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Challenges to link climate change data provision and 31 

user needs - perspective from the COST-Action VALUE 32 

 33 

Abstract 34 

The application of climate change impact assessment (CCIA) studies in general and especially 35 

the linkages between different actor groups typically involved is often not trivial and subject to 36 

many limitations and uncertainties. Disciplinary issues like competing downscaling approaches, 37 

imperfect climate and impact model data and uncertainty propagation as well as the selection 38 

of appropriate data sets are only one part of the story. Interdisciplinary and transdisciplinary 39 

challenges add to these, as climate data and impact model data provision and their usage 40 

require at least a minimum of common work and shared understanding among actors. Here, we 41 

provide the VALUE perspective on current disciplinary challenges and limitations at the 42 

downscaling interface and elaborate transdisciplinary issues that hamper a proper working 43 

downscaling interface. The perspective is partly based on a survey on user needs of downscaled 44 

data that was distributed among 62 participants across Europe involving 22 sectors. Partly, it is 45 

based on the exchanges and experiences gained during the lifetime of VALUE that brought 46 

together different actor groups of different disciplines together: climate modelers, impact 47 

modelers, statisticians, and stakeholders. We outline a sketch that summarizes the linkages 48 

between the main identified actor groups: climate model data providers, impact modelers and 49 

societal users. We summarize and structure current actors groups, needs, and issues. We argue 50 

that this structuring enables involved actors to tackle these issues in a more organised and hence 51 

effective way. A key solution to several difficulties at the downscaling interface is to our 52 

understanding the development of guidelines based on benchmark tests like the VALUE 53 
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framework. In addition, fostering communication between actor groups – and financing this 54 

communication – is essential to obtain the best possible CCIA as a prerequisite for robust 55 

adaptation. 56 

 57 

Keywords: downscaling, user needs, climate services, climate change, VALUE 58 

 59 

1. Introduction 60 

The Earth’s climate is not stable over time. Natural influences have changed the Earth’s climate 61 

regularly in the past. The growing anthropogenic changes of atmospheric greenhouse gas and 62 

aerosol concentrations and man-made land use changes have modified the climate over the last 63 

decades and will likely continue to do so over the coming century (Intergovernmental Panel on 64 

Climate Change 2014). In fact, even in the presence of drastic mitigation measures, the inertia 65 

of the climate system inevitably leads to further warming over the next decades, and the Earth’s 66 

temperature is expected to increase at least by one-and-a-half degrees, compared to pre-67 

industrial conditions, provided that the enfolding UNFCCC COP21 agreement is implemented. 68 

Hence, robust Climate Change Impact Assessment studies (CCIA) are - among others - an 69 

important cornerstone to assess the vulnerability of a given system (i.e. impact on natural 70 

systems, society and economy) and to develop adaptation strategies in a reliable manner. Even 71 

more, the comprehension and visualization of possible impacts of climate change can enforce 72 

the willingness for mitigation and adaption in everyday-business. Today’s central importance of 73 

CCIA finds its expression not only by the vast number of research projects that have been 74 

accomplished in this field, but also in the demand of the society, authorities and institutions, as 75 
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well as the private sector (e.g., (re-)insurance companies) to receive answers to climate change 76 

related questions (Field et al. 2014).  77 

Despite its relevance and wide usage, the application of CCIA in general and especially the 78 

linkages between different actor groups typically involved is often not-trivial and subject to 79 

many limitations and uncertainties. As most of the users are experts on their own topic, but not 80 

necessarily on climate or climate model data, they are often unsure about the data origin, data 81 

access, data appropriateness, data reliability and quality, correct usage of data, and what kind 82 

of information can be drawn from them. We here refer to climate data users as the community 83 

of researchers, administrations, environmental consultants, experts from private companies like 84 

insurance, policy advisors or NGOs, in line with the definition of the IS-ENES initiative (Swart and 85 

Avelar 2011). In contrast, climate data providers generate and provide climate data or derive 86 

information out of it.  87 

CCIA typically rely on projections from global climate models, i.e., coupled ocean - atmosphere 88 

general circulation models that are further downscaled by dynamical or statistical downscaling 89 

models (Maraun et al. 2010; Rummukainen 2010) to provide local-to-regional information for 90 

driving impact models or to derive local scale climate information. Hence, the quality of the 91 

climate data and its local-to-regional derivate becomes critical. Climate data providers operate 92 

from a position of trust. They need to consider the consequences of their actions and provided 93 

information. If not, poor decision-making and maladaptation may occur with potentially large 94 

costs at a later stage. Hewitson et al. (2014) argue that any type of climate model output to be 95 

used in a decision making context needs to be plausible, defensible and actionable. McNie 96 

(2007) defined a theoretical basis for “useful data”, and proposed following Cash and Clark 97 

(2002) that data should be salient, credible and legitimate.  98 



Roessler et al. Challenges to link climate change data provision and user needs  

5 

 

 99 

Given these high expectations, how can one guarantee to provide the best quality climate model 100 

data available this is still an open issue. The challenge lies in the multitude of aspects to conside 101 

: data availability and quality, the quality of the climate models, the kind of data user request, 102 

and the downscaling method (if applied). With respect to downscaling, numerous techniques 103 

are known today and their skills have been evaluated in several case studies as well as 104 

intercomparison projects (Goodess 2005; Christensen and Christensen 2007; Benestad et al. 105 

2008; van der Linden and Mitchell 2009; Maraun et al. 2010; Nikulin et al. 2015). The EU COST 106 

Action VALUE has developed a comprehensive framework to systematically intercompare 107 

different downscaling approaches for climate change applications (Maraun et al. 2015). The first 108 

results of this most comprehensive benchmark test are published in this journal issue.  109 

