
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
9
8
4
1
4
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
5
.
4
.
2
0
2
4

Integration of Multipath TCP and Network Coding for Satellite
Networks

Torsten Braun1, Pengyuan Du2, Mario Gerla3

Abstract— This paper investigates how to support reliable
satellite communication using TCP assuming that multiple
satellite links are available and Multipath-TCP (MPTCP) as
well as Software-Defined Networking (SDN) can be used to map
sub-flows to different satellite links. To improve redundancy we
propose integrating Network Coding into MPTCP. The paper
discusses in detail the related work on MPTCP, SDN, Network
Coding, and satellite communication, in particular certain
combinations. We present a possible approach to integrate these
for our target satellite communication scenario and discuss
various design options.

I. INTRODUCTION

Despite high coverage of cellular networks, satellite com-
munication has still its importance, e.g. on the sea as well
as in desert and mountain areas. However, errors such as
link breaks can suddenly happen in satellite communication
scenarios due to movement of mobile satellite terminals,
shadowing effects etc. To address reliability, we propose us-
ing Multipath-TCP (MPTCP), which splits TCP connections
into sub-flows, and Software-Defined Networking (SDN) for
mapping these sub-flows to different paths, in this case to
different satellite links. Figure 1 depicts our target scenario
with multiple MPTCP sub-flows mapped to different satellite
links by an SDN controller. We propose to use Network
Coding (NC) to achieve additional protection of link breaks
and other failures. Network Coding can avoid delays by
MPTCP retransmissions. After discussing related work in
Section II, we present our proposed MPTCP/SDN/NC op-
eration in Section III-B. The contribution of this paper is
that it concretely describes an original way how all these
technologies can be used in a satellite communication sce-
nario, including the needed modification of MPTCP options.
Section IV concludes the paper.

Fig. 1. Target satellite communications scenario

1T. Braun is with the Institute of Computer Science, University of Bern,
3012 Bern, Switzerland braun@inf.unibe.ch

2Pengyuan Du is with the Department of Computer Science, UCLA, Los
Angeles, CA 90095, USA pengyuandu@cs.ucla.edu

3M. Gerla is with the Department of Computer Science, UCLA, Los
Angeles, CA 90095, USA gerla@ucla.edu

II. RELATED WORK

A. Multipath TCP

Multipath TCP (MPTCP) separates the data stream of
an application into separate sub-flows, which can then be
routed over heterogeneous paths, e.g., using SDN mecha-
nisms [1]. Initially, TCP connections are established using
the traditional TCP three-way-handshake [2], [3], where the
involved parties signal each other by the MP CAPABLE op-
tion in SYN and SYNACK messages that they are supporting
MPTCP. Sub-flows can then be added using the MP JOIN
option. Sub-flows can be identified based on the quintuple
(protocol, IP source address, IP destination address, source
port, destination port). Each sub-flow uses conventional
TCP signaling, i.e. the 32-bit sequence and acknowledgment
numbers of each sub-flow’s data stream.

On the connection level, MPTCP adds a 32 or 64-bit Data
Sequence Signal (DSS) as an option (Figure 2), which de-
scribes how the sub-flow’s sequence space maps to the con-
nection level [4]. The mapping consists of a Data Sequence
Number (DSN), a Sub-flow Sequence Number (SSN), and a
Data-Level Length (DLL). DLL specifies for how many bytes
of the data stream the mapping is valid. The DSS option
does not need to be present in each packet. It includes a 32
or 64-bit (dependent on the DSN length) connection-level
acknowledgement (DATA ACK), which is a cumulative ACK
for the connection and indicates as in standard TCP how
much data has been received without holes. On the sub-flow
level ACKs acknowledge the reception of the data for that
particular sub-flow. DATA ACKs on connection level and
ACKs on sub-flow level are not necessarily aligned to each
other. A receiver might acknowledge the reception of data
on a sub-flow without progressing the DATA ACK. It might
acknowledge the data on the sub-flow level and then drop the
data, e.g., in case of memory constraints of the connection’s
receive buffer. Then, retransmissions on connection level are
needed, i.e. the missing data must be retransmitted over one
of the sub-flows.

