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ABSTRACT 

 

Spinal muscular atrophy (SMA) is a recessive disease caused by mutations in the SMN1 gene, 

which encodes the protein Survival Motor Neuron (SMN) whose absence dramatically affects 

the survival of motor neurons. In humans, the severity of the disease is lessened by the 

presence of a gene copy, SMN2. SMN2 differs from SMN1 by a C-to-T transition in exon 7, 

which modifies pre-mRNA splicing and prevents successful SMN synthesis. Splice-switching 

approaches using antisense oligonucleotides (AON) have already been shown to correct this 

SMN2 gene transition providing a therapeutic avenue for SMA. However, AON 

administration to the central nervous system (CNS) presents additional hurdles. In this study 

we show that systemic delivery of tricyclo-DNA (tcDNA) AON in a type III SMA mouse 

augments retention of exon 7 in SMN2 mRNA both in peripheral organs and the CNS. Mild 

type III SMA mice were selected as opposed to the severe type I model in order to test tcDNA 

efficacy and their ability to enter the CNS after maturation of the BBB. Furthermore, 

subcutaneous treatment significantly improved the necrosis phenotype and respiratory 

function. In summary, our data support that tcDNA oligomers effectively cross the blood-

brain-barrier and offer a promising systemic alternative for treating SMA. 
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INTRODUCTION 

Spinal muscular atrophy (SMA) is an autosomal-recessive inherited disease characterised by 

the degeneration of α-motor neurons of the anterior horn of spinal cord which leads to 

progressive muscle atrophy. It is caused by mutations in the gene SMN1 encoding the 

Survival Motor Neuron protein (SMN) and it has an incidence of about 1 in 6,000 live births.1  

SMN is a 37 kDa protein located in both the cytoplasm and the nucleus where it is 

concentrated in several intense foci referred to as Gemini of Cajal Bodies (gems).2  This 

ubiquitous protein plays an essential role in uridine-rich small nuclear ribonucleoprotein 

(snRNP) assembly in the cytoplasm,3 and also participates in snRNP importation into the 

nucleus. Once in the nucleus SMN relocates to gems, while released snRNPs accumulate in 

Cajal bodies to form part of the splicing machinery. One might expect that reduced SMN 

levels should broadly affect the processing of pre-mRNAs in all cell types, though this clearly 

does not occur in SMA patients. The neuron-specific consequences of SMA are still widely 

debated, though have been partially attributed to SMN’s role in the axonal transport of 

particular mRNAs which suggests a rationale for the prominent effect of SMN-depletion on 

spinal motor neuron survival.4 The clinical consequences of SMA range from severe to mild 

(types 1-4), tending to affect proximal muscle groups primarily, and with deleterious effects 

on respiratory function.  

In humans, the severity of disease is lessened by the presence of SMN2 (a centromeric copy of 

the gene).5 SMN2 differs from SMN1 (a telomeric copy) by only one nucleotide in the coding 

sequence: a translationally-silent C to T at position +6 (C6T) altering the splicing of exon 7. 

Consequently 10% of SMN2 pre-mRNAs are correctly spliced but 90% lack exon 7 

(SMN(Δ7)). 6, 7 Translation of respective mRNAs gives rise to a very limited amount of fully-
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functional full-length SMN protein in addition to a truncated SMNΔ7) protein which is 

rapidly degraded.8, 9 As one might expect, the severity of SMA is inversely-proportional to the 

SMN2 copy number which varies from 1 to 8 in humans;10 suggesting the potential of SMN2 

correction as a valid therapeutic strategy.  

The splicing of SMN2 exon 7 has been well characterised and requires many different 

elements including: a suboptimal intron 6 branch point; 11 an extended inhibitory context; 12, 13 

a conserved tract domain, an inhibitory 3’-cluster; 12 an intronic silencer element in intron 7 

(ISS-N1) 14 and a terminal stem-loop structure on 5’ splice site exon 7 (TSL) 15 

(Supplementary fig. S1). The particular genomic organisation of SMN genes has enabled 

novel therapeutic approaches aiming at re-including SMN2 exon 7 to produce fully-functional 

SMN protein in the absence of the SMN1 gene. This has already been achieved using 

antisense-oligonucleotide (AON) strategies aimed at: blocking the exonic splice-silencer 

generated by the C6T transition; annealing the intronic splice silencer downstream of exon 7; 

or decreasing the strength of the acceptor splice site of exon 8. 16  

Various classes of AON have been developed to modulate mRNA splicing. Oligonucleotide 

studies have shown efficient re-inclusion of SMN2 exon 7, in particular those using 

2’OMethoxyEthyl (2’MOE) with 17 mer AONs targeting ISS-N1. This particular AON 

demonstrated phenotypic rescue (ear and tail necrosis) of type III SMA mice (a mild 

phenotype) after intracerebroventricular (ICV) injection,17 and increased survival of type I 

SMA mice (a severe model) by subcutaneous injections at P0 and P3.18  Studies have also 

been conducted using phosphorodiamidate morpholino oligomer (PMO) AONs on different 

mice models using ICV injection that result in a significantly extended life-span.19, 20 

Interestingly a cumulative benefit was obtained when ICV injections were coupled with 

intraperitoneal injections (IP) further reinforcing the peripheral function of SMN in SMA 

mice, previously demonstrated by Hua and colleagues.18,21 This peripheral role of SMN 
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strongly suggests that the optimal biodistribution of AONs across tissue types is important for 

therapeutic efficacy (at least in SMA mice models).  

Notwithstanding these advances in chemistry and design, the uptake of AONs is still limited 

in many tissues including the heart and the CNS – a crucial target in SMA. This is due to the 

inability of most AONs to cross the blood-brain-barrier (BBB). Accordingly, in the majority 

of SMA animal studies and in trials for the recently U.S. Food and Drug Administration 

(FDA)-approved nusinersen (an AON targeting ISS-N1), treatment is administered via the 

intrathecal or ICV route. Despite encouraging data, these routes of administration present 

obvious clinical challenges and neglect the issue of delivery of AONs to the periphery.  