From the perspective of a climate data user, similar challenges exist as for the providers: one 110 

needs to select the most appropriate data from a variety of possibilities to best suit a given 111 

project. Over recent years, a variety of projects and portals have put effort in providing data set 112 

to users, e.g. ENSEMBLES, CORDEX, CMIP5, ClipC, IS-ENES, climate4impact, to name a few. In 113 

addition, numerous smaller, national or institutional data set exist (see Table 1), not speaking 114 

about further individual data sets. The archived data typically stem from several climate model 115 

simulations, be it Regional Climate Model (RCM) or Global Climate Model (GCM) data, cover the 116 

effects of different emission scenarios and provide a wide range of applicable atmospheric 117 

variables. This easy accessibility is generally very welcomed and commendable for all different 118 

kinds of disciplines. However, from a user perspective, it prompts the some practical questions 119 

on data selection: which emission scenarios to choose, how many ensemble members to apply, 120 

which climate model represents my location of interest best, and which climate model variables 121 
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can be judged trustworthy. In the view of Barsugli et al. (2013), the “practitioner’s dilemma” is 122 

no longer the lack of downscaled projections; it is how to choose an appropriate data set, assess 123 

its credibility, and use it wisely. 124 

 However, disciplinary issues as discussed above are only one part of the story. Interdisciplinary 125 

and transdisciplinary challenges add to these, as climate data provision and its usage require at 126 

least a minimum of collaborative work. With “interdisciplinary” we mean the exchange of 127 

knowledge and methods between different scientific disciplines for the goal of new emerging 128 

scientific knowledge. By “transdisciplinary”, we understand in line with Bergmann et al. (2012) 129 

the “research process” that involves “societal actors with practical knowledge” and “problem-130 

appropriate scientific disciplines” to answer “real-world problems scientifically”. A crucial part 131 

in transdisciplinary approaches is the definition of a common framework, a common language, 132 

and mutual learning.  133 

The downscaling interface on the whole is thus subject to challenges of disciplinary, 134 

interdisciplinary and transdisciplinary matter. In Europe, some of these challenges have been 135 

recognized and tackled within the EU COST Action VALUE by bringing together the providers and 136 

users of climate information and thereby bridging the gaps between scientists, stakeholders, 137 

and statisticians. The main goal of VALUE is to provide a web-based validation portal to enable 138 

an objective selection of downscaling methods, and to guide users to those localized data that 139 

best fit their CCIA. To develop guidance, the needs of the users were first investigated. This 140 

included an European-wide user survey accompanied by a review of already existing studies.  141 

 142 

The current paper is not meant as a review paper, but provides the perspective and displays the 143 

experiences of the VALUE network about user needs and challenges currently present at the 144 
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downscaling interface. A basic assumption in this paper is that the downscaling interface is 145 

currently working improperly. Although several positive CCIA examples can be found in the 146 

literature (Snäll et al. 2009; Etzelmüller et al. 2011; Addor et al. 2014; Hansen et al. 2014), they 147 

are not common practice. The consequences can be found in many projects that - at least in our 148 

opinion appraisal - either use falsely downscaled data, apply suboptimal methods, or draw 149 

wrong conclusion from the data. The aim here is therefore to elaborate why the downscaling 150 

interface works imperfectly and to suggest possible ways to improve it. First, we define the actor 151 

groups involved at the climate data provision-usage interface and suggest a structure of this 152 

interface. Thereafter, we concentrate on the user needs as found by our survey and by a 153 

literature review of user needs in Europe. These needs are confronted with current possibilities 154 

and limitations of climate data providers resulting in a conclusion of current scientific gaps. We 155 

then add to these scientific challenges and limitations several non-scientific issues that hinder a 156 

better linkage at the downscaling interface. Doing so, we summarize possible ways to tackle the 157 

current gaps and conclude. 158 

 159 

2. Actor Groups at the Downscaling Interface 160 

A first essential step to overcome limitations at the downscaling interface is an inventory of 161 

actors, their functions and their background. This structuring helps to organize and assign 162 

current challenges and to tackle these challenges in a structured way. In the following, we 163 

present a concept of how the members of the VALUE project experience and perceive the 164 

downscaling interface. Three different actor groups – being climate data providers, impact 165 

modellers and societal users are interacting at the climate data – user interface. To illustrate the 166 

disciplinary, interdisciplinary and transdisciplinary interactions, we provide a sketch of the 167 
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constellation of these actors and their interactions (Figure 1). We refer to “climatologists” 168 

(purple colour) as scientist who develop and apply climate models (global or regional) or post-169 

process and analyse their results from a meteorological or climatological perspective. These 170 

groups make up what we call the “data providers.” “Impact modellers” (green colour) are the 171 

vast group of researchers, consultants, and other modellers that use the climate data in their 172 

specific model to derive climate change impact scenarios in their field of experience. They are 173 

mainly interested in the usage of the climate data. “Societal users” (red colour) are users that 174 

articulate their specific needs and make decisions, which are derived from everyday experiences 175 

and local expert knowledge. The needs can be identified together with climate and related 176 

impact information from both other actor groups. This general grouping needs to be specified 177 

twofold: First, all three actor groups can recruit from different sectors (stripes, Figure 1), be it 178 

research, administration, the private sector or consultancies, and hence each actor group has its 179 

own characteristics of involved people. The exception is the lack of research sector by definition 180 

in the actor group of societal users. Second, each actor group is subdivided into 1st and 2nd 181 

order actors, with the 1st order actors being directly involved at the linkage and the 2nd order 182 

actors being the framing community of each actor group.  183 

 184 
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 185 

Figure 1: Constellation of actors at the downscaling interface, illustrating the transdisciplinary setting, the different 186 

sectors actors may recruit from, as well as the main perspective the actors have on the data/information. 187 

 188 

1st order actors refer to the group “intermediaries” in other projects like ClipC (Groot et al. 2014) 189 

. We refrain from defining a fourth group “intermediaries” – as in ClipC – in our 190 
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conceptualization, as we value the “origin” of an actor higher than their function at the 191 

downscaling interface. An example to explain this weighting is the following: a climatologist will 192 

still perceive problems, advice and act with a perception of a climatologist, and perception of 193 

challenges at the downscaling interface differ among all actor groups. 2nd order actors are 194 

climate modellers, impact modellers or societal users that either generate the climate data to 195 

be downscaled, make use of other impact results, or receive information from societal users 196 

without any direct contact to actors from the other groups. These framing actors are important 197 

as they also influence the demands and needs articulated from the 1st order actors (societal 198 

users and impact modellers) or have a community based controlling function. In our 199 

constellation of actors, 2nd order actors are not interacting with actors from the other two 200 

segments but communicate solely via the 1st order actors. As not only different scientific 201 

disciplines but also different non-scientific sectors are involved, the downscaling interface is 202 

clearly a transdisciplinary setting.  203 

To make this theoretical outline more palpable, we give an example concerning a real-case 204 

adaptation measure in Switzerland: With the expected future increase in dry periods in summer 205 

over Switzerland, the water level of the river Rhine in Basel, Switzerland, may fall below a critical 206 

threshold, so that the shipping capacity may be endangered. To circumvent this climate-related 207 

risk, a deepening of the river bed is discussed as one potential measure. This however, comes at 208 

the expense of having potential negative implications on the ecosystem. To perform a robust 209 

analysis of potential, quantified impacts that justifies and enables this adaptation measure, 210 

many actors need to get involved: 211 
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(a) 1st order climatologist: this may be a scientist who applies a certain downscaling method 212 

(e.g. a bias-correction method) to the output of a multi-model ensemble (e.g. from CORDEX) 213 

resulting in daily transient scenario data for several locations in the Rhine catchment.  214 