MPTCP has been mainly designed to increase reliability
by having multiple paths, e.g., in handover scenarios or link
breaks, but not primarily for increasing throughput. In [5]
different modes are proposed: Normal mode exploits all
available sub-flows. Backup mode uses only a subset of
sub-flows and leaves pre-established backup sub-flows for
failure situations. In case of link or path breaks, MPTCP
can be beneficial by rescheduling packets from the failed
link / path to properly working paths. This requires an
appropriate scheduler at the TCP sender. [6] discusses several



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype (reserved) FmMa A

Data ACK (4 or 8 octets, depending on flags)

Data sequence number (4 or 8 octets, depending on flags)

Subflow sequence number (4 octets)

Data-Level Length (2 octets) Checksum (2 octets)

Fig. 2. MPTCP DSS Option

options for schedulers such as Round-Robin, Lowest-RTT-
First, Retransmission and Penalization (RP), and Bufferbloat
Mitigation. RP reinserts possibly lost segments causing head-
of-line blocking on a sub-flow with space in its congestion
window.

B. (Multipath) TCP in Satellite Networks

Early research on TCP over satellite networks focused
on improving the performance of standard TCP over satel-
lite networks with high bandwidth delay product [7], [8].
MPTCP can be used to separate sub-flows of a single
connection, but a MPTCP connection should not be more
aggressive than a single TCP connection. This is achieved
by coupled congestion control [9], which ensures that a
single sub-flow does not get more bandwidth than a single
TCP connection. The main advantage of MPTCP in satellite
networks is that it can avoid suffering from single satellite
link disruptions and better exploit the available capacity in
case of multiple available satellite links. In [10] authors
propose the On-demand Multipath Source Routing (OMSR)
protocol to support routing of MPTCP sub-flows across
different paths of a LEO (Low Earth Orbit) satellite, in
particular to support smooth hand-overs. In [1] it is proposed
to use a SDN controller to control the network path of
MPTCP sub-flows. Otherwise, it might happen that all or
multiple sub-flows are routed over the same path, i.e. the
same satellite channels, even if multiple paths exist and, thus,
can not exploit the available bandwidth of different multiple
satellite channels.

C. (Multipath) TCP and Network Coding

CoMP is a network coding multipath forwarding scheme
to exploit path diversity in wireless mesh networks (WMNs)
[11]. It sits below TCP/IP and can even re-encode packets
in intermediate WMN nodes. CoMP tries to estimate the
WMN’s loss probability and adjust the rate of sending
linear combinations. CodeMP [12] applies network coding
to support TCP in multi-path mobile ad-hoc networks.

In [13] authors propose a scheme for integration of TCP
and Network Coding. It is proposed to transmit linear combi-
nations of packets instead of original packets in a congestion
window. The proposed Network Coding layer is put in-
between the TCP and IP protocol. The paper also proposes
to change the TCP semantics. Acknowledgments are sent
per received packet, i.e. per received linear combination of

packets. In contrast to traditional TCP semantics an ACK
does not acknowledge the reception of an original packet that
can be delivered to the application. To reconstruct an original
TCP packet, the receiver has to receive a certain number
of linear combinations containing the packet. An advantage
of the approach is that no packets are retransmitted in an
identical form and the congestion window can permanently
progress for each received ACK. TCP Vegas has been
proposed as TCP congestion control mechanism in this case.

The value of combining Network Coding and MPTCP has
been demonstrated in [14], where a scenario with three dif-
ferent network interfaces, namely WiMax, WiFi, and Iridium
satellites, of a mobile client has been considered. This can
be considered as multi-path extension of [13]. None of these
networks provide reliable communication but by combining
these networks as well as using MPTCP and Network Cod-
ing, reliability can be improved. The paper analyses packet
loss and round-trip-times over these networks and based on
that derives an analytical model to estimate the end-to-end
throughput of MPTCP using Network Coding. Two sub-
layers with Network Coding are proposed, one at MPTCP
level, i.e. above the sub-flows, and one on sub-flow level to
overcome random packet loss in sub-flows. The analytical
results suggest the use of MPTCP and Network Coding, but
the work does not explicitly describe how to implement this
approach and how protocol headers need to be designed.
Moreover, the problem of violating TCP semantics is not
addressed. Delays can be introduced by requiring the receiver
to decode a certain number of packets until an original packet
can be reconstructed.

