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Abstract

Deviations from physiological pH (~ pH 7.2) as well as altered Ca2+ signaling play important

roles in immune disease and cancer. One of the most ubiquitous pathways for cellular Ca2+ influx

is the store-operated Ca2+ entry (SOCE) or Ca2+ release-activated Ca2+ current (ICRAC), which is

activated upon depletion of intracellular Ca2+ stores. We here show that extracellular and

intracellular changes in pH regulate both endogenous ICRAC in Jurkat T lymphocytes and

RBL2H3 cells, and heterologous ICRAC in HEK293 cells expressing the molecular components

STIM1/2 and Orai1/2/3 (CRACM1/2/3). We find that external acidification suppresses, and

alkalization facilitates IP3-induced ICRAC. In the absence of IP3, external alkalization did not elicit

endogenous ICRAC but was able to activate heterologous ICRAC in HEK293 cells expressing

Orai1/2/3 and STIM1 or STIM2. Similarly, internal acidification reduced IP3-induced activation

of endogenous and heterologous ICRAC, while alkalization accelerated its activation kinetics

without affecting overall current amplitudes. Mutation of two aspartate residues to uncharged

alanine amino acids (D110/112A) in the first extracellular loop of Orai1 significantly attenuated

both the inhibition of ICRAC by external acidic pH as well as its facilitation by alkaline conditions.

We conclude that intra- and extracellular pH differentially regulates ICRAC. While intracellular pH

might affect aggregation and/or binding of STIM to Orai, external pH seems to modulate ICRAC

through its channel pore, which in Orai1 is partially mediated by residues D110 and D112.
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1. INTRODUCTION

Both, Ca2+ signaling and pH are altered in different pathophysiological circumstances such

as immune disease and cancer [1-5]. In this context, the pH dependence of Ca2+-permeable

ion channels is of particular interest since they are the main provider of the key intracellular

second messenger Ca2+. All Ca2+ channels examined so far seem to share the same basic pH

responsiveness: extracellular acidification reduces and alkalization increases the amplitude

of Ca2+ inward currents [6-8]. For the L-type voltage-gated Ca2+ channel it is suggested that

the molecular basis for the effect of extracellular pH changes is a protonation site that lies

within the pore and which is formed by a combination of conserved glutamate residues [9].

However, for most pH-dependent effects on Ca2+ channels, the underlying mechanisms are

not well understood and might differ from each other.

One universally present Ca2+ influx mechanism in mammalian cells is the store-operated

Ca2+ entry (SOCE) [10]. STIM1 and Orai1 (CRACM1) were identified as main molecular

components of SOCE and the underlying Ca2+ release-activated Ca2+ current (ICRAC)

[11-16]. Upon store depletion, the endoplasmic reticulum Ca2+ sensor STIM1 aggregates

and translocates into junctional structures close to the plasma membrane where it binds and

activates Orai1, Ca2+-selective ion channels, that have been described as either a tetramer or

a hexamer [17-25]. Besides STIM1 and Orai1, the isoforms STIM2, Orai2 and Orai3 are

ubiquitously expressed and can form functional channels with distinct biophysical and

pharmacological properties [26-33].

Various Ca2+ imaging studies have demonstrated that an acidic pH can contribute to

lowered SOCE signals in several cell types [34-39]. All these studies show that extracellular

acidification decreases and alkalization increases SOCE. Patch-clamp studies of ICRAC

corroborate the Ca2+ imaging results. ICRAC in human monocyte-derived macrophages

shows an extracellular pH-dependent change of current amplitude with a pKa of 8.2 [40].

Two studies in Jurkat T lymphocytes suggest that extracellular pH modifies the

mitochondrial control of SOCE in Jurkat cells [41,42]. Others predict a similar mechanism

as assumed for L-type Ca2+ channels via the protonation of negatively charged glutamate

residues close to the channel pore [43,44]. The glutamate residue E106, which is known to

contribute to the selectivity filter of multimeric Orai1 channels [45-47], appears to be

involved in the pH dependence of heterologously expressed STIM1/Orai1 CRAC channels

[48]. Mutation of E106 to aspartic acid in Orai1 (E106D) resulted in a reverse pH

dependence compared to Orai1 wild type: while Orai1 is normally blocked upon external

acidification, Orai (E106D) exhibits an increase in inward current at pH 5.1. Hence,

protonation of the E106 residue might change the pore size and also Ca2+ binding inside the

pore, resulting in a block of Orai1.

So far, most of the information regarding pH effects on SOCE or ICRAC has been gathered

by Ca2+ imaging experiments from diverse cell types or from experiments with heterologous
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co-expression of Orai1 and STIM1. Here, we investigate and compare the effects of external

and internal pH on the diverse combinations of heterologous STIM/Orai mediated ICRAC in

HEK293 ells, and endogenous ICRAC in the RBL2H3 mast cell line and Jurkat T

lymphocytes.