In this paper we explore the therapeutic potential of tricyclo-DNA AONs (tcDNA), a class of 

conformationally-constrained DNA analogues that display enhanced binding properties to 

DNA and RNA,22  allowing them to be designed as shorter sequences compared with 

chemistries such as 2’MOE or PMO. Moreover tcDNA were recently shown to cross the 

BBB,23  a key property which allows us to effectively evaluate the central and peripheral 

restoration of SMN following systemic delivery.  

In our study we first compare the efficacy of two different tcDNA sequences to induce exon 7 

re-inclusion in vitro. We further investigate the in vivo-efficacy of tcDNA in a mild SMA 

mouse model (type III SMA mouse) to induce exon re-inclusion in all tissues following 

systemic administration. We have selected the type III SMA mouse model in order to test 

tcDNA-AONs efficacy, and their ability to enter the CNS after maturation of the BBB.24 This 

would not have been feasible with severe type I mice which require injections around P0-P2 

because of their very short lifespan (around P10).17, 18 

After subcutaneous tcDNA treatment we show efficient exon re-inclusion in all tissues 

including the CNS, which leads to phenotypic improvement in type III SMA. Furthermore, 
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for the first time in SMA mice we describe rescue of respiratory function after treatment with 

tcDNA using whole-body plethysmography.  

 

RESULTS 

TcDNA AON effectively restores exon 7 reinclusion in SMA type-1 fibroblasts 

To evaluate the efficacy of tcDNA AONs SMA type-1 fibroblast cells (GM03813, Coriell) 

were transfected with 30µg of oligonucleotide targeting the downstream ISS-N1 site in intron 

7, thereby improving the strength of the 5’donor site (15 mer tcDNA-AON I7; henceforth 

referred to as ‘TCI7’). Total RNA from transfected fibroblasts was analysed by reverse 

transcription PCR (RT-PCR) 48h after transfection to establish the inclusion levels of SMN2 

exon 7. In TCI7-treated SMA fibroblasts the level of exon 7 inclusion was augmented to 64% 

from a baseline of 40% in untreated SMA fibroblasts (fig. 1a).  

Despite the fact that SMA type-1 fibroblasts cells have no functional SMN1 gene and only 

two copies of SMN2 gene, they still produce SMN protein generated from the two existing 

SMN2 gene copies, however, the truncated protein of the SMN2 gene is unstable and rapidly 

degraded, hampering normal cellular function. Western blot was conducted and protein levels 

were recorded as a percentage of total actin expressed by respective fibroblast cell lines 

(GM03814, Coriell) (fig. 1b, WT). Untreated SMA type-1 fibroblasts expressed 10% of SMN 

protein at 37 kDa (fig. 1b, SMAI) whereas in TCI7-treated type-1 SMA fibroblasts induced a 

significant increase of total SMN protein reaching mean levels of 90% as a proportion of total 

WT levels (fig. 1b, TCI7).  

In addition, another tcDNA oligonucleotide sequence (17 mer tcDNA-AON TSL; henceforth 

referred to as ‘TCTSL’) which anneals to the structure of terminal stem-loop (TSL; 
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supplementary fig. S1) was investigated, and analogous 2’O-Methyl compounds were 

looked at to compare their efficacies (Supplementary fig. S2). RT-PCR and western blot 

results indicate that tcDNA AONs induce higher levels of exon 7 inclusion and SMN protein 

restoration compared to 2’OMe AONs (although not statistically significant). Regarding the 

targeted region, ISS7-N1-manipulation with AONs resulted in more inclusion of exon 7 and 

SMN protein expression which prompted us to continue with this target for the remaining 

experiments.  

To assess proper localisation of SMN protein in gems immunofluorescence was used. 

Compared with fibroblasts of healthy individuals normally displaying between 52-113 

gems/100 nuclei,25 most SMA type I patient fibroblasts have very limited amounts of SMN-

containing nuclear gems (figs. 1c and 1d). To determine if TCI7 treatment increased levels of 

full-length SMN protein in its correct localisation we counted the number of gem-positive 

nuclei in treated and untreated SMA type-1 fibroblasts. As shown in figure 1c the restored 

SMN protein is correctly localised in nuclear gems in TCI7-treated fibroblasts and that the 

number of gem positive nuclei is restored to the level found in fibroblasts of healthy 

individuals (fig. 1d). 

TCI7 induces exon 7 inclusion in SMA type III mice 

Our in vivo studies were conducted using SMA type III transgenic mice which exhibit a mild 

SMA phenotype. Type III SMA mice are knocked out for murine SMN and possess 2 

transgenes comprising 2 copies of the human SMN2 gene leaving a total of 4 copies of SMN2 

genes (Smn-/-; SMN2 +/+).24  Type III SMA mice were injected subcutaneously every week 

for a period of 4 or 12 weeks with a dose of 200mg/kg of TCI7 (or PBS as a control in the 

untreated mice) and sacrificed 2 weeks post-treatment. Since an element of our enquiry is to 
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establish trans- blood-brain-barrier (BBB) efficacy, the injection of mice commenced at P7 

because at this stage of murine development the BBB already has very limited permeability. 

Mice were analyzed for exon 7 inclusion by RT-PCR in different tissues including the 

gastrocnemius, diaphragm, heart, brain, and the spinal cord (fig. 2). In untreated mice the 

percentage of exon 7 inclusion in different tissues measured approximately 30%. TCI7 

treatment significantly increased the inclusion of exon 7 in all tissues. This increase was 

particularly significant in the gastrocnemius muscle where 55% of exon 7 inclusion is 

detected after 4 weeks of treatment and 75% after 12 weeks of treatment. The degree of 

improvement was similar in diaphragm, heart and spinal cord with close to 50% inclusion 

after 4 weeks of treatment and up to 60% inclusion after 12 weeks. In brain the level of exon 

7 inclusion reached about 40% after 12 weeks of treatment.  