To avoid the TCP semantics problem, the authors in [15],
propose to perform Network Coding on network layer, i.e. IP,
completely independent from MPTCP and TCP. In that case,
only decoded packets will be delivered to the TCP receiver,
which can add significant delays.

The problem of delayed decoding can be avoided by not
coding all packets, but only a fraction of the packets [16].
Authors of [16] propose to schedule the original packets
over multiple MPTCP sub-flows and use a dedicated sub-
flow for carrying redundant coded packets. Although not
explicitly mentioned in the paper, this approach can be
used to overcome the TCP semantics problem with Network
Coding. However, focusing redundancy on a single sub-flow
can generate some problems, when this particular sub-flow
and its path are suffering from heavy loss. In that case, lost
packets of other sub-flows can not be repaired.

The work presented in [17] avoids this problem. There,
redundant packets are distributed over all sub-flows. The
authors propose to use generations of packets and transmit
a linear combination of packets out of a single generation at
the beginning, i.e. before the original packets are sent over a
sub-flow. The approach is called SC-MPTCP (SC: systematic
coding), since redundant packets are combined with original
packets. This allows to reconstruct a lost original packet and
minimizes the number of original packets to be buffered
at the receiver side compared to an approach when linear
combinations are transmitted at the end of a generation. The



problem, however, is then that a single linear combination
at the beginning of a generation can only compensate for
one packet loss in a generation of packets. The number
of tolerable packet losses can be increased with the trans-
mission of an according number of linear combinations at
the beginning. However, this requires some estimation of
the expected packet loss at the beginning of a generation.
Otherwise, in case of underestimated packet loss, not all
packets can be repaired, and in case of overestimated packet
loss, too many redundant packets might be transmitted. An
efficient scheme depends on accurate packet loss estimation,
e.g., based on exponential averaging as proposed in [17], but
in particular in satellite networks, this may be difficult to
estimate, since packet losses are rather generated by sudden
connection disruptions and in that case exponential averaging
might not be meaningful. To recover packet loss, the authors
propose a pre-blocking warning mechanism, which sends a
message from the receiver to the sender in order to ask for
additional redundant, network coded packets, if the receiver
detects a head-of-line blocking situation in the receive buffer.
Evaluations have been performed using network simulation,
but no protocol specification or implementation is provided.

D. Multipath TCP and Network Coding in Satellite Networks

The issue of generations has been discussed in [18], where
a sliding window for network coding instead of generations
has been suggested. This means that instead of generating
linear combinations out of fixed size generations, the coded
packets can be taken from a sliding window that can be
continuously adapted dependent on the reception progress
of the receiver. This requires continuous feedback from the
receiver to the sender. The paper states based on simulation
experiences that the sliding window approach has superior
performance compared to generations, but accurate control
of the sliding window is essential for performance improve-
ments. This is of course given in a TCP scenario, but might
experience delays in satellite networks.

A similar architecture as in [14] has been proposed in
[19], i.e. Network Coding (NC) on both MPTCP and sub-
flow level. It is proposed to deploy MPTCP/NC functionality
into middle-boxes, i.e. so-called Performance Enhancing
Proxies (PEPs). The proposed approach avoids signaling of
encoded packets by using a pseudo-random function at both
ends of the TCP connection to generate coding vectors.
However, this does not allow flexible reaction on particular
lost packets or burst errors. The approach adopts the concept
of sliding windows instead of generations. The MPTCP/NC
layer returns a DATA ACK for any new innovative packet,
which is still violating TCP semantics. Simulations used two
satellite links assuming an on/off channel model with on/off
phases in the range of seconds have been performed.

III. INTEGRATING MPTCP AND NETWORK CODING IN
SATELLITE NETWORKS

A. Proposed MPTCP/NC Operation

Figure 3 describes the proposed MPTCP/NC operation
of the sender side. The Network Coding component takes

packets from the byte stream, performs network coding, and
distributes coded packets to the various sub-flows according
to their filled transmit buffers as well as a redundancy
strategy. The packets to be coded need to be of the same
length and the start of each packet should be a multiple
of the packet length plus the initial offset although an
original packet could start at any byte position. However,
this would make decoding rather difficult. The start of each
encoded original packet must be indicated in the encoded
packet. We propose to modify the MPTCP DSS option as
described in subsection III-B. The Network Coding coder
should consider the acknowledged bytes for selecting which
packets as discussed in Subsection III-D.