(b) 1st order impact modeller: a hydrologist who uses these data as input for their specific 215 

hydrological model and analyses the impacts on runoff low flows in Basel.  216 

(c) 1st order user: a representative of the water department of the local authorities. They inform 217 

the impact modeller what the critical levels of water flow are and what this means in terms of 218 

transport capacity. Furthermore, they bring in the knowledge of what negative impacts are to 219 

be expected to aquatic ecology from an intervention of the river bed.  220 

(d) 2nd order climatologist: e.g. someone from the climate community who is predominantly 221 

interested in the method on how to generate local scenario data. They interact with the 1st 222 

order climatologist to suggest a particular improvement of their downscaling method and the 223 

selection of specific climate model ensembles. 224 

(e) 2nd order impact modellers, e.g. someone from the hydrological model community, 225 

discussing, advising and controlling the 1st order modeller in terms of model type, model set up, 226 

and parameter estimation. It might also be someone who performs similar analyses but for other 227 

catchments.  228 

(f) 2nd order user: e.g. someone from the local and regional authority, who makes decisions on 229 

the measures to implement. The decision is based on the advisory of 1st order user. A 2nd order 230 

user might also be someone from the water division at the federal level who is concerned with 231 

the same question but at different locations. They call for a comprehensive risk analysis taking 232 

into account all hotspots of reduced shipping capacity that may be in danger over Switzerland. 233 
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The above example clearly illustrates the depiction shown in Figure 1 as follows: There is an 234 

inner circle of actors with scientific and non-scientific backgrounds that is actively shaping the 235 

downscaling interface. E.g., they decide which data, models, methods and thresholds to apply 236 

today and in which direction science do research. Direct interactions among the 2nd order actors 237 

are missing. They influence however the process via influencing the 1st order actors in a 238 

transdisciplinary setting.  239 

  240 

3. What do users of climate data need? Results from surveys 241 

Based on the idealized conceptualization above, we question whether there are specific needs 242 

of each user group and if and how climate providers can meet these expectations. For sure, the 243 

needs differ not only between the users groups, but also between the different sectors the users 244 

work in. In addition, the user needs are likely related to their specific knowledge with respect to 245 

the processing or handling of downscaled climate data. Over and above this, our experiences 246 

are completely in line with statements by colleagues that there is not the one user, but every 247 

specific user has their own needs that drives the foresight itself (Cuhls 2003). Still, we argue that 248 

some more general needs can be extracted from literature, experiences, or surveys. Even more, 249 

an overview of general needs is essential to give data providers some guidance and to elucidate 250 

how user needs and climatological offers match.  251 

 252 

3.1 The survey of the VALUE initiative 253 

Specific user needs have been gathered by several surveys in various countries, e.g. Austria 254 

(Formayer et al. 2011), Finland (Haanpää et al. 2009), and recently Switzerland (MeteoSwiss 255 
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2016). Furthermore, at least two European projects compiled an overview of user needs, 256 

extracted from other project reports: IS-ENES project (Swart and Avelar 2011), the ClipC 257 

initiative (Groot et al. 2014), and EUPORIAS project (Hewitt et al. 2013). Within VALUE, we also 258 

conducted a survey on user expectations on downscaling data in general and their needs in 259 

specific. We distributed a questionnaire among the VALUE participants to approach experts 260 

from their country or network, both from science and the non-science sector. 62 experts from 261 

all parts of Europe and different CCIA sectors responded. In total 26 questions were asked about 262 

user’s key variables, their temporal and spatial structure, accuracy needed, data structure (time 263 

series vs. probability density functions), the type of intended application as well as the 264 

background of the user. Here, we present the main findings of this survey and set them into 265 

context of the many different surveys conducted in Europe. Most participants (39) called 266 

themselves “impact modellers” (72% of all answers; please note that 8 participants skipped the 267 

question), 5 decision makers (9.3%), 5 consultants (9.3%) and 5 found themselves to belong to 268 

another group (9.3%), with most participants from the hydrology sector (60%). This clearly 269 

shows a bias in the participant structure in terms of sector (water), and in terms of working 270 

environment (most participants are from academia). All the responses shown below were hence 271 

controlled by this strong bias, by differentiating the results between the answers of all 272 

participants and the non-hydrologists and impact modellers, respectively. Table 2 summarizes 273 

some results of the VALUE questionnaire based on all 62 responses and those results obtained 274 

from the underrepresented group (n = 12, blue values).  275 

The two key variables for all users were unsurprisingly precipitation and temperature, followed 276 

by wind, radiation, and humidity. This ranking is irrespective of the kind of user and probably 277 

might refer back to the usage of energy-balance equations, or their potential to cause 278 
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catastrophic extremes like heat waves, floods and droughts, and wind gusts. Most impact 279 

modellers are in favour of daily and hourly data at the point scale and require high spatial 280 

resolution. All other users agree in preferring daily data but are also interested in aggregated 281 

values over a region. The accuracy needed for all key variables fluctuates depended on the 282 

respective parameter, but +/– 10–20% are widely accepted. The high accuracy required 283 

constitutes a challenge to current climate model data and downscaling techniques. We also 284 

asked for the lowest accuracy the user can still work with and found only a very slight increase 285 

in tolerance. Interestingly, a significant part of users was sure of what kind of data they need, 286 

but were unsure about their temporal, spatial resolution or accuracy.  287 

Generally speaking, the survey showed that impact modellers basically demand climate model 288 

data that has the same characteristics as observations. This make sense as they use observed 289 

records to calibrate their models and the projected climate data are therefore requested to be 290 

as similar to observed climate data as possible: i.e., time series as absolute values with “correct” 291 

representation of mean values, intensity, frequency, day-to-day variability and extremes. In 292 

terms of the data associated uncertainties and uncertainty bands, users (decision makers even 293 

more than impact modellers) believe that they conceptually understand what uncertainties are, 294 

but handling of uncertainties is diverse or partly unclear. Groot et al. (2004) put this self-295 

appraisal into a different light by showing that the concept of uncertainty is different for the 296 

various actor groups and, partly, even more a phrase than a concept.  297 

The results of the VALUE survey in principle confirms previous studies in terms of key variables 298 

and their resolution. However, our survey misses the importance of climate indices for many 299 

users, as e.g. highlighted by the synthesis report of the ClipC project (Groot et al. 2014). Swart 300 

and Avelar (2011) even find that the first product for every user are climate indices, based on 301 
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which additional data can be chosen. This deviation of findings may originate in the fact that the 302 

cited surveys are based on merely societal user responses, whereas our main responses come 303 

from impact modellers that have a long history in working with meteorological input time-series.  304 