We also quantified by real-time quantitative RT-PCR (qRT-PCR) the level of inclusion in 

heart and brain tissue (fig. 3). In cardiac muscle qRT-PCR revealed that exon 7 inclusion was 

increased by 1.8-fold after 4 weeks of treatment and by over 2-fold after 12 weeks of 

treatment, confirming our previous semi-quantitative results. In the brain the inclusion was 

increased by 1.3 fold after 12 weeks of treatment verifying the ability of TCI7 to induce exon 

7 inclusion in this tissue type. 

TCI7 treatment is consistently sustained long-term 

To evaluate the long term effect of tcDNA treatment we also analysed exon 7 inclusion by 

RT-PCR 10 weeks after the end of a 4 week course of tcDNA treatment, comparing it with 

samples obtained 2 weeks after the end of the treatment. The level of exon 7 inclusion appears 

to be similar for the two treated groups of mice at 2 weeks or 10 weeks after the end of the 

treatment across analysed tissues, suggesting that TCI7 or its effects persist in tissues for at 

least 10 weeks and are still inducing exon inclusion (fig. 4). 
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TCI7 treatment significantly improves respiratory function in SMA mice  

SMA type III patients display respiratory dysfunction e.g. thoraco-abdominal asynchrony that 

is often caused by paralysis of the rib cage muscles in the presence of normal diaphragmatic 

activity.26 Notwithstanding, to our knowledge respiratory function has never been studied in 

SMA type III mice. We investigated respiratory function in SMA type III mice by whole-

body plethysmography, a non-invasive technique which measures various respiratory 

parameters (displayed in table 1).  Compared with age-matched wild-type control FVB mice, 

Te (expiration time), RT (relaxion time) and Penh are significantly increased in SMA type III 

mice (table 1). Some parameters are not altered in SMA type III mice such as Ti (inspiration 

time), f (breathing frequency), TV (tidal volume) and  MV (minute ventilation), consistent 

with what is  observed in patients compared vs. healthy individuals 26 (table 1). TCI7 

treatment in SMA type III mice restored RT and Te back to WT levels, suggesting that an 

increase of exon 7 inclusion to 60% in diaphragm is correlated with an improvement in 

respiratory function (fig. 5). 

TCI7 treatment halts tissue necrosis in SMA III mice 

Finally we investigated the effect of TCI7 treatment on the SMA III phenotype. SMA type III 

mice typically display progressive necrosis of tails, ears and toes.24 Tail lengths in all mice 

were measured weekly throughout the course of treatment (12 weeks). Untreated mice at 

week 12 post-treatment underwent complete tail necrosis while treated SMA mice were 

unaffected (fig. 6a,b,d). Interestingly treatment with 200 mg/kg of TCI7 for 4 weeks also 

resulted in comparable tail lengths vs. mice treated for 12 weeks (fig. 6d), suggesting that this 

phenotypic benefit is sustained long-term. Moreover none of the treated mice presented 

necrosis of toes and ears at 12 weeks of age compared to SMA controls (fig. 6b,c). A dosing 
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regimen of 100 mg/kg was also evaluated resulting in slightly shorter tails vs the mice treated 

with 200mg/kg, suggesting that the effect of TCI7 is dose-dependent (data not shown).  

 

DISCUSSION  

Splice-switching to induce SMN-reinclusion using AON is a well-established strategy for the 

treatment of SMA. As previously mentioned, an AON of the 2’OMethoxyethyl-subtype 

named nusinersen (marketed as ‘Spinraza’) has recently been approved by the FDA for the 

treatment of SMA. After positive phase I results with an improvement of the Hammersmith 

Functional Motor Scale at 3 months post treatment,27 interim analyses of phase 3 studies 

(ENDEAR and CHERISH) have demonstrated promising outcomes for patients. However, it 

is notable that nusinersen is administered intrathecally, a route of administration that is 

frequently less well-tolerated and typically requires specialist training vs. alternative routes of 

administration (e.g. subcutaneous or IV).  In a study analysing the patient experience of 

nusinersen 32% of lumbar punctures (LP) resulted in adverse events.28 Whilst the LP event 

rate in SMA patients is not shown to be higher than usually reported in children, it is 

noteworthy that all patients in this trial underwent general anaesthaesia, which is not without 

its own risks. 

CNS delivery of most AONs does not occur with systemic (e.g. intravenous or subcutaneous) 

injection. In SMA it is necessary for treatment to reach the CNS. To surmount the issue of 

AONs crossing the BBB ICV injections can be administered, or intrathecal pumps may be 

used clinically to deliver treatment to the spinal cord in patients. In the case of nusinersen 

intrathecal injection is crucial since it is unable to cross the BBB, though this neglects the 

issue of oligonucleotide penetration of peripheral tissues. It has been demonstrated several 

times (albeit in animal models) that peripheral rescue in SMA is important and that CNS 
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treatment alone is not sufficient. Whilst this phenomenon may not directly apply to human 

forms of the disease it remains an unaddressed issue.  

Consequent to these challenges we believe that an unmet need remains for an AON treatment 

in SMA which not only deals with the issue of peripheral and central tissue penetration but 

also provides a simpler route of administration which is more easily administered and better 

tolerated. Previous research in our group using a Duchenne Muscular Dystrophy mouse model 

(named mdx) has demonstrated that tcDNA is able to cross the blood brain barrier.23  Using 

tcDNA administered intravenously, mdx mice benefitted from an improvement in cardio-

respiratory function and furthermore, correction of behavioural features controlled by central 

mechanisms. Given tcDNA’s proven ability to cross the BBB whilst maintaining efficacy in 

the periphery when administered systemically, it is a strong candidate as a treatment for SMA.  

