especially in terms of convergence.
d Mutation clearly yields a dominant influence. Three

mutation operators stand out—the nonuniform muta-

tion, multiscale mutation, and chromosome of adap-

tive search radius. The latter is the most robust, as it

has no controlling parameter.

The optimization did not systematically converge to

the global optimum (but often came close to it), which is

why it is recommended to perform several optimizations

in parallel in order to compare the results, analyze the

convergence, and keep the best configuration. It may be

wise to consider the threemutation operators in parallel.

To be confident in the optimized AMs, we propose

using a set of the following mutation operators, where

pmut is the mutation rate (or mutation probability), Gm,r

is the maximum number of generations during which the

magnitude of the research varies, and v is a threshold

chosen by the user in order to maintain a minimum

search radius when the number of generationsG.Gm,r:

d the nonuniform mutation once, with pmut 5 0:05,

Gm,r 5 50, and v5 0:1;

d the nonuniform mutation once, with pmut 5 0:05,

Gm,r 5 100, and v5 0:1;
d the nonuniform mutation once, with pmut 5 0:1,

Gm,r 5 100, and v5 0:1;
d the multiscale mutation once, with pmut 5 0:1; and
d the chromosome of adaptive search radius twice.

b. Illustration of application

To illustrate the achievable gain when using GAs on

an AM, precipitation prediction for the southeast ridge

region of the alpine Rhône catchment (Fig. 1) was op-

timized for the whole calibration period (40 yr during

the period 1961–2008, with 8 yr omitted for validation),

instead of the smaller 5-yr period.

The optimizer could select geopotential heights at

four pressure levels, at any time of day, across un-

constrained spatial windows. Moreover, a weighting was

introduced to the combination of the criteria processed

on each pressure level (such as in Horton 2012; Junk

et al. 2015b). In this case, no new meteorological vari-

able was added, and the method still contained a unique

level of analogy.

The performance (CRPSS) of the reference method,

calibrated by means of the sequential procedure,

amounts to 32.00%, with a 0.95 confidence interval

(assessed by bootstrapping on 10 000 samples) of

(29.21%, 34.94%). The method optimized by means of

FIG. 14. Influence of the natural selection operators on the

optimization performance. The same conventions apply as in Fig. 7. FIG. 15. Influence of the population size on the optimization

performance. The same conventions apply as in Fig. 7.
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GAs achieved a performance of 37.62%, with a 0.95

confidence interval of (35.21%, 40.11%). Thus, the re-

sulting gain is statistically significant. The results across

all subregions and the physical meaning of the optimized

parameters will be discussed in a forthcoming paper.

7. Conclusions

To automatically optimize several AM variants, and

to avoid the limitations of the usual sequential calibra-

tion, GAs were evaluated. Given the large number of

existing operators and options, multiple variants were

assessed systematically in order to identify which oper-

ators are important, and which variants perform best for

the considered AM implementations. The mutation

operator was identified as a key element for this appli-

cation, and new variants were developed that proved ef-

ficient, such as the chromosome of adaptive search radius,

which is considerably more robust (with no control pa-

rameter). Recommendations were established for the

relevant employment of GAs for optimizing AMs. Al-

though using GAs to optimize AMs may be computa-

tionally intensive, once an AM is calibrated, its use in

real-time operations it very fast and lightweight.

The possibility that a different global optimization

method or other operators of GAs may perform even

better cannot be excluded. Still, the relevance of global

optimization techniques for AMs has now been proven,

as they provide relevant AM parameters that are auto-

matically, globally, and objectively established. A global

optimization is the only way to take into account all of

the dependencies between parameters and levels of

analogy.

The global optimization approach allows the easy

adaptation of AMs to new regions by potentially taking

into account local meteorological influences, and thus

has a significant potential for application. Moreover, it

can be employed to automatically explore new datasets,

in order to extract themost relevant variables. Thus, this

method can make it easier to assess other predictands,

such as the temperature, limit of snowfall, or occurrence

of hail, while allowing the algorithms to select the best

variables and associated parameters.
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Radinović, D., 1975: An analogue method for weather forecasting

using the 500/1000mb relative topography. Mon. Wea.