 305 

3.2 Overview of other surveys conducted 306 

As part of VALUE a review of national surveys or experiences has been compiled and personal 307 

experiences from several European countries were gathered (Benestad et al. 2014). This 308 

comprehensive overview basically underpins the findings of our survey, but also adds some 309 

further aspects: besides climate data and climate indices, derivatives of climate data such as 310 

snow depth or snow water equivalent have been requested. In addition, numerous interviewees 311 

demanded information about flood zones of a community under climate change, land falling 312 

tropical storms, hail storms or 10min rainfall intensity extremes. These very specific demands 313 

nicely illustrate a problem in user surveys: An impression on the ICCS2 conference (Pingel 2012) 314 

was that user surveys are considered more as a wish-list than a list of absolutely necessary 315 

information. It furthermore shows some unawareness of relevant or available data that in turn 316 

might lead climate data providers to the impression that users “don’t know what they want, but 317 

want everything” (quoting: D. Jacob). External surveys also highlight the importance of 318 

consistency in space, time, and inter-variable dependencies – a claim that refers back to the 319 

statement above that data should be as close to the observation data as possible. 320 

Our review not only revealed which data or information is needed, but also how these should 321 

be presented or disseminated. Again, we found strong differences with respect to the user 322 

groups: to give a broad overview of the heterogeneity, societal users like decision makers and 323 

program initiators may need regional climate projection information on a single page (see ICCS2 324 
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impression, Pingel, 2012), aggregated in an understandable way, e.g. graphics or maps. In Figure 325 

1 we thus distinguish between data relevant for impact modellers and (data derived) 326 

information crucial for the societal users. Déandreis et al. (2014) furthermore highlight that 327 

climate information might not only be provided via data files, be it raw data or indices, but also 328 

via statistics, plots, and maps. Natural science impact modellers in turn need the “raw climate 329 

data” (cp. Figure 1) in a way they are familiar with (time-series of station data or regional data, 330 

IMPACT2C (http://impact2c.hzg.de/). By “raw climate data” they mostly understand climate 331 

model data as close to the raw data as possible, but bias corrected and downscaled to their 332 

region of interest. Users from the economic research or users from the private sector typically 333 

need information about changes in the impacts (heat waves, floods, wind damages, etc.), and 334 

are often satisfied with (regional) changes in the occurrence probability of the impacts - either 335 

from the climatological community or from the impact modelling community. 336 

 337 

4. Challenges at the Downscaling Interface 338 

4.1 Limitations in Climate Model Data Provision 339 

The large list of requested variables can be summarized in the general need to obtain future 340 

weather data in consistency with climate model projections. With future weather data we mean 341 

climate model data, simulated under assumed future forcing conditions, at very high spatio-342 

temporal resolution (ideally as gridded data) with the full set of weather-relevant atmospheric 343 

variables. These data are physically consistent in time, space and between variables, contain the 344 

relevant uncertainties from climate models, contain extremes not observed so far and contain 345 

different evolutions over time. The data should come in a format, so that it is “application-346 
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ready”. How far are we to meet this demand from the perspective of a climate data provider? A 347 

number of limitations and challenges have to be considered in this context: 348 

First, one needs to be aware that climate models are, fundamentally, a simplification of nature 349 

and therefore, by definition, cannot perfectly reproduce all aspects of the climate system 350 

(Räisänen 2007; Randall et al. 2007). Limited technical resources define a maximum complexity 351 

of the models in use. This concerns the model’s resolution in space and time and hence the 352 

number of processes that are explicitly resolved. Atmospheric processes that are not explicitly 353 

resolved need to be parameterized (e.g. cloud formation, radiation, aerosol interactions). Some 354 

of the processes, such as climate change impacts on vegetation distribution or chemical 355 

interactions, are even completely neglected. Finally, even though certain processes might be 356 

simulated by the climate models, they might be prone to substantial biases (Flato et al. 2013; 357 

Wang et al. 2014). Errors in global climate models are in general inherited by regional climate 358 

models (Hall 2014). Furthermore, the nesting of RCMs within GCMs may involve using different 359 

ways to parameterise sub-grid processes at the RCM and the GCM levels, which may give rise to 360 

physical inconsistencies. Furthermore, RCMs often produce a different precipitation climate 361 

(often due to more detailed topography) which implies that the surface evaporation, energy and 362 

mass flows, and condensation aloft differ between the RCM and the GCM, and may result in 363 

different fluxes of longwave radiation leaving the top of the atmosphere for the two models. 364 

These biases are to a large degree related to the coarse resolution of the climate models. Current 365 

generation GCMs from CMIP5 come at a horizontal resolution of 100–300 km, which is too 366 

coarse for many applications, in particular over complex terrain. These models generally provide 367 

a good representation of many large-scale climate phenomena and their response to climate 368 

change, but often fail to represent regional climate characteristics and changes thereof (Zubler 369 
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et al. 2015). For example, while the knowledge about the thermodynamic response to 370 

greenhouse gas forcing is robust, the dynamical response (e.g. planetary waves, polar jet 371 

streams, and mid-latitude storm tracks) is still not well constrained, giving rise to substantial 372 

uncertainty of the regional climate projections (Woollings 2010; Shepherd 2014). Furthermore, 373 

the greenhouse effect and the hydrological cycle are connected through common aspects such 374 

as atmospheric humidity and clouds (Benestad 2016), and the latter may be more difficult to 375 

represent in a GCM. 376 

To better capture regional climate features, regional climate models (RCMs) at a higher spatial 377 

resolution are increasingly used as a downscaling tool (Giorgi and Bates 1989; Christensen and 378 

Christensen 2007; van der Linden and Mitchell 2009; Rummukainen 2010) . RCMs, such as those 379 

from the CORDEX initiative (Giorgi et al. 2009), currently provide a horizontal resolution of about 380 

12.5 km (0.11°). This kind of simulations add value to LBCs (lateral boundary conditions) in 381 

various situations (Feser et al. 2011; Di Luca et al. 2015; Prein et al. 2015) although not for all 382 

regions (Di Luca et al. 2013) or at all time scales (added value is diluted when temporal averages 383 

are performed; (Kotlarski et al. 2014)). Yet, errors or limitations from the driving LBCs are 384 

inherited (Laprise et al. 2008; Hall 2014). Moreover, the resolution is still too coarse to explicitly 385 

resolve a number of important processes, such as convection and local thermal circulations. The 386 

misrepresentation of convection in RCMs has been suggested to be a major factor for the 387 

underestimation of high-intensity precipitation events (Frei et al. 2006; Boberg et al. 2009; Prein 388 

et al. 2015) and the failure in correctly reproducing the diurnal cycle of precipitation and other 389 

variables (Brockhaus et al. 2008). Even more important, there is evidence that models which 390 

parameterise deep convection may substantially misrepresent the response of summertime 391 

convective precipitation extremes to global warming (Kendon et al. 2014; Ban et al. 2015; 392 
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Meredith et al. 2015). Given these serious limitations on the sub-daily scale, hourly data (let 393 

alone shorter granularity) can most often not be delivered to users with scientific integrity. 394 