To properly investigate this intrinsic property of tcDNA in SMA we elected to use type III 

SMA mice rather than the more severe type I mouse model to allow sufficient time for 

maturation of the BBB. After successful in-vitro proof-of-concept studies in SMA patient 

fibroblast cell lines, we have shown that subcutaneous administration of TCI7 in type III 

SMA mice (at P7) induces significantly increased levels of exon 7 re-inclusion in all 

examined tissues. Importantly TCI7 penetration includes the CNS demonstrating the ability of 

tcDNA to cross the blood brain barrier. 

The TC17 splice-switching treatment improves the SMA phenotype by preventing tail, ear 

and toe necrosis, further implying therapeutic potential in SMA. It remains unclear why 

necrosis phenotypes are associated with SMA, a feature more prevalent in SMA mice than in 

human SMA phenotypes. The Hsieh-Li-model used here presents with necrosis of the tail, 

ears and toes, and many therapeutic studies conducted on severe forms of SMA mice report 

such events when lifespan is increased.19, 20, 29, 30  There are few documented cases of SMA 
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type I patients with a single copy of SMN2 that have presented with finger necrosis, but the 

aetiology is unclear.31, 32  Parson’s group has demonstrated that the dense capillary bed of 

skeletal muscle is dramatically decreased in severe SMA mice, potentially exacerbating the 

already-affected muscle. This mechanism of capillary reduction may also explain necrosis in 

mild SMA mice,33  however the precise role of SMN protein in necrosis is not established, 

and may be due to a defect in innervations.34 Some oligonucleotide studies delay this necrosis 

phenotype via ICV injection, and a recent study demonstrated a rescue of necrosis following 

subcutaneous injection between P23 and P31 after the onset of tail-tip necrosis.17, 35  These 

data demonstrate that the phenotype can be rescued by central administration, but also that 

restoration of the periphery is achievable via systemic administration.36, 37 

A further peripheral consequence of SMA is its respiratory complications, generally linked to 

intercostal muscle weakness and thoracic cage deformation.26  In some patients atelectasis is 

reported,38, 39  and structural lung damage is observed after autopsy. In severe SMA mice lung 

abnormalities are also found.40  For the first time, in this study we have investigated 

respiratory function in type III SMA mice, and also report some dysfunction. Interestingly, 

TCI7 treatment restores some parameters of respiration, which could reflect the increased 

level of exon 7 re-inclusion in diaphragm. Given TCI7’s efficacy in the brain and spinal cord 

one cannot exclude the cause of this to restoring CNS control of respiration.  

As previously demonstrated in the mdx model, we show here that tcDNA has excellent uptake 

in cardiac muscle, with similar levels of exon re-inclusion to that of diaphragmatic tissue. 

Whilst cardiac issues are not particularly prevalent in SMA patients or mice models (save for 

congenital structural defects),41 SMA I patients with artificially prolonged lifespans have been 

shown to exhibit autonomic dysfunction,42 which may benefit from peripheral restoration of 

SMN.  
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Peripheral rescue of SMA may not be properly resolved by CNS administration alone, and 

tcDNA’s uptake profile across all tissues is a potential solution to this issue. That being said, 

other promising candidates which offer a similar uptake profile using systemic administration 

including vector- and AON-based strategies are currently under investigation.   

Many AAV vectors have been shown to efficiently cross the BBB,43 and as an example a 

group using self-complementary- adeno-associated vector serotype 9 (scAAV9) has 

demonstrated transduction efficacy throughout the spinal cord after a single systemic injection 

in newborn and adult mice and non-human primates, potentially surmounting the issue of 

peripheral vs. central treatment of SMA.44, 45 A clinical trial aiming at replacing SMN1 

directly, using these vectors is currently underway (ClinicalTrials.gov Identifier: 

NCT02122952). 

 However, the well-documented immunogenicity of the AAV capsid is likely to complicate 

repeated administration (if required) of such a therapy, not an issue with AON-based 

approaches. Combined treatments consisting of an initial AAV injection followed by 

sequential AON administration could be a viable treatment approach.  

Recently a peptide-conjugated PMO AON (Pip6a-PMO) has been administered intravenously 

in SMA mice at P0 and P2, achieving significant lifespan extension.46 More importantly, this 

group demonstrated corrected SMN2 transcripts in the CNS after tail vein administration at 

7.5 weeks, suggesting that this AON may penetrate the BBB. However, this was demonstrated 

in an asymptomatic mouse model, thus TCI7 is the only AON to demonstrate geno- and 

pheno-typic correction of central and peripheral SMA pathology with systemic administration 

as late as P7. Furthermore, the peptide moiety of Pip6a-PMO may be more likely to induce 

immunological reactions upon systemic administration vs. the naked chemistry of tcDNA, 

rendering clinical translation a lengthier and more complex process.  
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It is still debated how SMN deficiency leads to peripheral pathology, but the major goal of a 

tcDNA-based therapeutic strategy is to achieve systemic efficacy to ensure the best resolution 

of disease in SMA patients. TcDNA’s proven efficacy in restoring SMN2 exon 7 reinclusion 

in addition to its unique uptake profile and naked chemistry, offers these properties following 

less invasive administration, without the need for patient anaesthaesia. TcDNA could 

therefore represent a particularly attractive AON therapy for SMA requiring whole-body 

treatment.  

 

MATERIAL AND METHODS 

Cell culture and tcDNA transfection 

Human fibroblasts from a 3-year old type I SMA patient (GM03813, Coriell Cell 

Repositories) and wild type fibroblasts (GM03814, Coriell Cell Repositories) were grown in 

Dulbecco’s modified Eagle Medium with 20% foetal bovine serum and 1% penicillin-

streptomycin (100 U/ml). TcDNA AONs were synthetised by Synthena as previously 

described 47,48 and 2’OMePS were obtained  from Eurogentec. The two sequences used are 

SMN2 TSL (39;55) 5’-(pTTAATTTAAGGAATGTG)-3’ and SMN2 TCI7(10;24) 5’-

(pCTTTCATAATGCTGG)-3’. 