2. RESULTS

2.1 Extracellular pH modulates endogenous ICRAC

To study the effects of extracellular pH on endogenous ICRAC in RBL2H3 cells and Jurkat T

lymphocytes, ICRAC was first activated via IP3 in the patch pipette at an external pH of 7.2

and then bath solutions of different pH were applied after ICRAC had fully developed.

Figures 1A and B show, that for both cell types the amplitude of ICRAC, measured at -80

mV, increased upon external alkalization (Fig. 1A) and decreased upon external

acidification (Fig. 1B). For quantitative analysis of the pH-dependent current changes, all

single cell currents were normalized to cell size (pA/pF) and to the amplitude of the inward

current right before pH change (here I/I120s), and then averaged (see Fig. 1C for RBL2H3

cells; upper traces show the outward currents). Finally, the relative changes of the inward

current (ICRAC; I/I120) amplitudes were plotted versus the external pH (Fig. 1D). A double

dose-response equation (see Material and Methods) best represented the dose (pH) response

(I/I120) relationships, and the corresponding fits revealed a pKa (for acidification) of 6.8 and

pKb (for alkalization) of 8.0 for Jurkat T lymphocytes, and a pKa of 6.7 and pKb of 7.8 for

RBL2H3 cells (Fig. 1D). Changing to external pH 6.0 inhibited ICRAC by more than 80% in

both cell types, whereas pH 8.4 increased inward currents in RBL2H3 cells about 24% and

in Jurkat T lymphocytes about 80% (Fig. 1D). Outward currents were not significantly

affected except for a small current increase of less than 0.5 pA/pF during alkalization (see

Figs. 1C, E and F). Figures 1E and F show the inwardly rectifying I/V relationships typical

for the Ca2+-selective ICRAC at different external pH from RBL2H3 cells and Jurkat T

lymphocytes, respectively. However, in Jurkat T lymphocytes the current at pH 8.4 exhibits

a small outward component which might be due to an alternative channel more prevalent in

Jurkat T lymphocytes than in RBL2H3 cells.

2.2 pH effects on heterologously expressed STIM/Orai-mediated ICRAC in HEK293 cells

In order to investigate whether heterologous expression of STIM1/2 and Orai1-3 molecules

exhibit the same pH dependency as endogenous ICRAC in RBL2H3 and Jurkat T

lymphocytes, we transfected Orai1, Orai2 and Orai3 into HEK293 cells stably expressing

STIM1 or STIM2. Cells were used 24 to 48 hours after transfection. In analogy to the

experiments shown in Fig. 1, bath solutions of pH 6.0, 6.6, 7.8, 8.4 and 9.0 were applied

after full development of IP3-induced ICRAC at 120 s. Fig. 2A shows the pH-dependent

changes of ICRAC amplitudes in STIM1/Orai1-expressing HEK293 cells (S1O1), Fig. 2B for

STIM1/Orai2 (S1O2), and Fig. 2C for STIM1/Orai3 (S1O3). Plotting the relative pH-

dependent current changes (I/I120s) versus the corresponding external pH, revealed similar

acidification-dependent decreases of ICRAC in S1O1-, S1O2- and S1O3-expressing HEK293

cells (Fig. 2D) as those observed for endogenous ICRAC in RBL2H3 cells and Jurkat T

lymphocytes (see Fig. 1D). However, ICRAC in S1O1-, S1O2- and S1O3-expressing

HEK293 cells was more amplified upon alkalization (up to 300%, Fig. 2D) than endogenous

Beck et al. Page 3

Cell Calcium. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



ICRAC in RBL2H3 and Jurkat T lymphocytes (up to ~120% - 180%) (Fig. 1D). The same

double dose-response equation as used in Fig. 1D was used to fit the dose-response

relationships in Fig. 2D. The pKa (acidification) and pKb (alkalization) for S1O1- and

S1O2-expressing HEK293 cells (both pKa 6.8, pKb 7.9) were comparable to pKa and pKb

for endogenous ICRAC in RBL2H3 cells and Jurkat T lymphocytes (see above). S1O3-

expressing HEK293 cells (pKa 6.7, pKb 8.4) revealed a slightly higher pKb. Fig. 2F shows

the typical inwardly rectifying I/V relationships for ICRAC in S1O1-, S1O2-, and S1O3-

expressing HEK293 cells at external pH 7.2 (upper curves) and 8.4 (lower curves). As seen

in RBL2H3 and Jurkat T lymphocytes, small outward currents appeared during external

alkalization (see I/Vs in Fig. 2F).