Higher resolution convection permitting simulations are required to correctly represent sub-395 

daily convective precipitation extremes in models (Kendon et al. 2014; Ban et al. 2015). 396 

However, this is still a field of research that has only recently being initiated, due to large 397 

computational costs (Prein et al. 2015). Another source of RCM bias, besides the spatio-temporal 398 

resolution, is related to the vegetation prescription. State-of-the-art RCMs are usually run with 399 

static vegetation, where land use changes are not considered. Yet, Noblet-Ducoudré et al. (2012) 400 

demonstrated that regional impacts from land use changes can be at least as important as 401 

greenhouse gas forcings although biophysical feedbacks on regional climate are still uncertain 402 

in magnitude and sign. Multi-model simulations of land-use changes are still in their infancy 403 

although robust information is needed to aid land management decisions. 404 

To circumvent biases and resolve the scale discrepancy between coarse resolved climate model 405 

output and the local scale, statistical downscaling methods come into play. These methods 406 

establish statistical links between large-scale and observed local-scale weather (Benestad et al. 407 

2008; Maraun et al. 2010; Takayabu et al. 2016). Over recent years a vast number of different 408 

statistical downscaling methods have been put forward, each with its own capabilities and 409 

limitations regarding different aspects of local daily data: e.g. representation of the multi-variate 410 

structure, temporal structure, spatial consistency, variability and extremes.  411 

A cornerstone for the future development of improved climate models and statistical 412 

downscaling methods – and hence downscaled data that better match the needs from the user 413 

community – is the availability of high-quality observations. Observations are essential to 414 

validate and calibrate dynamical models and indispensable to statistically downscale climate 415 



Roessler et al. Challenges to link climate change data provision and user needs  

20 

 

model data. Ideally, observations reach as far back in time as possible, but at least 30 years must 416 

be covered to build reliable statistics thereof. Although extensive meteorological observational 417 

datasets are available in Europe today (ECA&D, EOBS), some regions still lack appropriate 418 

observational data sets that give rise to uncertainty. Often, the station network is too sparse to 419 

capture the high spatial local variability and the data are not homogenized accounting for station 420 

re-locations over the time-span of the measurements. In some cases, high-quality data are 421 

available, but the access to the data is either strongly restricted or it involves very high costs. 422 

Especially for private companies or consultancies the costs are high and, hence, they even 423 

obscure the use of the data. The emergence of high resolution free observational climate 424 

databases also contribute to confound the users since very little quality assessment has been 425 

performed and for some areas they are completely inaccurate (Bedia et al. 2013). 426 

The access to freely available climate data is often not an issue with climate model data. 427 

Consortiums like PRUDENCE, ENSEMBLES and currently CORDEX have provided some extensive 428 

data sets that are also available for commercial use. However, to provide local climate 429 

information based on these multi-model initiatives also require observations to often either 430 

bias-correct the model data or to establish the statistical downscaling link. An open data policy 431 

for observational climate data sets would strongly foster this development (e.g. MET Norway). 432 

It is of hope that the current international activities with the establishment of global, regional 433 

and national climate service centres and data-webportals (e.g. ClipC or Copernicus Climate 434 

Change Service) recognize this important need and provides ways to tackle it.  435 

One challenge to bridge the gap between users and providers in terms of climate data provision 436 

are the different perspectives of the two groups. Climate data providers have the desire to 437 

provide only data that can be disseminated on a sound scientific fundament, while impact 438 
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modellers have the desire to obtain as much data/information as possible to drive their models. 439 

Therefore, the two groups need to discuss, even if it is with less confidence, which kind of data 440 

can be provided by the data providers to help the impact modellers along. On the other hand, it 441 

should be discussed what kind of data might be not perfect but still better than nothing for the 442 

impact modellers. In the end, there is a trade-off between providing data that is requested, even 443 

though it might not have the highest reliability, and not providing it and let the impact modellers 444 

fend for themselves (and perhaps produce a data set themselves that is even less sophisticated 445 

than what we could provide). This line has to be negotiated continuously between the two actor 446 

groups, because as research develops the line might shift. The limitations described in this 447 

section clearly indicate that the general users wish for a future weather is far from being 448 

realisable. This in turn strengthen the need for truly tailored regional climate data products that 449 

help to achieve at least some aspects of the user needs. At the same time, climate model data 450 

need not to get overloaded by users expectations, as in practice only a limited amount of 451 

processes, variables and aspects will be relevant in a specific context (Maraun et al. 2015) that 452 

can be distilled case wise.  453 

 454 

4.2 Non-scientific issues that cause improper downscaling 455 

Besides scientific issues, a number of non-scientific aspects hamper the downscaling interface 456 

to work properly. These are not climate data or downscaling methodology specific, but are 457 

issues common in inter- and transdisciplinary projects, such as different concepts and 458 

perspectives on data, different background knowledge, and different use of languages (e.g. 459 

Eppler 2007; Strasser et al. 2014). In our view, the following three issues matter most at the 460 
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downscaling interface: (a) knowledge based issues, (b) communication related issues, (c) 461 

structural issues. In the following, we elaborate each of the issues and suggest some possible 462 

ways how to tackle them: 463 

 464 

A – Knowledge Based Issues 465 

Issues based on divergent knowledge of actors are most obvious, most relevant and yet the 466 

hardest to solve. Trivially, if all actors would have the same common knowledge, many problems 467 

at the downscaling interface would not occur. Mutual learning is hence found to be an essential 468 

part in transdisciplinary studies in general (Pohl and Hirsch Hadorn 2008; Mobjörk 2010), but 469 

also in joint efforts of CCIAs and hence at the downscaling interface (e.g. Strasser et al. 2014). 470 

Here, we do not refer to the knowledge of actors, but more specifically to the knowledge 471 

relevant to exchange data and information at the downscaling interface (see Figure 1). However, 472 

different aspects should be taken into account for any use of modelled regional climate change 473 

data. These aspects are to our experience not always as present to impact modellers and societal 474 

users as they should be: 475 

(1) Climate models are simplifications of real climate and suffer from substantial errors, 476 

either due to an inadequate model structure (physical processes might be missing or 477 

mis-represented) or due to unconstrained model parameters. These errors result in 478 

considerable model uncertainties from large (e.g., the representation of heatwaves in 479 

