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abstract: Living organisms are constrained by both resource quan-
tity and quality. Ecological stoichiometry offers important insights into
how the elemental composition of resources affects their consumers.
If resource quality decreases, consumers can respond by shifting their
body stoichiometry, avoiding low-quality resources, or up-regulating
feeding rates to maintain the supply of required elements while excret-
ing excess carbon (i.e., compensatory feeding). We analyzed multitro-
phic consumer body stoichiometry, biomass, and feeding rates along a
resource-quality gradient in the litter of tropical forest and rubber and
oil-palmplantations. Specifically,we calculatedmacroinvertebrate feed-
ing rates based on consumer metabolic demand and assimilation effi-
ciency. Using linear mixed effects models, we assessed resource-quality
effects onmacroinvertebrate detritivore and predator communities.We
did not detect shifts in consumer body stoichiometry or decreases in
consumer biomass in response to declining resource quality, as indi-
cated by increasing carbon-to-nitrogen ratios. However, across trophic
levels, we found a strong indication of decreasing resource quality lead-
ing to increased consumer feeding rates through altered assimilation ef-
ficiency and community body size structure. Our study reveals the in-
fluence of resource quality on multitrophic consumer feeding rates and

suggests compensatory feeding to be more common across consumer
trophic levels than was formerly known.

Keywords: resource quality depletion, ecological stoichiometry, con-
sumer feeding rates, consumer resource interaction, multitrophic com-
munities.

Introduction

All living organisms are subject to the persistent struggle of
finding and exploiting the resources that they depend on.
Traditionally, ecological research has concentrated on avail-
able resourcequantity in termsofbiomassor abundance.Over
recent decades, however, the concept of ecological stoichiom-
etry (Elser et al. 2000) has shifted our focus to resource and
consumer elemental composition. In this context, we study
how animals—from individuals to communities—respond
to differing resource quality.
The biomass of living organisms consists of a number of

different chemical elements occurring in more or less strict
proportions (Redfield 1958; Sterner and Elser 2002; Mc-
Groddyet al. 2004). In ecological stoichiometry, special atten-
tion has been paid to carbon (C), nitrogen (N), and phospho-
rus (P) as central elements of animal development, activity,
and growth (Fanin et al. 2013), with a focus on carbon-to-
element ratios and their impacts on individuals, populations,
and communities (Sterner and Elser 2002; Hillebrand et al.
2014;Ott et al. 2014b). To fulfil their energetic demands, con-
sumersdependonboth resourcequantity andquality (i.e., re-
source stoichiometry; Urabe and Sterner 1996; Sterner 1997;
Frost et al. 2005;Persson et al. 2010;Ott et al. 2012).However,
depending on the trophic positioning of consumers and their
resources, there can be a considerable gap between the stoi-
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chiometry of their resources and consumer body tissue (Elser
et al. 2000), also referred to as stoichiometricmismatch (Hil-
lebrand et al. 2009). Compared to the imbalance between
consumers at higher trophic levels and their heterotrophic
prey (Fagan et al. 2002), thismismatch seems to bemore pro-
nounced between primary consumers and their autotrophic
resources, and even more so for detritivores than herbivores
(Elser et al. 2000; McGroddy et al. 2004). Moreover, hetero-
troph body stoichiometry is more constrained than that of
their autotrophic resources (Sterner and Elser 2002; Frost
et al. 2005; Hillebrand et al. 2014; but see Persson et al. 2010;
McFeeters and Frost 2011). Therefore, heterotrophs—espe-
cially those feeding on autotrophic resources—need strategies
to deal with differing resource nutritional quality.