Fig. 3. MPTCP Operation at Sender

The operation of the receiver side is depicted in Figure
4. Coded packets are stored in the coded packet buffer.
The decoder part analyses the received coded packets, re-
constructs original packets, and stores them in the receive
buffer. If a reconstructed packet increases the minimum
sequence number until which all original data have been
received without any holes, a new DATA ACK must be
sent. Acknowledgements on sub-flow level are exchanged
independent of whether original data can be reconstructed
or not. Reconstructed original packets can be removed from
the coded packet buffer, e.g., we can replace (A + B + C)
by (B + C) after reconstructing A.

B. Proposed Protocol Changes for MPTCP/NC

The main issue is to define a Network Coding header
to indicate which original packets contribute to the coded
packet. RFC6363 [20] defines how to encode Forward Error
Correction (FEC) data when transmitted over (unreliable)
transport protocols such as DCCP or UDP. We propose to
reuse the MPTCP DSS Option to specify which original
packets are encoded in the Network Coded packet. One could
use random linear network coding with a random number
generator, which would allow us to minimize overhead for
signaling which original packets are encoded in a packet.



Fig. 4. MPTCP Operation at Receiver

However, this would limit the sender to control the packets to
be encoded and we do not like to loose this flexibility, in par-
ticular when retransmissions of specific packets are needed,
e.g., in case of sudden satellite link failures. Systematic
coding is another option, but requires some knowledge about
expected error rates. This is might be difficult to achieve in
satellite networks with sudden link breaks.

We propose to signal in the MPTCP DSS option which
original packets have been encoded. We use the Data Se-
quence Number in the MPTCP DSS option for this. We call
the Data Sequence Number field ”Data Sequence Number for
Network Coding”, see Figure 5. The first sub-field (4 octets)
describes the ”Data Sequence Number of the first original
packet” that is encoded in the Network Coding packet. ”NC
Packets” indicates how many original packets contributed to
the encoded packet. The Network Coding header (see Figure
6) is put at the beginning of the user data and includes
”Offset” bytes. ”Offset” indicates the offset of the user data
in the MPTCP data.

The Network Coding header as shown in Figures 6 starts
with a ”0” for the first encoded packet beginning at the se-
quence number as described in Figure 5. For the first packet
we describe the coding coefficient thereafter. Then, we have
2N octets for each additional original packet, describing the
relative position (as packet index) of the additional packets
compared to the first one (0). The second octet describes
the coefficient of that packet. Two padding bytes should be
added to achieve word alignment.

C. MPTCP Deployment in Satellite Networks

In our target scenario depicted in Figure 7 we assume
end systems, e.g., located at ships, connected via several
modems to a certain number of satellites. We assume a router
with a scheduler component connected to the various satellite
modems. Such schedulers inside the routers are assumed to
assign priorities to packets and schedule them to the available
satellite links. We also assume a controller system (possibly

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype (reserved) F 1M0 A

Data ACK (4 octets)

Data sequence number of first original packet (4 octets)

NC Packets Offset (3 octets)

Subflow sequence number (4 octets)

Data-Level Length (2 octets) Checksum (2 octets)

Fig. 5. MPTCP DSS Option for Network Coding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 Coefficient 0 Packet No. 1 Coefficient 1

Packet No. 2 Coefficient 2 Packet No. 3 Coefficient 3
...

Packet No.N-1CoefficientN-1 Packet No.N Coefficient N

Fig. 6. Network Coding Header

a set of distributed controllers and a central controller) with
some global knowledge about the bandwidth values assigned
to the satellite links. The controller(s) and routers are also
assumed to learn quickly about satellite outages such that
they can reschedule packets to alternative links.

The TCP connections and sub-flows are terminated at the
end systems and according to [1] an SDN-enabled switch
assigns MPTCP sub-flows to different satellite links. This,
however, creates a problem, since the assigned bandwidth
on satellite links might vary and links can break. While the
router’s scheduler might know that quickly, the end system
does not have this information. MPTCP will adapt after some
time to the bandwidth available on the path to which a sub-
flow is assigned. This takes some time, and if bandwidth
changes significantly or loosing satellite link connections,
congestion might occur or packets might get lost.