GCMs) to local scales (e.g., extreme precipitation in a downscaling method). 480 

(2) Internal climate variability affects the estimation of biases and the projection of climate 481 

change far into the 21st century, in particular at regional scales. 482 
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(3) The difference between the real climate and the modelled climate (a model is not the 483 

real climate and can only produce the aspects / physics of the climate that are included 484 

into the model) and the uncertainties and limitations arising when applied on a local or 485 

regional scale model.  486 

(4) The scale discrepancy between point data and area-averaged gridded data. 487 

(5) The missing synchrony between observed data and present simulations with free running 488 

climate models. 489 

(6)  The problem to handle an ensemble – of several equally probable times series – instead 490 

of a single time series 491 

An increased user knowledge of these aspects might help to overcome limitations at the 492 

downscaling interface, as it results in a more targeted exchange of information about what is 493 

needed from the user, and raise understanding of what kind of data and information can and 494 

cannot be provided by downscaling methods. In turn, the above list displays some obstacles a 495 

user faces today and highlights the need for guidance along with the data or information 496 

provided.  497 

On the other hand, climate data providers often lack knowledge on how the climate data is 498 

incorporated into impact models (e.g. undercatch correction or the spatial extrapolation of 499 

station data), what critical thresholds are and how climate information is applied in daily 500 

business. This knowledge might help climate modellers to understand the data requests better 501 

(including the need for a certain accuracy). It might also help solving some problems: if climate 502 

data providers knew more about the intended use of the data, they might be able to come up 503 

with some supportive statements about the data or with another kind of data (i.e. probability 504 
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information) that might improve the usability of the climate data in impact studies or societal 505 

use. 506 

A part of these issues might be solved by expecting all actors involved to obtain some elementary 507 

knowledge about the system of interest. This fact again calls for mutual learning as an essential 508 

part of a joint downscaling and climate change assessment. However, since all individuals 509 

participating in this exchange are experts in their own field, we cannot expect everyone to 510 

become an expert on everything. But, being humble and aware of one’s own limited 511 

competence, and involving and accepting one other's expertise - although it might be difficult at 512 

first - helps to gain a common understanding and can lead to new knowledge. Within VALUE, we 513 

also made this experience.  514 

Apart from lacking knowledge on how to improve CCIAs, a different side of the same medal is 515 

the unawareness of climate change effect at all. For instance, some research communities 516 

consider climate change as not relevant or of minor importance to their field. This lack of 517 

consideration directly affects the research results, as specific solutions for their possible future 518 

demands will be underrepresented, if not completely missing. To consider climate change as of 519 

minor importance might or might not be true. In some cases, climate change might be of minor 520 

importance compared to other stressors. It might also be of less importance when being dealt 521 

with for the next 2-3 decades, as natural variability might dominate the uncertainty for this time-522 

frame (Hawkins and Sutton 2009). However, in many cases climate change poses at least an 523 

additional stressor to systems. For example, the tourism sector has a very limited and 524 

imbalanced knowledge about global warming impacts, and is currently considered among the 525 

economic sectors least prepared for the risks and opportunities posed by climate change (Scott 526 

2011). Energy systems, despite being one of the key systems for social and economic 527 
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development, frequently do not include the effects of a changing climate in their planning and 528 

operation (Schaeffer et al. 2012). On the one hand, if the relevance of climate change related 529 

impacts on their activities is not recognized by societal users, the need for CCIAs diminishes. On 530 

the other hand, if impact modellers do not address these impacts and fail to acquire and 531 

communicate this knowledge, the full linkage is jeopardized.  532 

To overcome obstacles based on divergent knowledge that are typical in transdisciplinary 533 

projects, fewer scientific solutions are present (Hinkel 2008) than for societal or technical 534 

integration of actors. In the field of knowledge integration, Hinkel (2008) suggests to first define 535 

a common language, based on which a joint methodological concept can be developed resulting 536 

in coupled models rather than in coupled theories. The willingness of all actor groups to learn, 537 

and adapt common practices, the “societal integration”(Hinkel 2008), is a prerequisite whose 538 

importance was also highlighted by the ClipC consortium (Groot et al. 2014). To define a 539 

common language, glossaries clarifying the understanding of terms in a certain community are 540 

very helpful. Based on this a joint methodological concept can be developed. The VALUE project 541 

as well as the ClipC consortium generated such a glossary for the climate and downscaling 542 

community (http://www.clipc.eu/glossary), respectively. For the purpose of mutual learning 543 

between the actor groups at the downscaling interface, additional glossaries that have to be 544 

compiled by societal users and impact modellers for their specific field of interest are 545 

worthwhile. 546 

In actual projects that work on the downscaling interface, e.g. for the purpose of a CCIA study, 547 

the establishment of a “task force” that elaborates a common language, common understanding 548 

and mutual knowledge very early in a project was suggested by Strasser et al. (2014). This idea 549 

is also present in several projects at the FAO (personal communication H. Kanamura). This task 550 
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force should consists of delegates from each actor group that are also responsible for the 551 

outreach in their specific actor group. An advantage of this procedure lies in its smaller group 552 

size and that delegates likely are more committed to the transdisciplinary process. The relevance 553 

of this commitment was also one of the findings of the EUPORIAS review (Hewitt et al. 2013), 554 

where the nomination of a person being responsible for the stakeholder needs was considered 555 

as crucial (Groot et al. 2014). This person could be the delegate from the climate community in 556 

the “task force” setting. 557 

The commitment of the involved actor groups to work on the transdisciplinary interface goes 558 

even further, as it demands a change in the “behaviour” of data providers and users as well. 559 

Both sides need to agree on the work-sharing to tackle this issue. Table 3 shows a tentative 560 

proposal of such a responsibility sharing:  561 

 562 

B - Communication related issues 563 

Climate model data as an input in impact research or decision-making must not only be 564 

delivered, but also be communicated in a way the user understands and that enables the user 565 

to apply the climate data and information within their own decision context. To fulfill this 566 

demand, many producers of climate data and climate service providers use the internet as their 567 

main outreach tool. To use this outreach channel is reasonable as it provides easy access for the 568 

users to the data they request (at least theoretically, as not all data are as easily available as 569 

necessary). However, a number of problems come along:  570 
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(a) A great deal of data are either not available for a long time after their production to allow for 571 

scientific exploitation (e.g. PRUDENCE and ENSEMBLES project), or their use is restricted to non-572 

commercial use.  573 

(b) A large amount of data are stored in formats and indexed in climatological terms. So, from a 574 

user perspective, required data are hard to find and process.  575 

(c) Not all data portals provide an ingenious guidance system on the strengths and weaknesses 576 

of certain data / output of certain models or methods that addresses not-climatologists and also 577 

non-scientific users.  578 

(d) The communication of uncertainties inherent to the climate model data is a complex 579 

challenge, even more in a one-direction communication setting like webpages.  580 