Generally, the possibilities are limited for consumers fac-

000 The American Naturalist
ing differing resource quality. Specifically, we propose that
these options comprise three main strategies (fig. 1): con-

specific patterns as indicated for detritivores (green) and predators (o
sponses to resource-quality depletion and their direction; dashed horiz
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sumers may either vary in their degree of homeostasis and
possibly shift their mean body stoichiometry (Persson et al.
2010) to account for low-quality resources (H1), avoid hab-
itats with low-quality resources (H2; Sterner and Elser 2002;
Hillebrand et al. 2009), or alter their consumption rates (H3;
i.e., exhibit compensatory feeding; Cruz-Rivera and Hay 2000;
Hillebrand et al. 2009; Ott et al. 2012).
Some species have evolved higher carbon-to-nutrient ra-

tios in their body tissue than others (Fagan et al. 2002), and
some organisms can regulate their body stoichiometry to a
certain degree (Persson et al. 2010;McFeeters and Frost 2011).
Shifted relative abundance toward organisms with higher
natural carbon-to-nutrient ratios or toward those capable
of shifting theirbody stoichiometry in response to low-quality
resources could enable consumer feeding rates and commu-

nity biomass to remain constant (fig. 1, H1). However, due
to strong stoichiometric constraints for heterotrophs (Sterner
Figure 1: Hypotheses of consumer responses to differing resource quality: In response to resource-quality depletion, heterotrophic con-
sumers (cons.) may shift their own body stoichiometry (e.g., C∶N; H1, left), show an avoidance reaction (H2, center), or exhibit compen-
satory feeding (H3, right). In consequence, consumer body stoichiometry, biomass, and per-unit-biomass feeding rate are expected to show
range) in the three columns. Solid diagonal lines show expected re-
ontal lines show expected null responses for the three hypotheses.

092.009.058 on April 24, 2017 01:29:17 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



and Elser 2002; Hillebrand et al. 2014), only few species are
likely to have evolved very high carbon-to-nutrient ratios or
sizeable stoichiometric phenotypic plasticity (Persson et al.
2010).

Lownutrient availability or resource quality can also cause
reduced feeding rates and invoke an avoidance response by
the consumer community (Frost and Elser 2002; Hillebrand
et al. 2009; Ott et al. 2012). If not all consumers present can
deal with high carbon-to-element ratios, fewer individuals
would be able to persist in the given locale, leading to de-
creased consumer biomass (fig. 1, H2). This would occur
as a result of the consumer community shifting toward in-
dividuals that can deal with low-quality resources. As such,
the number of persisting species would be reduced, subse-
quently also reducing total community biomass (Borer et al.
2012). However, the remaining consumer community could
maintain the same consumption rates because of their ad-
aptations to low-quality resources.

Some species can significantly increase their consump-
tion rate when exposed to a low-quality diet, a mechanism
referred to as compensatory feeding (Cruz-Rivera and Hay
2000). They increase uptake of rare elements and, at the same
time, release excess elements through a variety of mechanisms
(Frost et al. 2005), depending on their ability to process excess
elements resulting from increased ingestion (Anderson et al.
2005). If consumers exhibit this behavior (Cruz-Rivera and
Hay2000;Ott et al. 2012), theconsumer feedingrate increases
substantially with reduced resource quality (fig. 1, H3), re-
sulting in a lowered trophic efficiency (Hillebrand et al.
2009). Given a shift in community composition toward con-
sumers capable of satisfying their energetic demands through
compensatory feeding, consumer stoichiometry and biomass
would not necessarily respond to resource-quality depletion,
but consumer feeding per unit biomass would increase (fig. 1,
H3). Interestingly, however, the consequences of a shifting
community composition additionally depend on simulta-
neouschanges incommunitybodysizestructure,whichcould
easily affect consumer community stoichiometry, biomass,
and metabolism (Ehnes et al. 2014), with subsequent effects
on feeding-rate estimates. It should be noted that the three
described response strategies are not mutually exclusive and
may act asynchronously at different levels of organization
(individual, population, community).

Empirical evidence for population-level, and especially
multitrophic community-level consequences of differing re-
source quality, is scarce because most studies on stoichio-
metric imbalances between consumers and their resources
have focused on the individual level (Moe et al. 2005; but
see Fagan and Denno 2004). Moreover, research on terres-
trial systems, and especially detritus-based systems, has tra-
ditionally been underrepresented (Sterner and Elser 2002),

although their resource C∶N ratios tend to deviate strongly
from those of their heterotrophic consumers (Elser et al.
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2000). In recent years, this gap has been reduced by studies
on the structure of soil and litter food webs (Brose and
Scheu 2014; Klarner et al. 2014) and the effects of basal re-
source stoichiometry on consumer biomass densities (Ott
et al. 2014a). Nevertheless, a broader perspective of resource-
quality effects on various consumer community aspects across
trophic levels is still lacking.
In this study, we set out to test the three predictions of