An alternative is to have the MPTCP entity not in end
systems but co-locate the proxy mapping TCP connections
to MPTCP sub-flows at the router. This approach has been
similarly proposed in [19], where PEPs combine TCP to
MPTCP sub-flow mapping and network coding. However,
as discussed before, this violates the TCP semantics as
a received ACK at the sender does not mean that the
destination has received and decoded an original packet.

Another issue is caused by the combination of network
coding and MPTCP. Assuming that the sender applies net-
work coding to packets of the MPTCP connection, it might
be beneficial to encode original packets across encoded
packets that are sent over different sub-flows. Otherwise, if
a satellite link breaks, the original packet can not be recov-
ered without retransmissions. Again, a PEP-based MPTCP
approach would have some advantage since Network Coding
and MPTCP would be co-located and network coded packets
can be better mapped to satellite links.



We propose three solutions addressing these issues. The
first is based on splitting the MPTCP sender implementation
between end system and an intermediate proxy. The second
and third option keep the MPTCP implementation at the end
system.

1) Proxy controlled. The first option is inspired by [21],
[22] and splits the MPTCP sender functionality into
two parts, which are then distributed between the
sender in the end system and an intermediate proxy.
We split the two parts at the horizontally dashed
line of Figure 3 and move the lower part (network
coding and sub-flows) to a proxy co-located with
the scheduler, while the upper part (socket interface
and MPTCP connections) remains in the end system.
Both parts have to communicate with each other to
deliver MPTCP connection data, but also to establish
or remove MPTCP sub-flows. For this, TCP or UDP
tunneling can be used.

2) SDN controlled. The second option keeps all MPTCP
functionality at the end system. If a satellite link
breaks, the SDN controller takes appropriate actions to
map affected MPTCP flows to other links, whereas the
MPTCP sender generates network coded packets and
distributes them over the established sub-flows. If a
satellite link breaks, the SDN controller can assign the
affected sub-flow to another satellite link. If there has
been a single sub-flow per link, the selected satellite
link might become more congested than others, which
might result in packet loss. If we would have several,
let’s say M, sub-flows (from a single or multiple
MPTCP connections) on one satellite link and that
link fails, then we could map the affected M sub-flows
over the other remaining L-1 links. If there are M =
L (L-1) sub-flows in total (L-1 sub-flows on each of
the L links), then we can move each of the L-1 sub-
flows affected by a failed link to one of the other L-1
links. As example, in Figure 7, there should be for
L=3 satellite links at least 6 sub-flows in total. Please
note that those L (L-1) sub-flows could be created
by multiple MPTCP connections. The more sub-flows
we have per MPTCP connection, the better can sub-
flows rebalanced. However, too many sub-flows might
create too much overhead at both end systems and
SDN routers. Therefore, a third option is proposed.

3) End system controlled. To avoid a larger number
of sub-flows, the complete control of distributing the
network coded data over sub-flows is done in the
end system. In this case, the MPTCP implementation
will detect at some time, e.g., by full buffers, that
a sub-flow does not work properly any more. The
MPTCP sender in the end system should then map the
packets not any more to the failed sub-flow using an
appropriate scheduler, e.g., RP, but to other sub-flows.
New sub-flows could be established in case of failed
links, and the SDN controller should map those to
different satellite links. To avoid delays caused by sub-

flow establishment, MPTCP allows the establishment
of backup sub-flows [23], which can be used when the
regular sub-flow failed.

All approaches keep the TCP semantics, but have their
pros and cons. The first option allows full control and full
flexibility at the proxy. The proxy can directly schedule
packets to MPTCP sub-flows and those to satellite links
based on the status of those satellite links to which the
proxy is directly connected to. However, the interaction
between end system and proxy requires some additional
message exchange and thus overhead. It also requires to
split the end system’s sender implementation. The second
option does not alter the MPTCP implementation, except
integrating a network coding strategy. The control at the
proxy is not as fine-grained as before, since packets arrive
already encoded. However, it allows to simplify scheduling
by applying scheduling functions to sub-flows instead of to
individual packets. For example, if a satellite link breaks,
sub-flows over the broken link can be distributed among the
still existing links. The third option leaves the decision of
sub-flow establishment and the scheduling of packets to the
end system, i.e. MPTCP. It might take a longer time until
packets are rescheduled from the initial, broken sub-flow to
a new one.