Rev., 103, 639–649, doi:10.1175/1520-0493(1975)103,0639:

AAMFWF.2.0.CO;2.

Rechenberg, I., 1973: Evolutionsstrategie: Optimierung technisher

Systeme nach Prinzipien der biologischen Evolution.

Frommann-Holzboog, 170 pp.

Schraudolph, N., and R. Belew, 1992: Dynamic parameter encod-

ing for genetic algorithms. Mach. Learn., 9 (1), 9–21.

Schwefel, H.-P., 1981: Numerical Optimization of Computer

Models. John Wiley and Sons, 389 pp.

——, 1995: Evolution and Optimum Seeking. Sixth Generation

Computer Technologies Series, Book 4, JohnWiley and Sons,

456 pp.

Sievers,O.,K. Fraedrich, andC.C.Raible, 2000: Self-adapting analog

ensemble predictions of tropical cyclone tracks. Wea. Fore-

casting, 15, 623–629, doi:10.1175/1520-0434(2000)015,0623:

SAAEPO.2.0.CO;2.

Smith, J., andT. Fogarty, 1997:Operator and parameter adaptation

in genetic algorithms. Soft Comput., 1 (2), 81–87.

Syswerda, G., 1989: Uniform crossover in genetic algorithms. Proc.

Third Int. Conf. onGeneticAlgorithms, Fairfax,VA,ACM, 2–9.

Teweles, S., and H. B. Wobus, 1954: Verification of prognostic

charts. Bull. Amer. Meteor. Soc., 35, 455–463.

Vallée, J. L., 1986: Précipitations sur le Sud-Ouest du Massif

Central et l’Est des Pyrénées. Optimisation du modèle EDF/

DTG de prévision par recherche d’analogues. Note de travail

de l’ENM 181, Météo-France, Toulouse, France, 110 pp.

Vanvyve, E., L. Delle Monache, A. J. Monaghan, and J. O. Pinto,

2015: Wind resource estimates with an analog ensemble

approach. Renewable Energy, 74, 761–773, doi:10.1016/

j.renene.2014.08.060.

Wilson, L. J., and N. Yacowar, 1980: Statistical weather element

forecasting in the Canadian Weather Service. Proc. Symp. on

Probabilistic and Statistical Methods in Weather Forecasting,

Nice, France, WMO, 401–406.

Woodcock, F., 1980: On the use of analogues to improve regression

forecasts. Mon. Wea. Rev., 108, 292–297, doi:10.1175/

1520-0493(1980)108,0292:OTUOAT.2.0.CO;2.

Wright, A. H., 1991: Genetic algorithms for real parameter opti-

mization. Found. Genet. Algorithms, 1, 205–218, doi:10.1016/
B978-0-08-050684-5.50016-1.

Zitzler, E., M. Laumanns, and S. Bleuler, 2004: A tutorial on

evolutionary multiobjective optimization. Metaheuristics for

Multiobjective Optimisation, X. Gandibleux et al., Eds., Lec-

ture Notes in Economics andMathematical Systems, Vol. 535,

3–37, doi:10.1007/978-3-642-17144-4_1.

1294 MONTHLY WEATHER REV IEW VOLUME 145

http://dx.doi.org/10.1175/1520-0493(1975)103<0639:AAMFWF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1975)103<0639:AAMFWF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(2000)015<0623:SAAEPO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(2000)015<0623:SAAEPO>2.0.CO;2
http://dx.doi.org/10.1016/j.renene.2014.08.060
http://dx.doi.org/10.1016/j.renene.2014.08.060
http://dx.doi.org/10.1175/1520-0493(1980)108<0292:OTUOAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1980)108<0292:OTUOAT>2.0.CO;2
http://dx.doi.org/10.1016/B978-0-08-050684-5.50016-1
http://dx.doi.org/10.1016/B978-0-08-050684-5.50016-1
http://dx.doi.org/10.1007/978-3-642-17144-4_1

	1

