Balogh, Zoltan; Kristaly, Alexandru; Sipos, Kinga (2016). Geodesic interpolation inequalities on Heisenberg groups. Comptes rendus - mathématique, 354(9), pp. 916-919. Elsevier Masson SAS 10.1016/j.crma.2016.07.001
|
Text
BKS_CR_Note_final.pdf - Accepted Version Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND). Download (286kB) | Preview |
|
Text
1-s2.0-S1631073X16301108-main.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (241kB) |
In this Note, we present geodesic versions of the Borell–Brascamp–Lieb, Brunn–Minkowski and entropy inequalities on the Heisenberg group Hn. Our arguments use the Riemannian approximation of Hn combined with optimal mass-transportation techniques
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Balogh, Zoltan, Kristaly, Alexandru, Sipos, Kinga |
Subjects: |
500 Science > 510 Mathematics |
ISSN: |
1631-073X |
Publisher: |
Elsevier Masson SAS |
Language: |
English |
Submitter: |
Olivier Bernard Mila |
Date Deposited: |
09 Aug 2017 13:16 |
Last Modified: |
05 Dec 2022 15:04 |
Publisher DOI: |
10.1016/j.crma.2016.07.001 |
BORIS DOI: |
10.7892/boris.97574 |
URI: |
https://boris.unibe.ch/id/eprint/97574 |