Fig. 7. MPTCP / Satellite Scenario

D. Network Coding Strategy for MPTCP/NC in Satellite
Networks

The question is how decide which original packets are
considered for a Network Coded packet. This decision should
reflect typical satellite error characteristics. We assume that
there are rather low probabilities for bit errors or single
packet errors. We rather assume that satellite links may fail
for a longer time, i.e. seconds or minutes.

Let us assume that the sender has a transmission buffer that
is limited by the highest acknowledged byte (acknowledged
by the MPTCP DATA ACK) and the congestion / flow
control window. Within this buffer, there might be some
data that have been sent recently, but the measured round-
trip-time (RTT) is higher than the difference (actual time -
time of transmission). Let us assume that a packet must be
encoded K times (possibly with some additional margin ε)
to allow a receiver to reconstruct it. As long as the packet
has been encoded less than K + ε times, there should be
a high probability for selecting that packet for an encoded
packet. If the packet has been encoded more than K +



ε times and the difference D = (actual time - time of
(K+ε)-th transmission) is smaller than the RTT, the selection
probability might decrease to a minimum. As soon as D
becomes larger than the RTT, the selection probability of
the packet should gradually increase. As soon as an original
packet has been acknowledged, the packet falls out of the
transmission buffer and the selection probability falls to 0,
see Figure 8.

Another issue is the decision whether to use generations
or sliding windows for Network Coding. We think that the
natural approach would be a window-based approach. The
window is limited by the sequence number indicated in the
Data ACK as well as the maximum congestion window as
calculated by the coupled congestion control mechanism as
specified in [9]. Each packet within that window should get a
certain probability to be selected for a network coded packet.

Fig. 8. Selection probability for original packets to be encoded

IV. CONCLUSIONS

This paper discussed proposed protocol changes and de-
sign options to support reliable communication in satellite
networks using MPTCP, SDN, and Network Coding. The
proposed design options need to be implemented and evalu-
ated in order to select the most appropriate ones.

REFERENCES

[1] S. Nazari, P. Du, M. Gerla, C. Hoffmann, J. H. Kim, and A. Capone,
“Software defined naval network for satellite communications (sdn-
sat),” in MILCOM 2016 - 2016 IEEE Military Communications
Conference, Nov 2016, pp. 360–366.

[2] G. Huston, “Multipath tcp,” Internet Protocol Journal,
vol. 18, no. 2, pp. 2–14, jun 2015. [Online]. Available:
http://ipj.dreamhosters.com/wp-content/uploads/2015/07/ipj18.2.pdf

[3] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/wifi handover with multipath tcp,” in Proceedings
of the 2012 ACM SIGCOMM Workshop on Cellular Networks:
Operations, Challenges, and Future Design, ser. CellNet ’12. New
York, NY, USA: ACM, 2012, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/2342468.2342476

[4] A. Ford, C. Raiciu, M. J. Handley, and O. Bonaventure,
“TCP Extensions for Multipath Operation with Multiple
Addresses,” RFC 6824, Jan. 2013. [Online]. Available: https://rfc-
editor.org/rfc/rfc6824.txt

[5] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/wifi handover with multipath tcp,” in Proceedings
of the 2012 ACM SIGCOMM Workshop on Cellular Networks:
Operations, Challenges, and Future Design, ser. CellNet ’12. New
York, NY, USA: ACM, 2012, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/2342468.2342476

[6] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath tcp schedulers,” in Proceedings of the 2014
ACM SIGCOMM Workshop on Capacity Sharing Workshop, ser.
CSWS ’14. New York, NY, USA: ACM, 2014, pp. 27–32. [Online].
Available: http://doi.acm.org/10.1145/2630088.2631977

[7] M. Gerla, W. Weng, and R. L. Cigno, “Ba-tcp: a bandwidth aware tcp
for satellite networks,” in Proceedings Eight International Conference
on Computer Communications and Networks (Cat. No.99EX370),
1999, pp. 204–207.

[8] M. Luglio, M. Y. Sanadidi, M. Gerla, and J. Stepanek, “On-board
satellite ”split tcp” proxy,” IEEE Journal on Selected Areas in Com-
munications, vol. 22, no. 2, pp. 362–370, Feb 2004.