community-level consequences of differing resource quality
along terrestrial resource-quality gradients in tropical litter
communities (fig. 1). We combined measurements of C and
N concentrations of local leaf litter and the macroinverte-
brate community with biomass and calculated feeding rates
of multitrophic macroinvertebrate consumer communities
facing variable resource quality. Our study undertook a
community-level approach to terrestrial resource stoichiom-
etry in real-world ecosystems that presented a gradient of re-
sourcequality.This approach investigates consumer responses
at the community level, which is a cumulative phenomenon
made up of individual-, population-, and community-level
processes. In contrast to a laboratory or field experiment,
where resource quality can easily be manipulated but the
design is heavily constrained by the complexity of the bi-
otic community, we do not describe how communities re-
spond to changing resource quality but how the responses
of populations and individuals over multiple generations
have brought about differences among communities. As such,
this approach enables us to assess differences between con-
sumer communities facing different-quality resources, whereas
we do not attempt to assess responses of consumer individ-
uals or populations to changing resource quality over time.
Specifically, across trophic levels, we looked for the role of
H1 (stoichiometric shift) by calculating and testing shifts
in community-level consumer stoichiometry. Subsequently,
the importance of H2 (avoidance) was assessed by testing
for shifts in community-level consumer biomass. Finally, if
these two hypotheses were not supported by the data, we as-
sumed the most likely alternative response would have to be
a community-level change in consumer feeding rates (H3,
compensatory feeding) to account for the lack of key nutrients
in their resources. Thus, we calculated consumer feeding rates
per unit biomass based on individual body size, metabolic
rate, and resource-dependent assimilation efficiency to as-
sess whether compensatory feeding could be a likely alter-
native response mechanism of consumer communities fac-
ing reduced resource quality. While these feeding rates are
a modeled response based on parameters measured directly
from these communities, they provide a strong indication
of whether such a response is likely across different trophic
levels of real-world consumer communities. For the first
time, by taking into account community-level processes, we

Multitrophic Compensatory Feeding 000
demonstrate that differing resource quality causes consistent
responses across trophic groups.
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Material and Methods

Study Site and Sampling Design

In the tropical lowland of the Jambi province, Sumatra, In-
donesia, sampling tookplace inprimarydegraded rain forest
(Margono et al. 2012), jungle rubber, rubber, and oil-palm
systems, replicated four times in each of two landscapes
(n p 32;Barnes et al. 2014). The four land-use systemsdiffer
strongly in tree biomass and productivity (Kotowska et al.
2015) and are dominated by very different vegetation, sug-
gesting that their leaf litter, as the basal resource of the de-

000 The American Naturalist
composer communities, provides a strong gradient of re-

source quality.

Animal and Leaf-Litter Sampling

Animal and leaf-litter sampling was conducted between
early October and early November 2012, as described in
Barnes et al. (2014). On three 5# 5-m subplots of every
50# 50-m site, we sieved the leaf-litter layer from 1 m2. All
animals visible to the naked eye were collected and stored
in ethanol. We sampled 7,472 macroinvertebrates from the
leaf litter of the 32 sites and identified them to morphospe-
cies (see tables A1, A2, for sampled taxa and further infor-
mation on the identification process; tables A1–A8 avail-
able online). Furthermore, we measured individual body
length to an accuracy of 0.1 mm and assigned all animals
to one of four trophic guilds—predators, omnivores, detri-
tivores, or herbivores—based on morphology and literature
(tables A1, A2). Individual body masses were calculated us-
ing literature-based length-mass regressions (Barnes et al.
2014). We treated leaf litter as the main resource for detri-
tivores, keeping in mind that certain detritivores will exploit
dead animal material or other alternative food sources. To
assess local quality of the leaf-litter resources, we sampled
leaves of the dominant leaf types per site (table A3) from
the subplots where animals were sampled. Additionally, to
control for effects of habitat structure and detritivore re-
source quantity, we measured dry litter mass (g cm22) on
each of these subplots of the 32 sites. On an area of 16#

16 cm, the litter layer was removed and weighed after drying

and removal of inorganic matter and coarse woody debris.