 2’OMePS and tcDNA transfection were performed with oligofectamine (Invitrogen) and 

incubated for 48 hours without serum and antibiotics.  

 

RT-PCR and qRT-PCR  
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Total RNA was extracted 48 hours post-transfection using TRIzol reagent (Invitrogen) and 

first-strand cDNA synthesis was performed using Super Script II (Invitrogen) and random 

hexamers. PCR reactions were carried out with Master Mix 2x Phusion GC (Finnzymes) in a 

total volume of 50µL from 200ng cDNA, with 10µM each of the SMN-Ex6-FW (5’- 

GCTGATGCTTTGGGAAGTATGTTA-3’) and SMN-Ex8-Re primers (5’- 

ATTCCAGATCTGTCTGATCG-3‘). The PCR products were separated by electrophoresis on 

a 3% agarose gel. 

Real-time quantitative PCR reactions were run in Opticon2 (Biorad). cDNA was used as a 

template with primers specific for SMN and GAPDH, a housekeeping gene used as control 

for variations in the amount of template loaded to each reaction. The SMN primers, forward 

5’- GCTGATGCTTTGGGAAGTATGTTA-3’ in exon 6 and reverse 5’- 

CCTTAATTTAAGGAATGTGAGCACC -3’ in exon 7 were used. 20 ng of cDNA were 

included in a 20 µL-mix containing iTaq Universal SYBR© green supermix (Biorad) and 0,2 

µM of each specific primer. The run conditions were as follow: 15 min 95°C polymerase 

activation step, followed by 50 cycles of 2-step qPCR (15 sec of 95°C denaturation, 1 min of 

60°C combined annealing/extension) 

 

Western blot 

Fibroblast protein extracts were obtained in lysis buffer (10 mmol/l HEPES pH 7.9, 100 

mmol/l KCl, 1 mmol/l EDTA, 1 mmol/l 1,4-dithiothreitol, 1× complete protease inhibitor 

cocktail (Roche), 0.5% NP-40). Equal amounts of protein (determined by Bradford Protein 

Assay (Pierce)) were mixed with 2× loading buffer (125 mmol/l Tris pH 6.8, 2% sodium 

dodecyl sulfate, 10% glycerol, 0.01% bromophenol blue, 10% β-mercaptoethanol).25 10µg of 

protein of each sample were resolved by SDS-PAGE 4-12% Bis-Tris Gels (Invitrogen) and 

transferred onto a nitrocellulose membrane. The membrane was blocked with 10% milk in 



16 
 

Phosphate-Buffered Saline-Tween buffer. SMN immunoblot was performed overnight using 

rabbit polyclonal antibody SMN H-195 (dilution 1/500, Santa Cruz). A goat anti-rabbit 

secondary antibody conjugated with horseradish peroxidase was used to detect the protein 

SMN (dilution 1/50,000).  Signals were detected with the SuperSignal West Pico 

Chemiluminescent kit (ThermoScientific). The membrane was then washed, re-blocked and 

probed with mouse monoclonal anti-actin (dilution 1/5000, Sigma Aldrich) followed by a 

secondary sheep anti-mouse conjugated with horseradish peroxidase (dilution 1/15,000). The 

signal was detected as described earlier. Membranes were converted to numerical pictures by 

scanning and band intensities were analyzed using the ImageJ 1.46r software 

(http://rsb.info.nih.gov.gate2.inist.fr/ij/) and normalised to actin protein. 

 

Immunofluorescence 

 

Transfected fibroblasts on slides were fixed with acetone/methanol (volume/volume). Fixed 

cells were blocked in PBS + 5% BSA for 1 hour. SMN immuno-staining was performed with 

rabbit polyclonal antibody SMN h-195 (dilution 1/100 in PBS +1% BSA) for 1 hour. Cells 

were washed in PBS and incubated with a secondary anti-rabbit Alexa 594. Then, cells were 

washed in PBS and incubated 5 minutes with DAPI (dilution 1/50,000). Slides were then 

fitted with cover slips using Fluoromount-G (SouthernBiotech), and incubated overnight at 

4°C. 

 

Animal experiments 

All procedures were performed in accordance with national and European legislation. All 

mice experiments were carried out at the Centre d’évaluation fonctionnelle, Université Pierre 
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et Marie Curie, Paris, France. The initial breeding SMA type III model mice were purchased 

from Jackson Laboratory after MTA accordance, and were originally developed by Hsieh-Li 

et al.24 We used strain FVB.Cg- Tg(SMN2)2HungSMN1tm1Hung/J, founder line 2, stock 

number 005058. TC17 oligonucleotides were administered weekly to SMA mice by 

subcutaneous (Sc) injections at a dose of 200mg/kg/wk under general anaesthesia using 

isofluorane, starting at 7 days of age. Treated mice were sacrificed at various time points as 

indicated in the results section and muscles and tissues were harvested and snap-frozen in 

liquid nitrogen-cooled isopentane and stored at -80°C before further analysis.  