[9] C. Raiciu, M. J. Handley, and D. Wischik, “Coupled Congestion
Control for Multipath Transport Protocols,” RFC 6356, Oct. 2011.
[Online]. Available: https://rfc-editor.org/rfc/rfc6356.txt

[10] P. Du, X. Li, Y. Lu, and M. Gerla, “Multipath tcp over leo satellite
networks,” in 2015 International Wireless Communications and Mobile
Computing Conference (IWCMC), Aug 2015, pp. 1–6.

[11] S. Gheorghiu, A. L. Toledo, and P. Rodriguez, “Multipath tcp with net-
work coding for wireless mesh networks,” in 2010 IEEE International
Conference on Communications, May 2010, pp. 1–5.

[12] C. C. Chen, G. Tahasildar, Y. T. Yu, J. S. Park, M. Gerla, and
M. Y. Sanadidi, “Codemp: Network coded multipath to support tcp
in disruptive manets,” in 2012 IEEE 9th International Conference on
Mobile Ad-Hoc and Sensor Systems (MASS 2012), Oct 2012, pp. 209–
217.

[13] J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network coding meets tcp: Theory and
implementation,” Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512,
March 2011.

[14] J. Cloud, F. du Pin Calmon, W. Zeng, G. Pau, L. M. Zeger, and
M. Medard, “Multi-path tcp with network coding for mobile devices
in heterogeneous networks,” in 2013 IEEE 78th Vehicular Technology
Conference (VTC Fall), Sept 2013, pp. 1–5.

[15] P.-L. Ageneau and N. Boukhatem, “Multipath tcp over network coding
for wireless networks,” in 14th IEEE Annual Consumer Communica-
tions & Networking Conference (CCNC), January 2017, pp. 373–376.

[16] M. Li, A. Lukyanenko, and Y. Cui, “Network coding based multipath
tcp,” in 2012 Proceedings IEEE INFOCOM Workshops, March 2012,
pp. 25–30.

[17] M. Li, A. Lukyanenko, S. Tarkoma, Y. Cui, and A. Yl-Jski, “Tolerating
path heterogeneity in multipath tcp with bounded receive buffers,”
Computer Networks, vol. 64, pp. 1 – 14, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128614000425

[18] J. Cloud and M. Médard, Network Coding over SATCOM: Lessons
Learned. Cham: Springer International Publishing, 2015, pp. 272–
285.

[19] G. Giambene, D. K. Luong, V. A. Le, and M. Muhammad, “Network
coding and mptcp in satellite networks,” in 2016 8th Advanced Satellite
Multimedia Systems Conference and the 14th Signal Processing for
Space Communications Workshop (ASMS/SPSC), Sept 2016, pp. 1–8.

[20] V. Roca, M. Watson, and A. C. Begen, “Forward Error Correction
(FEC) Framework,” RFC 6363, Oct. 2011. [Online]. Available:
https://rfc-editor.org/rfc/rfc6363.txt

[21] S. Kopparty, S. V. Krishnamurthy, M. Faloutsos, and S. K. Tripathi,
“Split tcp for mobile ad hoc networks,” in Global Telecommunications
Conference, 2002. GLOBECOM ’02. IEEE, vol. 1, Nov 2002, pp. 138–
142 vol.1.

[22] M. Schläger, B. Rathke, S. Bodenstein, and A. Wolisz, “Advocating
a remote socket architecture for internet access using wireless lans,”
Mobile Networks and Applications, vol. 6, no. 1, pp. 23–42, 2001.
[Online]. Available: http://dx.doi.org/10.1023/A:1009857619490

[23] O. Bonaventure, Q. D. Coninck, M. Baerts, F. Duchłne, and
B. Hesmans, “Improving Multipath TCP Backup Subflows,”
IETF, Individual Submission, Internet Draft draft-bonaventure-mptcp-
backup-00, Jul. 2015. [Online]. Available: https://tools.ietf.org/id/draft-
bonaventure-mptcp-backup-00.txt

ACKNOWLEDGMENT

We thank Ceilidh Hoffmann, Jae H. Kim, and Jorge Mena
for valuable discussions that influenced the presented design.


	1