Under physiological conditions ICRAC is a highly selective Ca2+ current. To exclude pH-

dependent changes in ion selectivity we replaced the external monovalent cation Na+ by the

ion channel-impermeable cation tetraethylammonium (TEA+). Na+-free conditions did not

prevent the massive alkalization-induced current increase (Fig. 2E). In addition, no further

outward current appeared after external alkalization (see Fig. 2E upper traces and I/Vs in

Fig. 2F). This suggests that the alkalization-mediated current increase in STIM1/Orai1-

expressing cells is due to an increased Ca2+ influx and not to a change in ion selectivity.

Similar to STIM1, STIM2 also mediates large ICRAC currents. When co-expressed with

Orai1-3 STIM2 mediates a store-dependent (first phase – fast, small amplitude) and store-

independent (second phase – slow, high amplitude) mode of CRAC channel activation [28].

We transiently expressed Orai1 and Orai3 into HEK293 cells stably expressing STIM2 to

see whether STIM2-mediated ICRAC shows the same alkalization-induced increase as seen

for STIM1. As previously shown, IP3-induced ICRAC in STIM2/Orai1 (S2O1)-expressing

cells produced a significantly larger second-phase current than STIM2/Orai3 (S2O3)-

expressing HEK293 cells (Figs. 2G and H; filled circles). External alkalization resulted in an

increase of current in both S2O1- and S2O3-expressing cells (Figs. 2G and H; open circles).

Fig. 2I illustrates the I/V relationships of IP3-induced ICRAC in S2O1- and S2O3-expressing

HEK293 cells at external pH 7.2 and 8.4. As already observed in IP3-induced STIM1-

mediated ICRAC, outward currents were largely unaffected by external alkalization. Figures

2G and 2H show that the alkalization-induced current potentiation in S2O1- and S2O3-

expressing HEK293 cells increased along with the rising secondary phase of ICRAC, and,

after applying pH 7.2, the current amplitude declined quickly to levels of control cells

(without pH change). This suggests that the alkalization-dependent potentiation of S2O1-

mediated ICRAC seems to somehow boost activated open channels, rather than recruiting

further closed channels.

Wild type HEK293 cells (HEK wt) and HEK293 cells just expressing Orai1-3, all reveal

IP3- induced ICRAC currents at a basal pH of 7.2 of maximally 1 pA/pF (see supplementary

Fig. 1). Alkalization (pH 8.4) increased endogenous IP3-induced ICRAC in HEK wild type

cells about 65%,in Orai1- and Orai2-expressing HEK293 cells about 130%, and in Orai3-

expressing cells about 320% (Fig. S1A, I/Vs in Fig. S1B and S1C). The relative increase of

current is comparable to the alkalization-mediated increase of IP3-induced ICRAC in STIM/

Orai-expressing HEK293 cells, but the absolute current amplitudes are substantially smaller.

This suggests, that after store-depletion only Orai channels, which are stimulated by STIM

Beck et al. Page 4

Cell Calcium. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



are boosted by extracellular alkalization, and additional Orai channels do not open upon

extracellular alkalization without contribution of STIM, which is limited in Orai1-3-

expressing HEK293 cells.

2.3 Induction of heterologous ICRAC upon extracellular alkalization

The previous experiments assessed the effect of extracellular pH on ICRAC that was already

activated by IP3-induced store depletion. In the next set of experiments, no IP3 was added to

the intracellular solution of the patch pipette. Instead, the intracellular Ca2+ concentration

was buffered to 150 nM to prevent passive store depletion and thus activation of ICRAC.

Under these conditions, RBL2H3, Jurkat T lymphocytes, HEK293 wt cells or HEK293 cells

expressing Orai1, Orai2 or Orai3 do not develop ICRAC. Extracellular alkalization (pH 8.4)

evoked a small linear current (Figs. 3A and B; I/Vs are shown in 3D and E), which was

largest in Orai1- and Orai2-expressing HEK293 and RBL2H3 cells, but still less than 1.5

pA/pF. Only Orai3-expressing HEK293 cells revealed a small current with an inward

rectifying I/V-relationship, but this current was also much smaller than in the presence of pH

8.4 after store depletion (Fig. S1). These experiments support our previous findings (see

above) that Orai molecules forming the CRAC channels are not directly activated by

extracellular alkalization. However, the additional expression of STIM1/2 in Orai1-3-

expressing HEK293 cells changed the response to alkalization: without apparent store-

depletion, extracellular alkalization induced large ICRAC in S1O1-, S1O2-, S1O3- and

S2O1-expressing HEK293 cells (Figs. 3C and F; Fig. S2A-E). The EC50 for alkalization

induced ICRAC in S1O1-expressing HEK293 cells is 7.8 (Fig. 3I).

In analogy to the electrophysiological results, imaging experiments revealed no Ca2+ influx

upon application of pH 8.4 onto intact Fura-2 AM loaded RBL2H3 and only a weak

intracellular Ca2+ increase in HEK wt cells (Fig. 3G). In contrast, pH 8.4 induced a

significant Ca2+ increase in Jurkat T lymphocytes, which was prevented in the absence of

external Ca2+ (Fig. 3H). This demonstrates that the application of external pH 8.4 did not

result in store depletion, whereas control application of thapsigargin did (Fig. 3H).