Stoichiometric Analyses of Animal and Leaf-Litter Samples

While P concentration differsmarkedly between autotrophic
and heterotrophic organisms (Fanin et al. 2013), it does not
show considerable changes between insect consumers of dif-
ferent trophic levels (Woods et al. 2004; Martinson et al.
2008). In order to assess multitrophic responses to differing
resource stoichiometry, we therefore focused on C∶N ratios,

since N concentration differs both between autotrophs and
heterotrophs (Fanin et al. 2013) and between consumers of
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different trophic levels (Fagan et al. 2002). Especially for
the leaf litter, resource-quality traits other than C∶N, such
as lignin or cellulose content, have been shown to affect de-
composition rates (Anderson et al. 2004; Hättenschwiler
and Jørgensen 2010). However, to a certain degree, C∶N ac-
counts for such structural C compounds (Ott et al. 2014a).
To describe resource quality across autotrophic and hetero-
trophic resources, we therefore chose C∶N ratios, keeping in
mind that there are additional factors that affect resource
quality for consumers.
To assess macroinvertebrate body stoichiometry, we

chose the largest, the smallest, and at least one intermedi-
ately sized animal from each of the four trophic guilds per
site andmeasured C and N concentrations as mass percent-
age of their dry body tissue (table A4) using an elemental
analyzer/mass spectrometer setup (Langel and Dyckmans
2014). From these data, we calculated the average mass
C∶N ratio of the four feeding guilds per site. As ethanol
hydrolyses lipids (Sarakinos et al. 2002), our preservation
method may have altered animal body C∶N, dependent on
the lipid content of the specimens, which varies among ar-
thropod taxonomic groups as well as within groups due to,
for example, larval nutrition (Lease and Wolf 2011). How-
ever, this effect is rather advantageous for investigating con-
sumer responses to N limitation as it reduces the impact of
short-term changes in animal body C∶N (e.g., due to starva-
tion), therefore strengthening the focus on C∶N ratios of
structural body compartments (e.g., the exoskeleton of ar-
thropods) and essential tissue components (e.g., muscles).
Furthermore, such variation in lipid content mostly affects
C rather than N content, meaning this treatment should be
ratherunimportant forconsumers limitedby resourceNcon-
tent. Generally, the dissolving of lipids due to preservation
in ethanol would result in reduced variation in animal body
C∶N (generally lower C∶N ratios because lipids contain far
more C than N compared to nonlipid animal body tissue;
Sterner and Elser 2002), and given the focus on consumer N
limitation and N being much less affected by lipid reduction,
this should provide reliable estimates of resource C∶N effects
based on essential body compartments.
Similar to the stoichiometric analysis of the animals, C

and N concentrations as mass percentage of dried leaf
material were individually measured for each leaf type (ta-
ble A3), and subsequently the mass C∶N ratio was calcu-
lated. Stoichiometric ratios for leaf typeswereweighted accord-
ing to their relative importance in the local litter (Kotowska
et al. 2015; table A5). For the leaf litter, we additionally an-
alyzed P concentration in order to test our hypotheses using
C∶P ratios. However, we did not have sufficient animal ma-
terial to analyze P concentration of the animal tissue and
therefore only tested a subset of the hypotheses (those on

biomass and feeding rate of detritivores) with these data
(fig. A1; figs. A1–A3 available online).
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Calculation of Community Response Variables

From the animal data set, we used individual body mass
(M, in mg) and the local soil temperature (T, in K; table A6)
together with phylogeny-specific parameters from a recent
study (Ehnes et al. 2011) to calculate metabolic rates (I, in
J h21) for each individual animal as

ln I p ln i0PG 1 aPG lnM 2 EPG

1
kT

� �
,

where i0PG, aPG, and EPG are the phylogenetic-group-specific
intercept, allometric exponent, and activation energy, respec-
tively, and k is Boltzmann’s constant. Subsequently, we cal-
culated communitybiomass (mg freshmassm22) andmetab-
olism (Wm22) for each trophic guild (predators, omnivores,
detritivores, and herbivores) independently, summing up the
body masses and metabolic rates of the individual animals
from 1 m2 (Barnes et al. 2014). A summary of the calculated
community response variables is deposited in theDryadDig-
ital Repository: http://dx.doi.org/10.5061/dryad.n5h64 (Jo-
chum et al. 2017).

