Simulation of realistic SLR observations to optimize tracking scenarios

F. Andritsch, A. Maier, R. Dach, A. Jäggi

Astronomical Institute, University of Bern, Switzerland

20th International Workshop on Laser Ranging 10 October 2016 GFZ Potsdam, Germany

Introduction: Overview

- scenarios Germany to optimize tracking s - 2016, GFZ Potsdam, October observations Ranging, 10 Simulation of realistic SLR Florian Andritsch: Simulation of realis 20th International Workshop on Laser
- Simulation of Satellite Laser Ranging measurements to GNSS and geodetic satellites.
- Calculation of pseudorange due to geometry, then apply:
 - Corrections
 - Noise
 - Synthetic observations upon which comparison and optimization can be done.

Impact of target selection.

Introduction: Procedure

Bernese GNSS Software.

- Independent noise generation for each observation.
 - Adding/removing satellites at other epochs.
 - Exchanging satellites at specific epoch.
- Observation selection separate from simulation.

Introduction- ILRS Tracking Campaigns

Campaign1: August 01 - September 30, 2014

- All GNSS satellites (on ILRS priority list, 18 satellites); more if able
- Three sets of two normal points distributed over transit; normal point includes 1000 FR points or last 5 minutes, whichever is shorter

Campaign2: November 22,2014- February 28, 2015

- Six GLONASS as first priority, Beidou and Galileo as second priority, remaining GLONASS as third priority
- minimum three segments along each pass with three NPTs in each segment

Campaign3: August 20 - October 16, 2015

- Six GLONASS as first priority, Compass-M3 and Galileo as second priority, remaining GLONASS as third priority
- Nine NPTs over the pass; 3 during the ascending/early region, 3 in the central region, 3 in the descending/late region of the pass

Introduction- ILRS Tracking Campaigns

Common Results

- Need more data
- Few stations could fulfill requirements all the time
- More daylight data

ILRS can handle tracking of all the required satellits (for now).

Simulation might give a definite answer in future.

Simulation-Requirements

- scenarios Germany tracking s Potsdam, (016, GFZ optimiz \sim 0 observations to Florian Andritsch: Simulation of realistic SLR obser 20th International Workshop on Laser Ranging, 10
- Ability to generate synthetic SLR measurements to satellites in form of NP.
- Include station/satellite specific noise handling.
- Based on final orbit products (or predictions).
- Possibility to alter observations as needed.
- Lie within the accuracy requirements of the ILRS.

Simulation – Implementation

- scenarios I, Germany tracking s Potsdam, (0 optimize , to Simulation of realistic SLR observations t Workshop on Laser Ranging, 10 October Florian Andritsch: 20th International
- Separate SLR mode within Bernese GNSS Software Simulation tool.
 - Selectable noise
 - Selectable stations
 - Selectable observation list
- Result are range observation files.

Simulation - Observation Selection

YYYY	HH	DD	STAT	TIME IN SECONDS	PRN	
****	**	××	****	************	***	×
2015	05	06	7810	32046.185902247878	108	1
2015	05	06	7810	32126.060302248032	108	1
2015	05	06	7810	34742.648702320352	107	1
2015	05	06	7810	34862,552302311269	107	1
2015	05	06	7810	35154.578702318162	107	1
2015	05	06	7810	36243.455102316861	108	1
2015	05	06	7810	36376,229502318871	108	1
2015	05	06	7810	40050,113102219737	111	1
2015	05	06	7810	50219.056302341145	111	1
2015	05	06	7810	51928.352112342225	121	1
2015	05	06	7810	51932,583932335045	121	1
2015	05	06	7810	51936.500912335854	121	1
2015	05	06	7810	51942,945872333563	121	1
2015	05	06	7810	51946.872112332734	121	1
2015	05	06	7810	51951,641012342428	121	1
2015	05	06	7810	51958,623052340256	121	1
2015	05	06	7810	51962,188152332608	121	1
2015	05	06	7810	51967.808972341074	121	1
2015	05	06	781 0	51972.374152341465	121	1
2015	05	06	7810	51977.856072334798	121	1
2015	05	06	781 0	51982,106412339985	121	1
2015	05	06	7810	51987,792052336998	121	1
2015	05	06	7810	51992.042392342613	121	1
2015	05	06	7810	51997.524312334826	121	1
2015	05	06	7810	52001.691312335461	121	1
2015	05	06	7810	52007.451032332443	121	1
2015	05	06	7810	52018,155592334660	121	1
2015	05	06	7810	52022.054052340201	121	1
2015	05	06	7810	52027.526712332408	121	1
2015	05	06	7810	52031,951052338896	121	1
2015	05	06	7810	52037.587572334320	121	1
2015	05	06	7810	52042.560972338986	121	1
2015	05	06	7810	52047,119922336395	121	1
2015	05	06	7810	52052,738022335390	121	1
2015	05	06	7810	52056.818052335875	121	1
2015	05	06	7810	52061.561202337041	121	1
2015	05	06	7810	54224.806/0223/183	123	1
2015	05	UD OC	7810	61/00.2330822/0584	124	1
2015	05	UD OC	7810	62868,262582268966	115	1
2015	05	06	7810	63549,4331022691//	113	1
2015	05	06	7810	63843.31/90226/241	113	1
2015	05	06	7810	55903,531902260132	113	1
2015	05	06	7810	78878,631902225781	103	1
2015	05	06	7810	79022,709502223472	103	1
2015	05	06	7810	75281,855502518562	102	1
2010	00	UD D	7810	73206,484302322424	102	1

+

Simulation - Noise

- White noise
 - Selectable
 - Elevation dependent sigmas
 - Repeatable
- Normal distributed noise
 - Different parameters for each station/satelite combination.
 - Resembling bin RMS found in NP files.