Consistent with the patch-clamp results and activation of inward currents, S1O2-, S1O3- and

S2O1-expressing HEK293 cells also revealed an increase in intracellular Ca2+ upon

extracellular alkalization, which depended on extracellular Ca2+ (Fig. S2F).

2.4 Intracellular effects of pH on endogenous and STIM1/Orai1-mediated ICRAC

We next studied the effect of intracellular pH on IP3-induced ICRAC in S1O1-expressing

HEK293 cells (Figs. 4A and C), RBL2H3 cells (Figs. 4B and C) and Jurkat T lymphocytes

(Fig. 4C). Intracellular acidification inhibited IP3-induced ICRAC, whereas intracellular

alkalization did not significantly change its amplitude (Figs. 4A and–C). Upper traces in Fig.

4A and B show the outward currents. The dose (pH) - response (I) relationships of

intracellular pH on ICRAC are summarized in Fig. 4C. The mean currents at different

intracellular pH were normalized to the maximum current for each cell type. Sigmoidal fits

revealed a pK of 6.7 for S1O1-expressing HEK293 cells, 6.4 for RBL2H3 cells and 6.2 for

Jurkat T lymphocytes. At an intracellular pH of 6.0 no significant ICRAC could be detected

in any cell type. To see whether pH 6.0 inhibited ICRAC due to a pH-dependent inhibition of

store depletion via IP3 we applied 2 μM ionomycin to deplete intracellular Ca2+ stores
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independently of IP3 (Fig. 4D). The application of ionomycin did not activate any additional

current in S1O1-expressing HEK293 cells, RBL2H3 cells and Jurkat T lymphocytes treated

with intracellular IP3 at an intracellular pH of 6.0 (Fig. 4D).

Since intracellular alkalization did not change the amplitude of IP3-induced ICRAC we

further studied whether intracellular alkalization had any effect on its extracellular

alkalization-induced potentiation. Fig. 4E shows, that the potentiation of IP3-induced ICRAC

by an external application of pH 8.4 at an internal pH of 7.2 and 8.4 was not different in

S1O1-expressing HEK293 cells. Neither was the relative acidification-induced (pH 6.0)

inhibition of IP3-induced ICRAC in the presence of internal pH 7.2 and 9.0 (Fig. 4F).

However, the IP3-induced ICRAC in S1O1- expressing HEK293 cells and RBL2H3 cells

developed faster at alkalized intracellular conditions (see also Figs. 4A, B, E and F).

2.5 Mutations of D110/112A in Orai1 changes its pH profile

Close to the glutamate residue in position 106 (E106), which has already been shown to

mediate some pH dependence [48], the first extracellular loop of Orai1 reveals two

additional negatively charged residues: aspartate residues D110 and D112. An Orai1

construct in which these two aspartates were mutated to uncharged alanine residues

(D110/112A) demonstrated that these residues contribute to the ion selectivity and to the

anomalous mole-fraction behavior of Orai1 channels [46]. We tested for the pH dependence

of ICRAC via Orai1D110/112A compared to Orai1wt. We applied pH 6.0 or pH 8.4 after IP3-

activated ICRAC had developed in HEK293 cells stably expressing STIM1 and either Orai1wt

or Orai1D110/112A. Currents were normalized to IP3- induced currents at t=120 s and plotted

vs. time (Fig. 5A, I/Vs are shown in 5B). Fig. 5C demonstrates that the alkalization-induced

amplification of ICRAC upon application of pH 8.4 was significantly smaller in

Orai1D110/112A compared to Orai1wt (Fig. 5C). In addition, the bar diagram in Fig. 5D

demonstrates that the residual current upon pH-induced block (pH 6.0) was significantly

larger in Orai1D110/112A compared to Orai1wt.

3. DISCUSSION

In the present study we assessed extra- and intracellular pH changes on the development and

amplitude of the Ca2+ release-activated Ca2+ current (ICRAC) in HEK293 cells

heterologously expressing STIM and Orai proteins and endogeneous ICRAC in RBL2H3

cells as well as Jurkat T lymphocytes.