Feeding rates of detritivore and predator communities
were calculated using their guild metabolism, X, and assim-
ilation efficiency, ea. Assimilation efficiency defines the pro-

portion of fooduptake that is used for respiration and growth

food N2 2:097, adjusted R2 p 0:903). Assimilation efficiencies are pre
rameters, see box A1.
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been shown to increase with the N concentration of the food
resource for different consumer taxa (Pandian and Marian
1985, 1986). To obtain more accurate quantitative relation-
ships for our arthropod consumers, we complemented litera-
ture data on insects (Pandian andMarian 1986) with further
arthropod assimilation efficiency data and foodN data based
on a broad literature survey (table A7). Using this data set,
we analyzed theunderlying relationship between foodNcon-
tent and assimilation efficiency (fig. 2; box A1; boxes A1–A4
available online). As assimilation efficiency is bound between
0 and 1, it was logit transformed to obtain a sigmoidal rela-
tionship. The resulting regression was then used to calcu-
late site-specific assimilation efficiencies for detritivores and
predators in response to the site-specific N concentration of
their resources (fig. A2).
Subsequently, we calculated per-unit-biomass consumer

feeding, FC, of detritivores and predators independently as

FC p
X

ea # BC

,

where X is the metabolism, ea is the assimilation efficiency,
and BC is the biomass of the consumer guild, with each of
these parameters being site specific. This calculation of con-

Multitrophic Compensatory Feeding 000
sumer feeding does not involve energetic losses to higher

instead of being lost through excretion. This proportion has trophic levels (Barnes et al. 2014) but specifically aims to as-

Figure 2: Relationship of food nitrogen (N) content and assimilation efficiency for the literature data (blue circles; see table A7). The red line
represents the linear model for logit-transformed assimilation efficiency against food nitrogen content (model formula: logit ea p 0:471 #
sented as a proportion between 0 and 1. For detailed regression pa-
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consumer community parameters (metabolic rate, biomass,

sess the per-unit-biomass feeding rate that the consumers
would need to fulfil their energetic demands. For the pred-
ators, we accounted for the effect of other prey resources
by weighting the N concentrations of locally present prey
guilds (omnivores, detritivores, and herbivores) by their rel-
ative abundance among potential prey organisms per site
(table A8) to calculate the assimilation efficiency. Finally, we
weighted the resulting predator feeding by the relative abun-

000 The American Naturalist
dance of detritivores to present only patterns generated from

their feeding on the focal prey guild.

Statistical Analyses

Using R, version 3.2.3 (R Core Team 2015), we applied linear
mixed effects models (nlme package; Pinheiro et al. 2014) to
test our hypotheses. We tested for an effect of litter C∶N on
detritivore C∶N (H1), biomass (H2), and feeding rate (H3),
as well as detritivore C∶N on predator C∶N (H1), biomass
(H2), and feeding rate (H3). In order to test for these effects,
we applied a model selection procedure (box A2) addition-
ally controlling for potential effects of habitat structure (litter
mass) and resource availability (litter mass for detritivores
and detritivore biomass for predators). Biomass, litter mass,
and feeding rate were log10 transformed to meet the assump-
tions of normality. Prior to analysis, all variableswere further-
more normalized to xn p (x2 xmin)=(xmax 2 xmin), where xn
is the normalized value, x is the untransformed value, and
max and min values are the largest and smallest variable
values, respectively. Normalization was necessary to achieve
model convergence.Weuseddata froma large-scale research
project originally designed to investigate land-use effects
across four different land-use systems within two different
landscapes on Sumatra, Indonesia. Therefore, in order to ac-
count for the hierarchical structure of the study design and
possibledifferencesbetween landscapesandland-usesystems
but investigate the effects of resource quality across these dif-
ferent land-use systems and landscapes, we nested land-use
system within landscape as a random effect in each model.
Additionally, to test whether there may be any confound-
ing effects of the underlying land-use gradient on resource-
quality effects, we repeated the analyses using land-use sys-
tem as a covariable instead of as a random effect (box A3).
These additional analyses showed that if land-use system is
included as a covariable, the effects of resource quality re-
mained unchanged compared to the models without land-
use systemas amain effect, indicating that it is highlyunlikely
that the land-use gradient might confound our results. To
make sure that potential increases in consumer feeding rates
with decreasing resource quality are not just an artifact of the
literature-based increase of assimilation efficiency with in-
creasing foodN concentration (fig. 2), we performed a sensi-

