Drążkowska, J.; Alibert, Yann; Moore, B. (2016). Close-in planetesimal formation by pile-up of drifting pebbles. Astronomy and astrophysics, 594(A105), A105. EDP Sciences 10.1051/0004-6361/201628983
|
Text
aa28983-16.pdf - Published Version Available under License Publisher holds Copyright. Reproduced with permission from Astronomy & Astrophysics, © ESO Download (1MB) | Preview |
Context. The consistency of planet formation models suffers from the disconnection between the regime of small and large bodies. This is primarily caused by so-called growth barriers: the direct growth of larger bodies is halted at centimetre-sized objects and particular conditions are required for the formation of larger, gravitationally bound planetesimals.
Aims. We aim to connect models of dust evolution and planetesimal formation to identify regions of protoplanetary discs that are favourable for the formation of kilometre-sized bodies and the first planetary embryos.
Methods. We combine semi-analytical models of viscous protoplanetary disc evolution, dust growth and drift including backreaction of the dust particles on the gas, and planetesimal formation via the streaming instability into one numerical code. We investigate how planetesimal formation is affected by the mass of the protoplanetary disc, its initial dust content, and the stickiness of dust aggregates.
Results. We find that the dust growth and drift leads to a global redistribution of solids. The pile-up of pebbles in the inner disc provides local conditions where the streaming instability is effective. Planetesimals form in an annulus with its inner edge lying between 0.3 AU and 1 AU and its width ranging from 0.3 AU to 3 AU. The resulting surface density of planetesimals follows a radial profile that is much steeper than the initial disc profile. These results support formation of terrestrial planets in the solar system from a narrow annulus of planetesimals, which reproduces their peculiar mass ratios.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences > Theoretical Astrophysics and Planetary Science (TAPS) 08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences 08 Faculty of Science > Physics Institute 08 Faculty of Science > Physics Institute > NCCR PlanetS |
UniBE Contributor: |
Alibert, Yann Daniel Pierre |
Subjects: |
500 Science > 520 Astronomy 500 Science > 530 Physics |
ISSN: |
0004-6361 |
Publisher: |
EDP Sciences |
Language: |
English |
Submitter: |
Janine Jungo |
Date Deposited: |
29 Jun 2017 16:31 |
Last Modified: |
05 Dec 2022 15:03 |
Publisher DOI: |
10.1051/0004-6361/201628983 |
BORIS DOI: |
10.7892/boris.97232 |
URI: |
https://boris.unibe.ch/id/eprint/97232 |