In agreement with previous studies investigating extracellular pH effects on store-operated

Ca2+ entry (SOCE) via fluorescent Ca2+ imaging [34-39] and/or ICRAC via

electrophysiological techniques [40] we found that extracellular acidification decreases and

alkalization increases ICRAC in endogenous cells as well as in STIM/Orai co-overexpressing

HEK cells (S1O1, S1O2, S1O3, S2O1, S2O3). Since the pH/current relationships reveal

very similar pKs for acidification-induced inhibition (6.7-6.8) and pKs for alkalization-

induced potentiation (7.8-8.4) in both endogenous and heterologously expressed ICRAC, we

assume that the extracellular pH dependency is a general feature of ICRAC. In RBL2H3 cells

and Jurkat T lymphocytes the differences in pK values might result from different

expression levels of STIM and Orai homologues.
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Recently, the glutamate residue E106 in Orai1 has been identified to contribute to the

extracellular pH dependence of Ca2+ release-activated Ca2+ (CRAC) channels [48]. Here,

we demonstrate that two aspartate residues in the first extracellular loop of Orai1, close to

E106, also contribute to the pH-induced changes of ICRAC. The lower degree of

amplification of Orai1D110/112A could be explained by the absence of negative charges,

resulting in a missing energy-well for the Ca2+ coordination of the first loop close to the ion

channel pore. In conclusion a protonation of D110/112 could decrease current size at low

pH. The less efficient block of Orai1D110/112A at low pH is possibly due to changed steric

arrangement of the uncharged alanine residues compared to the protonated aspartate residues

probably increasing Orai channel conductance.

Extracellular alkalization of Orai1-3 in the absence of STIM did not result in a substantial

increase of CRAC currents. This suggests that the potentiation by extracellular pH only

affects Orai channels that interact with STIM. However, ICRAC and Ca2+ influx in HEK293

cells co-overexpressing different STIM and Orai combinations as well as Ca2+ influx in

Jurkat T lymphocytes can be activated by extracellular alkalization without apparent store-

depletion. Taken together, our data suggest that extracellular alkalization can activate ICRAC

in the STIM/Orai overexpression system, but apparently no endogenous ICRAC. Since no

alkalization-mediated endogenous ICRAC was detectable in HEK wt, RBL and Jurkat T

lymphocytes, it remains unclear whether the alkalization-mediated Ca2+ influx in Jurkat T

lymphocytes depends in endogenous STIM/Orai channels, or is mediated via other Ca2+

influx pathways in these cells.

Intracellular pH also affects ICRAC. Our results show that intracellular acidification inhibits

both endogenous and heterologous ICRAC, while intracellular alkalization did not alter the

current amplitude. The internal pH-dependent inactivation of ICRAC in RBL cells correlates

with a pH-dependent inactivation of iPLA2β [49], which is already shown to be a modulator

of ICRAC [50]. However, in human neuroblastoma cells, intracellular changes in pH left

carbachol-induced Ca2+ entry unaffected [35]. Since we induced store-depletion by IP3

already in the presence of the diverse pH concentrations in the patch pipette, the decrease in

ICRAC activation at a lower intracellular pH might be due to an acidic-pH-dependent

inhibition of IP3 binding to its receptor in the membrane of the endoplasmic reticulum,

resulting in a slower Ca2+ store depletion und thus ICRAC activation [51]. However, a further

IP3 receptor-independent induction of store depletion by the Ca2+ ionophore ionomycin did

not result in the CRAC currents at an intracellular pH of 6.0 either. These results imply that

intracellular acidification directly blocks the STIM/Orai machinery. This concept is

supported by two recent studies. Investigations of reduced SOCE in human alveolar smooth

muscle cells upon hypoxia-induced intracellular acidification and ICRAC in HEK293 cells

heterologously expressing STIM1 and Orai1 suggest an uncoupling of STIM1 and Orai1 due

the intracellular drop of pH, which might be an important mechanism to protect cells from

Ca2+ overload under hypoxic stress [52]. In addition, experiments with STIM1 siRNA in

pheochromocytoma cells demonstrate that changes in pH alter the ability of STIM1 to

trigger SOCE either due to inhibition of conformational changes or decreased STIM1

translocation or aggregation [53].
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Several publications discuss a reduced or increased store-operated Ca2+ entry along with

cancer- E.g., lowered SOCE-conducted Ca2+ signaling can result in typical cancer hallmark

functions such as enhanced proliferation, inability to induce apoptosis and a higher

migration potential [54-56]. Tumor environment is often characterized by an acidic pH [57]

and various chemical and technical approaches use acidic tumor environment to unfold their

therapeutic potential [58-61]. Recent work demonstrated a role for STIM/Orai isoforms

STIM2 and Orai3 in the pathophysiology of cancer [62-69]. Our results imply that low pH

in tumor environment might contribute to low SOCE signaling.

In addition, the strong external pH-sensitivity might be of physiological significance in the

activation of immune cells. Low extracellular pH can contribute significantly to the

modulation of SOCE in cells at sites of inflammation. In the microenvironment of abscesses,

the external pH can be as low as 5.5 [70] and acidic microenvironments may play a role in

inhibiting immune function as suggested to be the case in cystic fibrosis [71]. The

acidification-induced inhibition of ICRAC, most probably one of the most important factors

in immune cell activation, might well be the reason for the well-known diminished immune

response at lowered extracellular pH. However, the reduction of Ca2+ influx in acidic

environment may also be an intrinsic protective feedback mechanism in inflammatory cells.