Thus, many users find resort to the information that is most-readily accessible instead of the 581 

data that would suit their information needs best.  582 

In contrast, climate data providers may not always be interested in providing the data as “easily” 583 

as required by the users. This might be due to doubts on– be justified or not – users’ awareness 584 

of the central differences between observational and model data (see section A of this sub-585 

chapter). Hieroglyphic data portals enforce the users to contact the climate data providers and 586 

receive some guidance about the downloaded data – or shove potential users towards more 587 

convenient portals even if the data provided are less resilient. Another reason might be the self-588 

conception of climate data providers as being climate scientists for which outreach is not an 589 

essential part of their duty. While it is basically true that climate change research is not 590 

necessarily connected to communication issues, at least the outreach portals should be 591 

developed by people who see their calling in both subjects: climatology and communication.  592 
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Moreover, outreach and communication aspects are highly underrated by science funding 593 

agencies, as well as by the research community itself, obstructing a higher interest of scientists 594 

to develop new and hopefully better forms of communication. Certainly, this lack of outreach 595 

has been realized by founding organisations that promote the development of new, much more 596 

user-oriented portals, like ClipC, that try to combine user guidance with data provision (Groot 597 

et al. 2014). Other strategies tend to provide outreach reports along downscaled national 598 

climate change data sets, like the Swiss CH2011 project (CH2011), the French Jouzel report 2014 599 

(Ouzeau et al. 2014), the KNMI report from the Netherlands (KNMI 2014), the SIAM report 600 

(Santos et al. 2002).  601 

Beyond data portals, several studies proved the added value of constant direct face-to-face 602 

communication between data providers and data users for a successful downscaling product 603 

and climate change impact assessment (Almeida et al. 2015), H. Hübener, personal 604 

communication). However, an ideal communication between providers and users, if not a 605 

financed part of a project from the start, is often difficult or non-existent.  606 

When an eventual impact of climate change on a user activity is perceived, the decision making 607 

process has to be based on the best climate information that climatologists and impact 608 

modellers can provide (Meinke et al. 2009) – it is here that several linkage problems arise. Often, 609 

climatologists do not describe in a proper manner the inherent uncertainty associated to climate 610 

projections (Burke et al. 2015), whether stemming from uncertain future emission paths, model 611 

deficiencies or internal climate variability. It is important to explain what the numbers really 612 

represent, be it observation or model results. Furthermore, uncertainties vary by variable, 613 

region, future time period and season. Every climate data provider has some notion:  614 
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- of variables that are more or less reliable (e.g. temperature change information is much 615 

more reliable than precipitation),  616 

- of the accuracy of the projection in relation to observations 617 

- of aspects that are better- or worse-represented (e.g., extreme droughts might be 618 

better captured than extreme precipitation)  619 

- of regions that are easier to cover than others (e.g. often mountains are more difficult 620 

than plains, or cooling in stable planetary boundary layers over plains).  621 

To provide all kinds of users from different regions, subjects, backgrounds and interests with the 622 

information they need much more information on the (physical, empirical) reliability of each 623 

part of the data or information. In the cases when climatologists provide a bandwidth of the 624 

model results, impact modellers sometimes do not know how to consider this interval for the 625 

information they provide to users. In some cases when the bandwidth or uncertainty is 626 

accounted for in all the linkages from climatologist to user – frequently at the time of projecting 627 

climate change impacts at temporal and spatial scales pertinent for decision making – the 628 

uncertainties have increased enormously (Jones 2000). This chain of problems has as a 629 

consequence that information is often perceived as too uncertain to be of any practical use, or 630 

that there is a failure in quantifying uncertainty (Kiem et al. 2014). At this point, improved 631 

communication is needed that clearly states the robust and certain part of the projection. 632 

Reasons for the found uncertainties should be given additionally, but should not obscure the 633 

main result. Current scientific focus on uncertainties is of high relevance, but it should not 634 

prevent a clear answer (if present) to the raised societal question. 635 

 636 
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C - Structural issues 637 

Callahan et al. (1999) state, among other more technical problems (like low forecast skill, low 638 

geographic resolution), an “institutional aversion to incorporating new tools into decision 639 

making”. (Lee and Whitely Binders 2010) find barriers in the form of “limited staff capacity, lack 640 

of clear guidance on how to integrate climate change into planning, lack of management 641 

support, institutional inertia, limited data availability, limited funding, lack of mandate to plan 642 

for climate change and complexity of the problem.” 643 

We add to this list some barriers at the climate data provider side of the “fence”: missing or too 644 

little funding / manpower for data provision, post-processing and communication in climate 645 

research projects, too little appreciation of outreach in the scientific community and inflexible 646 

actors also at the climate data provider side. One example to illustrate the issue of post-647 

processing is the divergent number of simulations performed and provided in data portals as 648 

e.g. found in CORDEX simulations. With a more general focus on CCIA, a major obstacle is the 649 

less funding of comprehensive impact studies and dissemination of impact model results, as 650 

those data set are the basis for adaptation strategies.  651 

Some of these barriers could be overcome by funding (for data post-processing and outreach, 652 

for manpower at the interface between climate data providers and users). Some might need 653 

time and dedicated fighters (more appreciation for outreach activities in the scientific 654 

community, overcoming old habits and uninterested recipients). Callahan et al. (1999) propose 655 

a combination of technical improvements and reciprocal and iterative mutual education 656 

between climate data providers and managers to overcome these barriers.  657 
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Besides, working at the downscaling interface is not as ideal as Figure 1 might suggest. In reality 658 

it is often much more chaotic and scattered, because the overwhelming part of actors at the 659 

interface work rather independently than jointly, using data and downscaling methods they can 660 

get hold of or that they can understand and perform on their own. This more chaotic cast adds 661 

further complexity to the downscaling interface. One reason might be the missing or 662 

underdeveloped number of climate change consultancies, or “intermediaries” as described by 663 

