Creating LaTeX and HTML documents from within Stata using texdoc and webdoc

Example 1

Ben Jann University of Bern, ben.jann@soz.unibe.ch

> Swiss Stata Users Group meeting Bern, November 17, 2016

Contents

1	The texdoc source file	2
2	The resulting LATEX source file	4
3	The resulting PDF	6

1 The texdoc source file

```
— the-auto-data.texdoc —
texdoc init the-auto-data, replace logdir(log) ///
   gropts(optargs(width=0.8\textwidth))
set linesize 100
/***
\documentclass[12pt]{article}
\usepackage{fullpage}
\usepackage{hyperref,graphicx,booktabs,dcolumn}
\usepackage{stata}
\title{The Auto Data}
\author{Ben Jann}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
    I really like the auto data because it is so awesome. You can do all kinds
   of stuff with the auto data, like tabulating a variable or computing
   descriptive statistics. You can even use the auto data to estimate
   regression models. I am really amazed by the richness of this dataset.
   There is information on many different makes and models and you can learn,
   for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In
   this article I will illustrate the auto data and I will show you what you
    can do with it. I am convinced that you will love this dataset as much as I
    do after having read this paper.
\end{abstract}
\tableofcontents
\section{Introduction}
What we want to do in the introductory section is to open the data and have a
look at what is inside of it. Since the auto data is shipped with Stata, we can
use the \stcmd{sysuse} command to open it (see \dref{sysuse}). Furthermore, the
\stcmd{describe} command will list the variables and display some other
information (see \dref{describe}). So let's start:
***/
texdoc stlog
    sysuse auto
   texdoc stlog cnp
   describe
texdoc stlog close
texdoc local N = r(N)
```

```
Wow! `N' observations! And what a wealth of variables! Make, price, miles per
gallon, and many more. I am very motivated to learn more about this amazing
data set.
\section{Descriptives}
Let's now look at some descriptive statistics. Maybe also let's
do a graph.
***/
texdoc stlog
   summarize
   pspline price weight
texdoc stlog close
texdoc local pval = strofreal(r(gof_p), "%9.3f")
texdoc graph, label(fig1) caption(What a crazy relation between price and weight)
/***
In figure \ref{fig1} we see that for some unknown reason expensive cars seem to
be heavier. Furthermore, the relation appears to be nonlinear, as the pilot
goodness-of-fit test rejects the linear fit with a p-value of `pval'.
\begin{quote}\small
Actually, I really only want to print a graph without printing the code that
produced the code. Hm, how can we do that? Maybe the \stcmd{nolog} option will
\end{quote}
***/
texdoc stlog, nolog
   pspline price mpg
texdoc stlog close
texdoc graph, label(fig2) caption(Another crazy relation)
/***
In figure \ref{fig2} we see that price is also related to miles per gallon. How
interesting!
\section{Regression tables}
***/
texdoc stlog, nolog
   sysuse auto
```

/***

```
regress price weight
   estimates store m1
   regress price weight mpg
   estimates store m2
   regress price weight mpg foreign
   estimates store m3
   texdoc local coef = strofreal(_b[weight],"%9.1f")
   esttab m1 m2 m3 using log/table1.tex, replace se label ///
        nomtitles booktabs align(D{.}{.}{-1}) ///
        title(Some regression table\label{table1})
texdoc stlog close
/***
Finally we get to regressions! In model~3 of table~\ref{table1} we see that an
additional pound of car costs around `coef' dollars once we control for milage
and origin.
***/
texdoc write \input{log/table1.tex}
/***
\end{document}
***/
— end of file —
    The resulting LATEX source file
Applying
     . texdoc do the-auto-data.texdoc
generates to the following LATEX file.
— the-auto-data.tex —
\documentclass[12pt]{article}
\usepackage{fullpage}
\usepackage{hyperref,graphicx,booktabs,dcolumn}
\usepackage{stata}
\title{The Auto Data}
\author{Ben Jann}
\date{\today}
\begin{document}
\maketitle
```

\begin{abstract}

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper.

\end{abstract}

\tableofcontents

\section{Introduction}

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the \stcmd{sysuse} command to open it (see \dref{sysuse}). Furthermore, the \stcmd{describe} command will list the variables and display some other information (see \dref{describe}). So let's start:

\begin{stlog}\input{log/1.log.tex}\end{stlog}

Wow! 74 observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set.

\section{Descriptives}

Let's now look at some descriptive statistics. Maybe also let's do a graph.

```
\begin{stlog}\input{log/2.log.tex}\end{stlog}
\begin{figure}
    \centering
    \includegraphics[width=0.8\textwidth]{log/2.pdf}
    \caption{What a crazy relation between price and weight}
    \label{fig1}
\end{figure}
```

In figure \ref{fig1} we see that for some unknown reason expensive cars seem to be heavier. Furthermore, the relation appears to be nonlinear, as the pilot goodness-of-fit test rejects the linear fit with a p-value of 0.009.

\begin{quote}\small

Actually, I really only want to print a graph without printing the code that produced the code. Hm, how can we do that? Maybe the \stcmd{nolog} option will do.

\end{quote}

\begin{figure}

```
\centering
\includegraphics[width=0.8\textwidth]{log/3.pdf}
\caption{Another crazy relation}
\label{fig2}
\end{figure}

In figure^\ref{fig2} we see that price is also related to miles per gallon. How interesting!
\section{Regression tables}

Finally we get to regressions! In model~3 of table~\ref{table1} we see that an additional pound of car costs around 3.5 dollars once we control for milage and origin.
\input{log/table1.tex}
\end{document}
- end of file --
```

3 The resulting PDF

The following pages display the resulting PDF after compiling the LATEX source file.