CONCLUSION

In cancer and immune reaction extracellular pH is lowered and Ca2+ signals are impaired.

Endogenous and STIM/Orai mediated ICRAC depend on intra- and extracellular pH and two

aspartic acids in the pore of Orai1 contribute to the extracellular pH-dependence. Inhibition

of Ca2+ influx via Orai channels upon extracellular acidification is a general feature of

ICRAC and lowered pH in tumors and immune response can thus contribute to Ca2+

dependent malfunctions.

4. MATERIAL AND METHODS

4.1 Cells

HEK293 wild type (wt) and stably expressing STIM1 or STIM2 cells [72] were cultured at

37°C with 5% CO2 in DMEM supplemented with 10% fetal bovine serum (FBS). Before

experiments, STIM2-expressing cells were grown for several days or weeks in the absence

of G418 (500 μg/ml; see [28]). Full length human Orai1, Orai2 and Orai3 were subcloned

into pCAGGS-IRES-GFP for transient dicistronic expression with the green fluorescent

protein (GFP) as described previously [27]. For electrophysiological experiments, Orai1,

Orai2 and Orai3 proteins were over-expressed in HEK293 wt or stably expressing STIM1 or

STIM2 cells using lipofectamine 2000 (Invitrogen). GFP-expressing cells were selected by

fluorescence. Experiments were performed 24-48 hours after transfection.

Jurkat T lymphocytes and RBL2H3 cells were cultured at 37°C with 5% CO2 in RPMI-1640

medium and in DMEM medium, respectively, both supplemented with 10% FBS and 0.1%

penicillin-streptomycin.
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4.2 Electrophysiology

Patch pipettes, pulled from glass capillaries (inner diameter 1.5 mm, Kimble products) with

a horizontal puller (Sutter instruments, Model P-97), were fire-polished, and had resistances

between 2 and 4 MΩ. Patch clamp experiments were performed in the tight-seal whole-cell

configuration at 21-25 °C. High-resolution current recordings were acquired and analyzed

using the EPC-10 and the software PatchMaster (HEKA). Voltage ramps of 50 ms duration

spanning a range of −100 to +100 mV (or −150 to +150 mV) were delivered from a holding

potential of 0 mV at a rate of 0.5 Hz over a period of 120-600 s. All voltages were corrected

for a liquid junction potential of 10 mV. Currents were filtered at 2.9 kHz and digitized at

100 μs intervals. Capacitive currents were determined and corrected before each voltage

ramp. Extracting the current amplitude at −80 mV and +80 mV from individual ramp

current records assessed the low-resolution temporal development of inward and outward

currents, respectively. All currents were normalized to the cell size and displayed as current

densities (pA/pF). Standard external solutions contained (in mM): 120 NaCl, 2 MgCl2, 10

CaCl2, 10 TEA-Cl, 10 HEPES, 10 glucose, pH 7.2 with NaOH, 300 mOsm. In some

experiments, NaCl was replaced equimolarly by tetraethylammonium-chloride (TEA-Cl).

The external solution was set to different pH by adding NaOH or HCl and pressure-applied

directly onto the cell of interest via a wide-tipped puffer pipette. If necessary, osmolarity

was adjusted by adding sucrose. Standard internal solutions contained (in mM): 120 Cs-

glutamate, 20 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetracesium salt

(Cs-BAPTA), 3 MgCl2, 10 HEPES, 0.02 IP3, pH 7.2 with CsOH, 300 mOsm. For some

experiments IP3 was omitted and [Ca2+]i was buffered to 150 nM using 20 mM Cs·BAPTA

and 8 mM CaCl2 (8.5 mM for pH 8.4) as calculated with WebMaxC, http://

www.stanford.edu/~cpatton/webmaxcS.htm). The intracellular solution was set to different

pH by adding CsOH or HCl. All chemicals were purchased from Sigma-Aldrich Co (St.

Louis, MO, USA). For some experiments, 2 μM ionomycin (Sigma) was applied

extracellularly.

4.3 Fluorescence measurements

For Ca2+ measurements, cells were loaded with fura-2 AM (Molecular Probes, Eugene, OR,

USA; 1 μM / 60 min / 37 °C) and kept in extracellular saline containing 10 mM CaCl2.

External solution of pH 8.4 with or without 10 mM CaCl2 or external solution (pH 7.4)

without CaCl2 but 2 μM thapsigargin were applied onto the cell of interest via puffer pipette.