tivity analysis (box A4). This analysis was set up to test if the
increase in assimilation efficiency with food N alone is suffi-
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cient to drive higher consumer feeding rates when all other
relative abundance, and litter mass) are random.

Results

We analyzed C and N concentrations of 250 animals from
185 species of predators (136 individuals, 106 species) and
detritivores (114 individuals, 79 species), as well as 169 leaf-
litter specimens (see tables A3, A4 for numbers and site-
averaged C and N content of stoichiometrically analyzed
leaf and animal specimens per site). The C and N measure-
ments of single animal individuals and leaf-litter specimens
are deposited in the Dryad Digital Repository: http://dx
.doi.org/10.5061/dryad.n5h64 (Jochum et al. 2017). Site-
averaged consumer dry mass C∶N ratios ranged from 3.7
to 5.8, with an average of 4.1 for predators and 4.8 for detri-
tivores, while litter dry mass C∶N ratios ranged from 22.1 to
54.5, with an average of 36.3. Hence, the average leaf litter
C∶N ratio was 7.6 times as high as the body C∶N ratio of
the detritivore consumers, whereas the average detritivore
C∶N was only 1.2 times as high as predator C∶N ratios. At
thesametime, site-averaged leaf litterNconcentrationranged
from 0.8% to 2.0%, with an average of 1.3%, while consumer
N concentration ranged from 5.0% to 13.7%, with an average
of 11.8% for predators and 9.4% for detritivores.When relat-
ing the variability of animal and litter C∶N ratios andN con-
centration to the respective average values, C∶N ratios were
more variable in the leaf litter, while differences inN concen-
tration between leaf litter and animal body tissue were not as
pronounced. Across trophic groups, increasing litter mass
had positive effects on biomass and negative effects on feed-
ing rates (table 1). Increasing detritivore biomass increased
predator feeding rates (table 1). Overall, the results suggest
that, after accounting for the effects of resource availability
and habitat structure, the depletion of resource-quality (in-
creasingC∶Nratio) affects both of the consumer guilds’ feed-
ing rates but not their stoichiometry and biomass.
The stoichiometric-shift hypothesis (H1) expected con-

sumer C∶N to increase with increasing resource C∶N, while
consumer biomass and feeding rate were not expected to
change. However, neither detritivores nor predators signif-
icantly altered their body C∶N in response to increasing re-
source C∶N (table 1; fig. 3A, 3B). The data underlying fig-
ure 3 are deposited in the Dryad Digital Repository: http://
dx.doi.org/10.5061/dryad.n5h64 (Jochum et al. 2017). Given
the lack of significant consumer stoichiometric shifts, our
data did not support the stoichiometric-shift hypothesis.
The avoidance hypothesis (H2) assumed a decrease in

consumerbiomasswith increasing resourceC∶N,while con-
sumer C∶N and feeding rate were not expected to change.

However, we found that consumer biomass was not altered
significantly (table 1; fig. 3C, 3D) by resource-quality deple-
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efficiency and the other consumer community parameters

of the three hypotheses that we tested, our data point to the

r the best-selected lin

percentages rather than molar percentages of C and N in dry tissue of animals
and plants, respectively.
tion. Without significant changes in detritivore or preda-
tor biomass, our data also did not support the avoidance
hypothesis.