The Auto Data

Ben Jann

November 17, 2016

Abstract

I really like the auto data because it is so awesome. You can do all kinds of stuff with the auto data, like tabulating a variable or computing descriptive statistics. You can even use the auto data to estimate regression models. I am really amazed by the richness of this dataset. There is information on many different makes and models and you can learn, for example, about the gear ratio of a Dodge Diplomat (a stunning 2.47). In this article I will illustrate the auto data and I will show you what you can do with it. I am convinced that you will love this dataset as much as I do after having read this paper.

Contents

1	Introduction	1
2	Descriptives	2
3	Regression tables	4

1 Introduction

What we want to do in the introductory section is to open the data and have a look at what is inside of it. Since the auto data is shipped with Stata, we can use the **sysuse** command to open it (see [D] **sysuse**). Furthermore, the **describe** command will list the variables and display some other information (see [D] **describe**). So let's start:

. sysuse auto (1978 Automobile Data)

. describe

Contains data from /Applications/Stata14/ado/base/a/auto.dta
obs: 74 1978 Automobile Data
vars: 12 29 Jul 2016 15:41
size: 3,182 (_dta has notes)

variable name	storage type	display format	value label	variable label
make	str18	%-18s		Make and Model
price	int	%8.0gc		Price
mpg	int	%8.0g		Mileage (mpg)
rep78	int	%8.0g		Repair Record 1978
headroom	float	%6.1f		Headroom (in.)
trunk	int	%8.0g		Trunk space (cu. ft.)
weight	int	%8.0gc		Weight (lbs.)
length	int	%8.0g		Length (in.)
turn	int	%8.0g		Turn Circle (ft.)
displacement	int	%8.0g		Displacement (cu. in.)
gear_ratio	float	%6.2f		Gear Ratio
foreign	byte	%8.0g	origin	Car type

Sorted by: foreign

Wow! 74 observations! And what a wealth of variables! Make, price, miles per gallon, and many more. I am very motivated to learn more about this amazing data set.

2 Descriptives

Let's now look at some descriptive statistics. Maybe also let's do a graph.

. summarize					
Variable	Obs	Mean	Std. Dev.	Min	Max
make	0				
price	74	6165.257	2949.496	3291	15906
mpg	74	21.2973	5.785503	12	41
rep78	69	3.405797	.9899323	1	5
headroom	74	2.993243	.8459948	1.5	5
trunk	74	13.75676	4.277404	5	23
weight	74	3019.459	777.1936	1760	4840
length	74	187.9324	22.26634	142	233
turn	74	39.64865	4.399354	31	51
displacement	74	197.2973	91.83722	79	425
gear_ratio	74	3.014865	.4562871	2.19	3.89
foreign	74	.2972973	.4601885	0	1
. pspline pri	ce weight				

(pilot goodness-of-fit chi2(16) = 32.38; p = 0.0089)
(using penalized model ...)

In figure 1 we see that for some unknown reason expensive cars seem to be heavier. Furthermore, the relation appears to be nonlinear, as the pilot goodness-of-fit test rejects the linear fit with a p-value of 0.009.

Actually, I really only want to print a graph without printing the code that produced the code. Hm, how can we do that? Maybe the nolog option will do.

In figure 2 we see that price is also related to miles per gallon. How interesting!

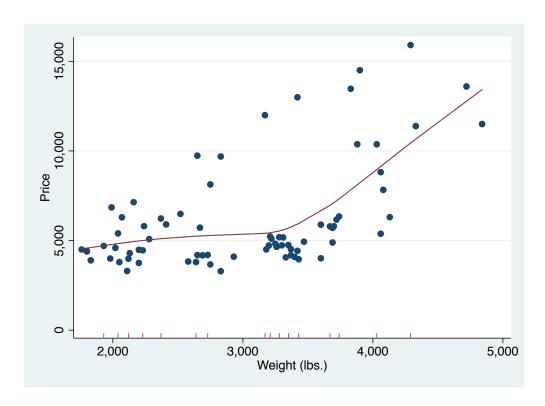


Figure 1: What a crazy relation between price and weight

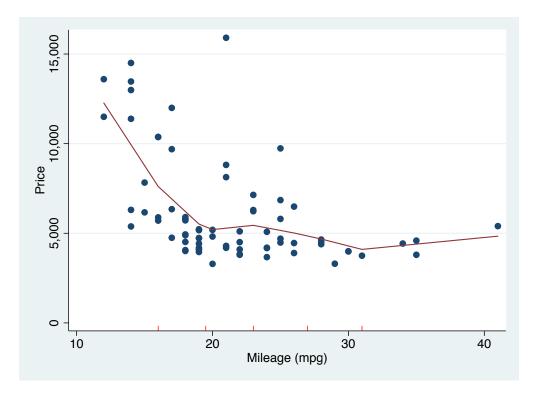


Figure 2: Another crazy relation

3 Regression tables

Finally we get to regressions! In model 3 of table 1 we see that an additional pound of car costs around 3.5 dollars once we control for milage and origin.

Table 1: Some regression table

	(1)	(2)	(3)
Weight (lbs.)	2.044^{***} (0.377)	1.747** (0.641)	3.465*** (0.631)
Mileage (mpg)		-49.51 (86.16)	21.85 (74.22)
Car type			3673.1*** (684.0)
Constant	-6.707 (1174.4)	1946.1 (3597.0)	-5853.7 (3377.0)
Observations	74	74	74

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001