Simulation - First Results

- Florian Andritsch: Simulation of realistic SLR observations to optimize tracking scenarios 20th International Workshop on Laser Ranging, 10 October 2016, GFZ Potsdam, Germany +
 - **First Results**
 - Without noise
 - White noise
 - Normal distributed noise

Astronomical Institute University of Bern AIUB

Simulated observation file

GPSSIM2	:	simul	ate SLR data	to GNSS	satellites	18433				
MEASUREME Reference	NT TYPE: EPOCH :	RANGE 2015-	05-06 0:37:	13 (126)	CREATED : MODIFIED:	26-MAY-16 26-May-16	15:37 15:37			
# DIFFERE # FREQUEN # SATELLI # EPOCHS # FLAGGED	NCES CIES TES EPOCHS	0 1 0 77051 0	FI SI SI RI RI	DRMAT NUI ESSION I JBSESSIO 35. INTEL EMARK NUI	HBER : DENTIFIER : N IDENTIF. RYAL (S) : HBER :	6 1265 5 1.0000 0	000			
STATION N OPERATOR RECEIVER ANTENNA T RECEIVER/	AME : NAME : Type : Ype : Antenna;	ZIMM SIMUL SIMUL	14001S007 A DEFAULT A N 0 / 0	DNE						
CLOCK COR	RECTION:	POLYN	OMIAL DEG 0							
POS.ECCEN	TR. (H):	0,00	00 0.0000	0000		.		.		
SAT #L	1–OBS OK	#L1-0	BS BAD #L2-()BS OK	#L2-OBS BAD	Statio Obstype1	on1 Obstype2	Stati Obstype1	on2 Obstype2	
L1,L2 OBS OBS.N 1	ERVATIONS TIME 8:54:06	: F#S 1	RANGE (M) 21468293.62	FFS SA 5 0 108	15-05-06	A 0.000000000	T THE END: -0.000000	DATE, FR 000	ACT.(S), CLOCK	(S)
121	8:55:26	1	21555114,39	3 0 108	15-05-06	0.000000000	-0.000000	000		
413	9:39:02	1	21771033.65	7 0 107	15-05-06	0.000000000	-0.000000	000		
903	9:41:02	1	19687406.54	4 0 107	15-05-06	0.000000000	-0,000000	000		
983	9:45:54	1	19660905,18	3 0 107	15-05-06	0.000000000	-0.000000	000		
5100	10:04:03	1	19554801.69	2 0 108	15-05-06	0.000000000	-0.000000	000		
5233	10:06:16	1	19595476.023	3 0 108	15-05-06	0.000000000	-0.000000	000		
19701	11:07:30	1	19678965,28	4 0 111	15-05-06	0.000000000	-0.000000	000		
26550	13:56:59	1	21223037.74	6 0 111	15-05-06	0.000000000	-0.000000	000		
26555	14:25:28	1	21225342.65	l 0 121	15-05-06	0.000000000	-0.000000	000		
26562	14:25:32	1	21228575.44	5 0 121	15-05-06	0.000000000	-0.000000	000		
26576	14:25:36	1	21235060,79	0 121	15-05-06	0.000000000	-0.000000	000		
26582	14:25:42	1	21237848,203	3 0 121	15-05-06	0.000000000	-0.000000	000		
26586	14:25:46	1	21239709.43	6 0 121	15-05-06	0.000000000	-0.000000	000		

+

+

White noise

Slide 13

Astronomical Institute University of Bern AIUB

Florian Andritsch: Simulation of realistic SLR observations to optimize tracking scenarios 20th International Workshop on Laser Ranging, 10 October 2016, GFZ Potsdam, Germany

+

Normal distributed noise

Noise parameters

+

Slide 16

Astronomical Institute University of Bern AIUB

Noise parameters

+

Slide 17

Astronomical Institute University of Bern AIUB

Florian Andritsch: Simulation of realistic SLR observations to optimize tracking scenarios 20th International Workshop on Laser Ranging, 10 October 2016, GFZ Potsdam, Germany

Astronomical Institute University of Bern

Conclusions & Outlook

Promising results that compare well in terms of residuals for existing observations.

- Different tracking strategies will be generated and used for comparison
- Investigating the impact of reducing observations to specific satellites in favor of more observations to others

Thank you for your attention.

References

- tracking scenarios Potsdam, Germany Florian Andritsch: Simulation of realistic SLR observations to optimize 20th International Workshop on Laser Ranging, 10 October 2016, GFZ
- Dach, R., S. Lutz, P. Walser, P. Fridez (Eds); 2015: Bernese GNSS Software Version 5.2. User manual, Astronomical Institute, University of Bern, Bern Open Publishing. DOI: 10.7892/boris.72297; ISBN: 978– 3–906813–05–9.

Pearlman, M.R., Degnan, J.J., and Bosworth, J.M., <u>"The International Laser Ranging Service"</u>, Advances in Space Research, Vol. 30, No. 2, pp. 135–143, July 2002, DOI:10.1016/S0273–1177(02)00277–6.