Experiments were performed with a Zeiss Axiovert 200 fluorescence microscope equipped

with a dual excitation fluorimetric imaging system (TILL-Photonics, Gräfelfingen,

Germany), using a 40x Plan NeoFluar objective. Data acquisition and computation were

controlled by X-Chart (HEKA). Cells were excited by wavelengths of 360 nm and 390 nm

produced by a monochromator B (TILL-Photonics). The fluorescence emission was

recorded with a photomultiplier tube (TILL-Photonics) using an optical 440 nm longpass

filter. The signals were sampled at 5 Hz and computed into relative ratio units of the

fluorescence intensity at the different wavelengths (360/390 nm). Results are given as the

approximate [Ca2+]i, calculated from the 360/390 nm fluorescence ratios, using an in vivo

Ca2+ calibration performed in patch-clamp experiments with defined Ca2+ concentrations
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combined with 200 μM fura-2 pentapotassium salt (Molecular Probes, Eugene, OR, USA) in

the patch pipette.

4.4 Statistics and Analysis

Double dose-response equations (y=ymzx1/1+(pH/pKa)n1+ymax2/1+(pH/pKb)n2, y=I/I120s,

pKa and n1 = pK and Hill coefficient for external acidification, and pKb and n2 = pK and

Hill coefficient for external alkalization) were used to represent the dose (external pH) -

response (I/I120) relationships. Sigmoidal fits (y=ymax/1+(pH/pK)n, y=I/Imax, pK and n =

Hill coefficient) were used to represent the dose (internal pH) - response (I/I120)

relationships. Where applicable, statistical errors of averaged data are given as means ±SEM

with n determinations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• ICRAC function depends on intra- and extracellular pH

• Aspartic acids (D110/D112) in Orai1 contribute to the extracellular pH-

dependence

• Inhibition of Ca2+ influx by low extracellular pH is a general feature of ICRAC

• Low pH in tumors and infection may thus contribute to dysfunctional Ca2+

signaling

Beck et al. Page 14

Cell Calcium. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. Extracellular pH modulates endogenous ICRAC
(A, B) Averaged time courses of IP3-induced (20 μM) CRAC currents measured in RBL2H3

cells (open circles) and Jurkat T lymphocytes (filled circles). Inward currents of individual

cells were measured at −80 mV, normalized by the cell capacitance, and plotted versus time

(-SEM). Bars indicate application of external solution of pH 8.4 (A) and 6.0 (B). (C) Inward

and outward currents of RBL2H3 cells, measured at −80 mV and +80 mV, respectively,

normalized to the amplitude of the inward current right before pH change (I/I120s), averaged

and plotted versus time (±SEM). The bar indicates application of external solution of

different pH (6.0 to 9.0). (D) Double dose response fits (external pH versus relative change

of inward current, I/I120s in %) reveal a pKa (pKacidification) of 6.8 and pKb (pKalkalization) of

8.0 in Jurkat T lymphocytes (closed circles) and a pKa of 6.7 and pKb of 7.8 in RBL2H3

cells (open circles). The number in brackets indicates the number of averaged cells. (E, F)

Typical inwardly rectifying I/V relationships of Ca2+-selective ICRAC at different external

pH from RBL2H3 cells (E) and Jurkat T lymphocytes (F).
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Fig. 2. Extracellular pH modulates heterologous STIM/Orai-mediated ICRAC
(A, B, C) Averaged time courses of IP3-induced (20 μM) CRAC currents measured in

HEK293 cells expressing STIM1 and Orai1 (S1O1; A), STIM1 and Orai2 (S1O2; B) and

STIM1 and Orai3 (S1O3; C). Inward currents of individual cells were measured at -80 mV,

normalized by the cell capacitance, and plotted versus time (-SEM). The bars indicate

application of external solution of different pH (6.0 to 9.0). (D) Double dose response fits

(external pH versus relative change of inward current, I/I120s in %) reveal pKas

(pKacidification) of 6.8, 6.8 and 6.7, and pKbs (pKalkalization) of 7.9, 7.9 and 8.4 in S1O1-

(filled circles), S1O2- (open circles) and S1O3- (filled boxes) expressing HEK293 cells,

respectively. (Same cells as in A-C.) (E) Averaged time courses of IP3-induced (20 μM)

inward and outward currents, measured at −80 mV and +80 mV, respectively, in S1O1-

expressing HEK293 cells in the presence (open boxes) and absence (Na+ replaced by TEA+;

filled circles) of external sodium. The bar indicates application of external solution of pH

8.4. (F) Typical inwardly rectifying I/V relationships of Ca2+-selective ICRAC at different

external pH from S1O1-, S1O2- and S1O3-expressing HEK293 cells. The number in

brackets indicates the number of averaged cells. (G, H) Averaged time courses of IP3-

induced (20 μM) CRAC currents measured in STIM2 and Orai1 (S2O1; G) and STIM2 and