 

Respiratory function  

Mouse respiratory function was evaluated by whole-body plethysmography using an ‘EMKA 

Technologies’ plethysmograph as described by TREAT-NMD (http://www.treat-

nmd.eu/downloads/file/sops/dmd/MDX/DMD_M.2.2.002.pdf). Briefly, unrestrained 

conscious mice were placed in calibrated chambers containing a pneumatograph that 

measured pressure differentials within the compartment by a difference in air flow. Mice were 

allowed to acclimate in chambers for 45 min at a stable temperature and humidity. Data were 

then collected every 5s using ‘iox’ software (EMKA technologies). The inspiration time Ti 

was defined as the start of inspiration to the end of inspiration and the expiration time was 

defined as the start of expiration to the end of expiration. The relaxation time RT was defined 

as the time from the start of expiration to the time when 65% of the total expiratory pressure 

occurred. Pause and Penh were defined and calculated by the following formulas: Pause= (Te 

–RT)/RT and Penh= (PEP/PIP) x Pause, where PEP is peak expiratory pressure and PIP is 

peak inspiratory pressure. The value of each parameter was calculated from an average of 60 

recordings of 5 sec representing a total of 5 min. Inclusion criteria for each recording were > 8 

respiration events by 5 sec and >80% of success rate as measured by the iox software. 
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Statistical analysis 

Data were analysed by GraphPad Prism5 software (San Diego, California, USA) and shown 

as the means ± S.E.M. “n” refers to the number of mice per group. Comparisons of statistical 

significance were assessed by unpaired student t-tests. Significant levels were set at *P < 

0.05, **P < 0.01, ***P < 0.001. 



19 
 

1. Lefebvre, S. et al. Identification and characterization of a spinal muscular 
atrophy-determining gene. Cell 80, 155-65 (1995). 

2. Liu, Q. & Dreyfuss, G. A novel nuclear structure containing the survival of 
motor neurons protein. Embo J 15, 3555-65 (1996). 

3. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex 
in the specificity of snRNP assembly. Science 298, 1775-9 (2002). 

4. Fallini, C., Bassell, G. J. & Rossoll, W. Spinal muscular atrophy: the role of 
SMN in axonal mRNA regulation. Brain Res 1462, 81-92 (2012). 

5. Feldkotter, M., Schwarzer, V., Wirth, R., Wienker, T. F. & Wirth, B. 
Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler 
PCR: fast and highly reliable carrier testing and prediction of severity of 
spinal muscular atrophy. Am J Hum Genet 70, 358-68 (2002). 

6. Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide 
in the SMN gene regulates splicing and is responsible for spinal muscular 
atrophy. Proc Natl Acad Sci U S A 96, 6307-11 (1999). 

7. Monani, U. R. et al. A single nucleotide difference that alters splicing 
patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. 
Hum Mol Genet 8, 1177-83 (1999). 

8. Lorson, C. L. et al. SMN oligomerization defect correlates with spinal 
muscular atrophy severity. Nat Genet 19, 63-6 (1998). 

9. Pellizzoni, L., Charroux, B. & Dreyfuss, G. SMN mutants of spinal muscular 
atrophy patients are defective in binding to snRNP proteins. Proc Natl 
Acad Sci U S A 96, 11167-72 (1999). 

10. Butchbach, M. E. Copy Number Variations in the Survival Motor Neuron 
Genes: Implications for Spinal Muscular Atrophy and Other 
Neurodegenerative Diseases. Front Mol Biosci 3, 7 (2016). 

11. Scholl, R., Marquis, J., Meyer, K. & Schumperli, D. Spinal muscular 
atrophy: position and functional importance of the branch site preceding 
SMN exon 7. RNA Biol 4, 34-7 (2007). 

12. Singh, N. N., Androphy, E. J. & Singh, R. N. In vivo selection reveals 
combinatorial controls that define a critical exon in the spinal muscular 
atrophy genes. Rna 10, 1291-305 (2004). 

13. Singh, N. N., Androphy, E. J. & Singh, R. N. An extended inhibitory context 
causes skipping of exon 7 of SMN2 in spinal muscular atrophy. Biochem 
Biophys Res Commun 315, 381-8 (2004). 

14. Singh, N. K., Singh, N. N., Androphy, E. J. & Singh, R. N. Splicing of a 
critical exon of human Survival Motor Neuron is regulated by a unique 
silencer element located in the last intron. Mol Cell Biol 26, 1333-46 
(2006). 



20 
 

15. Singh, N. N., Singh, R. N. & Androphy, E. J. Modulating role of RNA 
structure in alternative splicing of a critical exon in the spinal muscular 
atrophy genes. Nucleic Acids Res 35, 371-89 (2007). 

16. Hua, Y., Vickers, T. A., Okunola, H. L., Bennett, C. F. & Krainer, A. R. 
Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects 
SMN2 splicing in transgenic mice. Am J Hum Genet 82, 834-48 (2008). 

17. Hua, Y. et al. Antisense correction of SMN2 splicing in the CNS rescues 
necrosis in a type III SMA mouse model. Genes Dev 24, 1634-44 (2010). 

18. Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue 
of a severe spinal muscular atrophy mouse model. Nature 478, 123-6 
(2011). 

19. Porensky, P. N. et al. A single administration of morpholino antisense 
oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 21, 
1625-38 (2012). 

20. Zhou, H. et al. A novel morpholino oligomer targeting ISS-N1 improves 
rescue of severe spinal muscular atrophy transgenic mice. Hum Gene 
Ther 24, 331-42 (2013). 

21. Osman, E. Y. et al. Morpholino antisense oligonucleotides targeting 
intronic repressor Element1 improve phenotype in SMA mouse models. 
Hum Mol Genet 23, 4832-45 (2014). 

22. Renneberg, D., Bouliong, E., Reber, U., Schumperli, D. & Leumann, C. J. 
Antisense properties of tricyclo-DNA. Nucleic Acids Res 30, 2751-7 
(2002). 

23. Goyenvalle, A. et al. Functional correction in mouse models of muscular 
dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 21, 270-
5 (2015). 

24. Hsieh-Li, H. M. et al. A mouse model for spinal muscular atrophy. Nat 
Genet 24, 66-70 (2000). 

25. Marquis, J. et al. Spinal muscular atrophy: SMN2 pre-mRNA splicing 
corrected by a U7 snRNA derivative carrying a splicing enhancer 
sequence. Mol Ther 15, 1479-86 (2007). 

