Close-in planetesimal formation by pile-up of drifting pebbles

Drążkowska, J.; Alibert, Yann; Moore, B. (2016). Close-in planetesimal formation by pile-up of drifting pebbles. Astronomy and astrophysics, 594(A105), A105. EDP Sciences 10.1051/0004-6361/201628983

aa28983-16.pdf - Published Version
Available under License Publisher holds Copyright.
Reproduced with permission from Astronomy & Astrophysics, © ESO

Download (1MB) | Preview

Context. The consistency of planet formation models suffers from the disconnection between the regime of small and large bodies. This is primarily caused by so-called growth barriers: the direct growth of larger bodies is halted at centimetre-sized objects and particular conditions are required for the formation of larger, gravitationally bound planetesimals.
Aims. We aim to connect models of dust evolution and planetesimal formation to identify regions of protoplanetary discs that are favourable for the formation of kilometre-sized bodies and the first planetary embryos.
Methods. We combine semi-analytical models of viscous protoplanetary disc evolution, dust growth and drift including backreaction of the dust particles on the gas, and planetesimal formation via the streaming instability into one numerical code. We investigate how planetesimal formation is affected by the mass of the protoplanetary disc, its initial dust content, and the stickiness of dust aggregates.
Results. We find that the dust growth and drift leads to a global redistribution of solids. The pile-up of pebbles in the inner disc provides local conditions where the streaming instability is effective. Planetesimals form in an annulus with its inner edge lying between 0.3 AU and 1 AU and its width ranging from 0.3 AU to 3 AU. The resulting surface density of planetesimals follows a radial profile that is much steeper than the initial disc profile. These results support formation of terrestrial planets in the solar system from a narrow annulus of planetesimals, which reproduces their peculiar mass ratios.

Item Type:

Journal Article (Original Article)


08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences > Theoretical Astrophysics and Planetary Science (TAPS)
08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences
08 Faculty of Science > Physics Institute
08 Faculty of Science > Physics Institute > NCCR PlanetS

UniBE Contributor:

Alibert, Y.


500 Science > 520 Astronomy
500 Science > 530 Physics




EDP Sciences




Janine Jungo

Date Deposited:

29 Jun 2017 16:31

Last Modified:

05 Dec 2022 15:03

Publisher DOI:





Actions (login required)

Edit item Edit item
Provide Feedback