Orai3 expressing HEK293 cells (S2O3; H) with (white circles) and without (black circle)

application of external solution of pH 8.4.. Inward and outward currents of individual cells

were measured at −80 mV and +80 mV, respectively, normalized by the cell capacitance,

and plotted versus time (±SEM). (I) Typical inwardly rectifying I/V relationships of Ca2+-

selective ICRAC in different external pH from S2O1- and S2O3-expressing HEK293 cells at

different external pH. The number in brackets indicates the number of averaged cells.
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Fig. 3. Extracellular alkalization activates heterologous mediated ICRAC
(A, B) Averaged time courses of external pH 8.4-mediated currents measured in HEK293

wild type (HEK wt; filled diamonds), RBL2H3 cells (filled boxes) and Jurkat T

lymphocytes (filled circles) (A). Orai1-(filled circles), Orai2- (open circles) and Orai3-

expressing HEK293 cells (filled boxes) (B). Averaged time courses of currents measured in

STIM1/Orai1 expressing cells upon application of external solution adjusted to pH values as

indicated (C). Inward and outward currents of individual cells were measured at -80 mV and

+80 mV, respectively, normalized by the cell capacitance, and plotted versus time (±SEM).

The intracellular Ca2+ concentration was clamped to 150 nM (20 mM Cs·BAPTA + 8 mM

CaCl2) to prevent passive store depletion-induced CRAC activation. The bars indicate

application of external solution of pH as indicated. (D, E, F) I/V relationships corresponding

to A, B and C, respectively. (G, H) Averaged time courses of intracellular Ca2+ changes due

to application of pH 8.4 in intact Fura-2AM-loaded HEK293 wt cells (open diamonds) and

RBL2H3 cells (filled boxes) (G), and Jurkat T lymphocytes in the absence (open circles) and

presence (filled circles) of extracellular Ca2+ (H). Bars indicate the application of external

solution of pH 8.4 or external solution containing 2 μM thapsigargin (TG). (I) Dose-

dependence of S1/O1-mediated currents induced by external alkalization (EC50 pH 7.8).

(Same cells as in C.) The number in brackets indicates the number of averaged cells.
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Fig. 4. Intracellular pH modulates IP3-induced ICRAC
(A, B, C) Averaged time courses of IP3-induced (20 μM) currents measured in HEK293 cells

expressing STIM1 and Orai1 (S1O1; A, C), RBL2H3 cells (B, C) and Jurkat T lymphocytes

(C) at different internal pH (6.0 to 9.0). Inward and outward currents of individual cells were

measured at −80 mV and +80 mV, respectively, normalized by the cell capacitance, and

plotted versus time (±SEM). (C) Dose response fits (internal pH versus current amplitude,

normalized to Imax) reveal pKs of 6.7, 6.4 and 6.2 in S1O1-expressing HEK293 cells (filled

circles), RBL2H3 cells (open circles) and Jurkat T lymphocytes (filled boxes), respectively.

(Same cells as in A and B.) (D) Averaged time courses of IP3-induced (20 μM) currents

measured in S1O1-expressing HEK293 cells (filled circles), RBL2H3 cells (open circles)

and Jurkat T lymphocytes (filled boxes) at internal pH 6.0. The bar indicates application of 2

μM ionomycin. The number in brackets indicates the number of averaged cells. (E)

Averaged time courses of IP3-induced (20 μM) CRAC currents at internal pH 7.2 (filled

circles) and 8.4 (open circles) measured in STIM1 and Orai1 (S1O1)-expressing HEK293

cells. Inward and outward currents of individual cells were measured at −80 mV and +80

mV, respectively, normalized by the cell capacitance, and plotted versus time (±SEM). The

bar indicates application of external solution of pH 8.4. (F) IP3-induced inward and outward

currents of individual S1O1-expressing HEK293 cells at internal pH 7.2 (filled circles) and

9.0 (open circles), measured at −80 mV and +80 mV, respectively, normalized to the

amplitude of the inward current right before pH change (I/I120s), averaged and plotted versus

time (±SEM). The bar indicates application of external solution of pH 6.0. The number in

brackets indicates the number of averaged cells.
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Fig. 5. Contribution of D110 and D112 to pH sensitivity of Orai1
(A) Averaged time courses of IP3-induced (20 μM) CRAC currents measured in HEK293

cells expressing STIM1 and either Orai1 wild type (S1O1; wt) or Orai1D110/112A. Inward

currents of individual cells were measured at −80 mV. The bars indicate application of

external solution of different pH. Currents were normalized to currents at t = 120 s when

ICRAC had fully developed and plotted versus time (-SEM). (B) I/Vs for cells shown in A

before application at pH 7.2 and at the end of application (t = 180 s) at pH 6.0 and 8.4. (C)

Bar diagram for alkalization induced amplification at t = 180 s. Asterisks indicate a

significant difference between Orai1wt and Orai1D110/112A (p = 0.003 in a two-sided,

unpaired student's t-test). (D) Bar diagram for acidification induced residual current.

Asterisks indicate a significant difference between Orai1wt and Orai1D110/112A (p = 0.006 in

a two-sided, unpaired student's t-test).
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