26. LoMauro, A. et al. Alterations of thoraco-abdominal volumes and 
asynchronies in patients with spinal muscle atrophy type III. Respir 
Physiol Neurobiol 197, 1-8 (2014). 

27. Chiriboga, C. A. et al. Results from a phase 1 study of nusinersen (ISIS-
SMN(Rx)) in children with spinal muscular atrophy. Neurology 86, 890-7 
(2016). 

28. Hache, M. et al. Intrathecal Injections in Children With Spinal Muscular 
Atrophy: Nusinersen Clinical Trial Experience. J Child Neurol 31, 899-906 
(2016). 



21 
 

29. Passini, M. A. et al. CNS-targeted gene therapy improves survival and 
motor function in a mouse model of spinal muscular atrophy. J Clin 
Invest 120, 1253-64 (2010). 

30. Meyer, K. et al. Rescue of a severe mouse model for spinal muscular 
atrophy by U7 snRNA-mediated splicing modulation. Hum Mol Genet 18, 
546-55 (2009). 

31. Araujo, A., Araujo, M. & Swoboda, K. J. Vascular perfusion abnormalities 
in infants with spinal muscular atrophy. J Pediatr 155, 292-4 (2009). 

32. Rudnik-Schoneborn, S. et al. Digital necroses and vascular thrombosis in 
severe spinal muscular atrophy. Muscle Nerve 42, 144-7 (2010). 

33. Somers, E., Stencel, Z., Wishart, T. M., Gillingwater, T. H. & Parson, S. H. 
Density, calibre and ramification of muscle capillaries are altered in a 
mouse model of severe spinal muscular atrophy. Neuromuscul Disord 22, 
435-42 (2012). 

34. Borisov, A. B., Huang, S. K. & Carlson, B. M. Remodeling of the vascular 
bed and progressive loss of capillaries in denervated skeletal muscle. 
Anat Rec 258, 292-304 (2000). 

35. Hua, Y. et al. Motor neuron cell-nonautonomous rescue of spinal 
muscular atrophy phenotypes in mild and severe transgenic mouse 
models. Genes Dev 29, 288-97 (2015). 

36. Martinez, T. L. et al. Survival motor neuron protein in motor neurons 
determines synaptic integrity in spinal muscular atrophy. J Neurosci 32, 
8703-15 (2012). 

37. Sahashi, K. et al. Pathological impact of SMN2 mis-splicing in adult SMA 
mice. EMBO Mol Med 5, 1586-601 (2013). 

38. Henrichsen, T. et al. Perfluorodecalin lavage of a longstanding lung 
atelectasis in a child with spinal muscle atrophy. Pediatr Pulmonol 47, 
415-9 (2012). 

39. Leistikow, E. A. et al. Migrating atelectasis in Werdnig-Hoffmann disease: 
pulmonary manifestations in two cases of spinal muscular atrophy type 
1. Pediatr Pulmonol 28, 149-53 (1999). 

40. Schreml, J. et al. Severe SMA mice show organ impairment that cannot 
be rescued by therapy with the HDACi JNJ-26481585. Eur J Hum Genet 
21, 643-52 (2012). 

41. Rudnik-Schoneborn, S. et al. Congenital heart disease is a feature of 
severe infantile spinal muscular atrophy. J Med Genet 45, 635-8 (2008). 

42. Hachiya, Y. et al. Autonomic dysfunction in cases of spinal muscular 
atrophy type 1 with long survival. Brain Dev 27, 574-8 (2005). 



22 
 

43. Hocquemiller, M., Giersch, L., Audrain, M., Parker, S. & Cartier, N. Adeno-
Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 
27, 478-96 (2016). 

44. Duque, S. et al. Intravenous administration of self-complementary AAV9 
enables transgene delivery to adult motor neurons. Mol Ther 17, 1187-
96 (2009). 

45. Foust, K. D. et al. Rescue of the spinal muscular atrophy phenotype in a 
mouse model by early postnatal delivery of SMN. Nat Biotechnol 28, 271-
4 (2010). 

46. Hammond, S. M. et al. Systemic peptide-mediated oligonucleotide 
therapy improves long-term survival in spinal muscular atrophy. Proc 
Natl Acad Sci U S A 113, 10962-7 (2016). 

47. Wagner, T. & Pfleiderer, W. Synthesis of 2 '-deoxyribonucleoside 5 '-
phosphoramidites: New building blocks for the inverse (5 '-3 ')-
oligonucleotide approach. Helvetica Chimica Acta 83, 2023-2035 (2000). 

48. Renneberg, D. & Leumann, C. J. Watson-Crick base-pairing properties of 
tricyclo-DNA. J Am Chem Soc 124, 5993-6002 (2002). 

 
 
 

 

 

 

 

 

 

 



23 
 

AUTHOR CONTRIBUTIONS 

V.R, G.G., and A.G. designed and performed the laboratory experiments. V.R. analysed the 

experiments. V.R., J.P., C.L., L.G., and A.G. wrote the manuscript.  V.R. and A.G. conceived 

the project, designed the experiments, supervised the entire study, and will serve as 

corresponding authors. 

 

ACKNOWLEDGEMENTS 

This work was supported by the Agence Nationale de la Recherche (Chair of Excellence 

HandiMedEx), the Association Monegasque contre les Myopathies, the Duchenne Parent 

Project France, and by the Institut National de la Santé et de la Recherche Médicale 

(INSERM). 