Groot et al. (2014), that can help link the different actor group and provide guidance along the 664 

downscaling and CCIA process.  665 

The internet portal www.climate-knowledge-hub.org collects those intermediators for Europe 666 

and shows a yet unfinished collection of approximately 180 intermediators. Private 667 

intermediators, national and regional climate service centres are crucial and independent 668 

contact points, but they are not present in every country or region and, even if so, there is still 669 

a great mismatch between climate providers and users. This is even more the case if not the 670 

climate model data itself but a tailored downscaling is needed to fulfil the user needs. And the 671 

number of users will likely drastically increase in the coming years, also due to the political 672 

willingness to foster adaptation also at the community level (COM 2013). 673 

Still, the “number problem” – lots of users and only relatively few providers – remains. This is 674 

where new ideas and developments to overcome structural issues come into play. The national 675 

meteorological services and – if separate institutions – climate service providers (CSC) as 676 

professional “border organisations” might play a crucial role here, given they are suitably funded 677 

and aimed. For sure, they cannot themselves serve every request. CSC can be contact points 678 

that establish the first contacts between actor groups and/or accompany the downscaling 679 

http://www.climate-knowledge-hub.org/


Roessler et al. Challenges to link climate change data provision and user needs  

32 

 

process. The new Swiss National Climate Service Centre (NCCS) and the Climate Service Center 680 

in Germany strives this way. 681 

Recently many different internet portals have emerged (e.g. ClipC, Copernicus, CCAFS, IPCC-682 

DDC) all claiming they incorporate climate data user’s demands in a much more specific way. 683 

Several of these portals allow for on-the-fly calculation of user-tailored climate change 684 

information at the regional scale (CCAFS, Santander Downscaling Portal). Although this seems a 685 

very promising way to cope with the number problem, all concerns raised above still hold, with 686 

a very sophisticated request tool still needed on how to ensure that proper tailored information 687 

is available to users on portals/platforms (without face-2-face meetings). This remains an open 688 

question and challenge. 689 

Another way to overcome the number problem is to establish a new profession of climate 690 

change advisors: Well trained, private consultants who can advise local authorities or other 691 

environmental offices how to access, apply and interpret downscaled climate data or 692 

information for each specific case. An example of this kind of profession might be the energy 693 

advisors, a new professional branch that is quite successful in some European countries (Owen 694 

et al. 2014). Today, some large consultancy companies offer already a climate change impact 695 

and adaptation program. But, they are hardly affordable for some communities. An essential 696 

prerequisite for such a profession would be some kind of certificate that guarantees a solid 697 

education.  698 

5. Conclusion 699 

The inter-and transdisciplinary downscaling interface is composed of numerous various actors 700 

with many backgrounds, different perspectives and diverse knowledge. This setting calls for 701 
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solutions on an individual basis. However, while this might be the ideal case, it remains 702 

unrealistic given the vast number of CCIA. Hence, a structure of user groups and their needs, as 703 

well as a structure of issues hampering a proper downscaling, and finally a guidance of how to 704 

choose among all the present climate model data sets help to abstract from individual 705 

challenges. Furthermore, this structuring might help to foster research in a direction helpful for 706 

the different users. 707 

We have presented here a suggestion of such a structuring of actors, needs and issues. In 708 

addition, the VALUE platform shall result in a guidance of how to select the most appropriate 709 

downscaling methodology or data for a given case study. Still, current climate models and 710 

current downscaling techniques cannot meet some user needs, and some likely cannot be met 711 

also in the near future. We think, it is also the duty of the climate providers to be clear about 712 

these limitations. In turn, the impact modellers and the societal users are responsible to develop 713 

reliable solutions for these cases. Furthermore, what can and what cannot be provided remains 714 

a fine line that has to be negotiated continuously between the three actor groups, as scientific 715 

knowledge progresses. 716 

Apart from the data limitations, we showed that common inter- and transdisciplinary issues 717 

might hamper a proper usage of downscaling data or even the development thereof. The 718 

incorporation of established techniques to solve transdisciplinary issues have to be applied in 719 

CCIA, but will most likely be dismissed due to financial obstacles.  720 

Finally, internet portals like ClipC or downscaling platforms are of great help to provide climate 721 

data to as much CCIA conductors as possible. Nevertheless, we doubt that those portals and 722 

guidelines will solve the great communication challenges if not a minimum of mutual – common 723 
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knowledge is built up. Yet, international, national or even regional climate service centres are 724 

crucial to lead the optimal way, to help network building and to foster knowledge and 725 

communication among the 1st order users and providers (see Figure 1) at the downscaling 726 

interface. An increasing number of private companies – intermediaries – that advise 727 

communities or corporations in CCIA might accompany these centres. Those consultants should 728 

be regularly trained and certificated to ensure a high standard for CCIA.  729 

Based on both, an ever-increasing disciplinary knowledge and a shared – mutual knowledge on 730 

how to work together transdisciplinarily, the partly huge challenges currently present at the 731 

downscaling interface might be tackled. This will help to provide the best possible basis for 732 

profound adaptation to climate change. 733 
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Tables: 933 
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 936 
Table 1: Overview over existing internet portals to provide climate data, be it observations, climate model data, on-937 
the-fly-downscaled data or climate derivatives like indices. 938 
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Table 2: User’s key variables, required accuracy, and their spatial and temporal resolution; based on VALUE 943 

questionnaire with 62 participants. Blue numbers indicate responses of participants that are societal users from the 944 
non-water sectors. Multiple choices allowed. 945 

 946 

 947 
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 949 
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Table 3: Tentative proposal of a change in behaviour of actors at the downscaling interface 951 

Climate model data provider:  Climate model data / information user: 

Be brave! Provide model output data at the (highest) 

native temporal and spatial model resolution to expert 

users. This might e.g. include providing values for specific 

landscapes (like upper Rhine valley). Such an open data 

policy requires detailed guidance and co-exploration of the 

further analyses with the data providers. 

Be careful! Check for analogues in the research area that might be useful 

for inter- or extrapolating climate model data for the requested 

temporal and spatial scale. 

Be brave! Refuse from providing implausible data, just 

because the user asks for it. Be aware of your responsibility 

for subsequent adaptation decisions, which rely on the 

quality of the data provided. 

Be careful! Not every user need can be distilled from climate model 

data. Be brave and think of alternative ways. 

If absolutely necessary: provide bias-adjusted model 

output. Bias correction may induce considerable artefacts 

and expert knowledge on both the corrected climate 

model and the considered climate is required to avoid 

misleading interpretation. This holds in particular for 

quantile mapping and even more sophisticated 

approaches. 

Train your impact model / research method / decision support tool on 

working with relative change values (compared to observations) instead 

of absolute values if feasible. 

If the requested data simply cannot be delivered with good 

consciousness: try to find variables that might be useful for 

the planned impact research or decision support and that 

could be provided with higher confidence. 

Develop assessment tools in your specific research area  

(e.g. assessment of critical levels that might or might not be exceeded by 

future climate), which are able to cope with the kind of data that can 

usually be provided with good consciousness from the climate model 

data providers (like e.g. probabilities of exceeding certain thresholds in 

the future).  

 952 
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