 

COMPETING FINANCIAL INTERESTS 

Christian Leumann and Luis Garcia are co-funders of Synthena, which produces tricyclo-

DNA oligomers 

 

 

 

 

 

 



24 
 

Figure 1: Evaluation of in vitro efficiency of tricyclo-DNA TCI7 

a) Detection of the inclusion of exon 7 of SMN2 mRNA by RT-PCR (primers on exons 6 and 

8) in patient SMA I fibroblasts. PCR products are visualized on 3% agarose gel (top) and 

quantified by imageJ (bottom). TCI7: fibroblasts treated with tcDNA AONs targeting the ISS-

N1, (SMAI) Untreated SMAI fibroblasts (GM03813 Coriell), (WT) healthy fibroblasts of 

mother (GM03814 Coriell). b) Detection of the SMN protein by Western blot in fibroblasts 

and normalisation with actin. Lane 1:  Untreated SMAI fibroblasts (GM03813 Coriell), Lane 

2: SMA fibroblasts treated with TCI7, Lane 3: healthy fibroblasts of mother (GM03814 

Coriell) Errors bars represent standard deviations. (*) p<0.05; (**) p<0.01. c) Detection of the 

SMN protein by immunostaining in untreated SMA fibroblasts (top) and SMA fibroblasts 

transfected with TCI7 (bottom). Cells were immunostained with the polyclonal antibody H-

SMN 195 (Santacruz). The red staining shows the expression of SMN protein in gems. Nuclei 

are labeled in blue (Dapi). Left panel: magnification x20; right panel: magnification x63. For 

magnification (x63), the apotome is used to see the gems in the nucleus. d) Counting of the 

gem number positive for SMN per nucleus (n=100 nuclei). The black bars correspond to 

untreated SMA type I, and grey to treated cells with TCI7. 

 

Figure 2: Evaluation of tricyclo-DNA TCI7 efficiency in SMA mice. 

Detection of the inclusion of exon 7 of SMN2 mRNA by RT-PCR in different tissues (a. 

Gastrocnemius, b. Diaphragm, c. Heart, d. Brain, e. Spinal cord) of SMA mice type III and 

quantification using Image J (bottom). (Un) untreated mice (n=3), (4wk) mice treated during 

4 weeks with 200 mg/kg/wk by subcutaneous injection and sacrificed 2 weeks after treatment 

(n=3), (12wk) mice treated during 12 weeks with 200 mg/kg/wk by subcutaneous injection 

and sacrificed 2 weeks after treatment (n=4).  
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Errors bars represent standard deviations. (*) p<0.05; (**) p<0.01, compared with saline 

controls. 

 

 

Figure 3: Quantitative evaluation of exon 7 inclusion after tricyclo-DNA TCI7 treatment 

in SMA mice. 

Detection of the inclusion of exon 7 of SMN2 mRNA by qPCR in heart and brain of SMA 

type III mice. The primers used for amplification are located on exon 6 and 7 and normalized 

with GAPDH. (Un) untreated mice, (4wk) mice treated during 4 weeks with 200 mg/kg/wk by 

subcutaneous injection of TCI7, (12wk) mice treated during 12 weeks with 200 mg/kg/wk by 

subcutaneous injection of TCI7; n=3 per group. 

 

Figure 4: Sustained effect of tricyclo-DNA TCI7 treatment in SMA mice.  

Detection of the inclusion of exon 7 of SMN2 mRNA by RT-PCR in different tissues 

(Gastrocnemius, Diaphragm, Heart, Brain, Spinal cord) of SMA mice type III and 

quantification using Image J to evaluate the long term effect of tcDNA treatment. 

Black bars: untreated mice, grey bars mice treated during 4 weeks with 200 mg/kg/wk by 

subcutaneous injection and sacrified 2 weeks after treatment (called 4wk/2wk), dark grey bars 

mice treated during 4 weeks with 200 mg/kg/wk by subcutaneous injection and sacrified 10 

weeks after treatment (called 4wk/10wk). n = 3 per group; errors bars represent standard 

deviations. (*) p<0.05; (**) p<0.01. 

 

Figure 5: Respiratory function evaluation in SMA mice after tricyclo-DNA TCI7 

treatment.  
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Respiratory function in SMA mice treated with 200 mg/kg of tcDNA for 12 weeks, compared 

to SMA control mice and WT mice (n = 4 per group).  Ti, Te, EIP, EEP, RT, f, penh are 

shown. Error bars are mean ± standard deviation. (*) p<0.05 compared with the saline 

controls. 

 

Figure 6: Phenotype rescue following tricyclo-DNA treatment in SMA mice. 

a)  Phenotypic rescue in type III SMA mice at 12 weeks of age after tcDNA treatment, 

compare to SMA control.  b) Toes and tails necrosis rescue in treated mice (right picture) 

compared to SMA control (left picture). c) Ears rescue in treated mice (right picture) compare 

to SMA control (left picture) d) Tails length of mice according to weeks. The darker grey 

curve corresponds to the size of the tails of type III SMA mice treated with TcI7 during 12 

weeks (n=4), the black curve is the size of the tails of type III SMA untreated mice (n=11) 

and the lighter grey one corresponds to the tails length of type III SMA mice treated with TcI7 

during 4 weeks only (n=3). 

 

Table 1:  Respiratory function evaluation in wild-type mice FVB and SMA mice type III.  

 

  

Ti 

(msec) 

Te 

(msec) 

PIF 

(ml/s) 

PEF 

(ml/s)

TV 

(ml) 

EV 

(ml) 

RT 

(msec)

MV 

(ml) 

f 

(bpm)

EIP 

(msec) 

EEP 

(msec) 
Penh 

FVB 
mean 129,6 180,8 2,9 1,9 0,2 0,2 109,5 44,4 205,5 1,2 19,9 0,444 

sem 7,18 50,45 0,30 0,33 0,03 0,03 37,71 8,68 20,47 0,17 4,37 0,061 

SMA 
mean 130,1 242,8 2,4 1,3 0,2 0,2 157,5 33,3 179,0 1,2 23,4 0,353 

sem 8,81 29,20 0,35 0,23 0,01 0,01 22,48 5,23 15,41 0,08 2,40 0,026 

p value 0,5130 0,0472 0,4490 0,0747 0,1816 0,2039 0,0423 0,1400 0,1136 0,8545 0,1899 0,0097

 
= + = = = = + - - = + - 
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