Finally, the compensatory-feeding hypothesis (H3) ex-
pected consumer feeding rate to increase with increasing re-
source C∶N. Indeed, the calculated per-unit-biomass con-
sumer feeding rates increased significantly with increasing

resource C∶N (P p :028 for detritivores and .035 for preda-
tors; table 1; fig. 3E, 3F). The linear mixed effects models
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predicted an increase of 55% for the detritivore feeding rate
and 80% for the predator feeding rate along their respective
resource-quality gradients. Overall, given the significant in-
crease in consumer feeding rates in response to resource-
quality depletion, our analyses indicate a high likelihood of
compensatory feeding (H3) being the dominant consumer
community response across trophic levels. The results of
our sensitivity analysis (box A4) confirmed that increasing
consumer feeding rates were not simply an artifact of assim-
ilation efficiency increasing with food N content. Instead,
the significant increase in consumer feeding rates with de-
creasing resource quality was jointly driven by assimilation

Multitrophic Compensatory Feeding 000
(fig. A3).

Discussion

Our investigation of multitrophic consumer responses to
resource-quality depletion indicates that compensatory feed-
ingmight not be restricted to basal consumer groups, such as
herbivores or detritivores, but may be generally found across
trophic levels. Our analyses suggest that, across trophic lev-
els, consumer communities respond to lower resourcequality
by increasing their feeding rates, rather than altering their
body stoichiometry or avoiding the low-quality resources.
Even though autotrophic and heterotrophic resources differ
strongly in the constraints that they impose on consumers,
we found this pattern to hold across trophic levels. Hence,
prominence of the compensatory feeding hypothesis (H3).

Resource-Driven Stoichiometric Shift

We did not find significant changes in consumer body C∶N
ratios with decreasing resource C∶N. These findings suggest
that neither detritivores nor predators altered their body
stoichiometry in response to resource-quality depletion. Al-
though some heterotrophs can exhibit a somewhat variable
body stoichiometry (Persson et al. 2010;McFeeters and Frost
2011) depending on environmental conditions which affect
their physiological pathways (Frost et al. 2005), our results
are in line with former studies showing that, overall, hetero-
trophic body stoichiometry is much less flexible than that
of autotrophs (Sterner and Elser 2002; Persson et al. 2010;
Hillebrand et al. 2014). Within a species, variability of body
stoichiometry might overall be relatively low (but see Pers-
son et al. 2010; McFeeters and Frost 2011), but whether het-
erotrophic consumers or leaf litter show higher variability
depends on the way this variability is defined (e.g., N concen-
tration or C∶N ratio). Our data show that variation in con-
sumer body tissueNconcentrationwas similar to variation in
Table 1: Summary table fo
effects models
ear mixed
Response, model,
 t value/

model parameter
 Estimate
 SE
 z value
 P
Detritivore C∶N:

DetCN ~ 1:
Intercept
 .339
 .040
 8.493
 .000

Predator C∶N
PreCN ~ DetCN:

Intercept:
 .417
 .092
 4.551
 .000

DetCN:
 2.255
 .197
 21.292
 .209
Detritivore biomass:

DetB ~ litterCN 1 LM:
Intercept
 .386
 .089
 4.313
 .000

LitterCN
 2.255
 .168
 21.518
 .143

LM
 .568
 .134
 4.245
 .000
Predator biomass:

PreB ~ DetCN 1 LM:
Intercept
 .462
 .084
 5.521
 .000

DetCN
 2.180
 .121
 21.485
 .152

LM
 .429
 .100
 4.309
 .000
Detritivore feeding:

DetF ~ litterCN 1 LM:
Intercept
 .702
 .087
 8.057
 .000

LitterCN
 .384
 .163
 2.347
 .028

LM

Predator feeding:

2.338
 .130
 22.597
 .016
PreF ~ DetCN 1

DetB 1 LM:
Intercept
 .502
 .138
 3.627
 .002

DetCN
 .399
 .177
 2.259
 .035

DetB .423 .195 2.176 .041
LM 2.662 .168 23.945 .001

Note: Best-selected (see “Material and Methods”; box A2) linear mixed ef-
fects models testing the effects of litter C∶N (litterCN) and litter mass (LM,
g cm22) on detritivore (Det) C∶N (CN), fresh biomass (B, mg m22), and feed-
ing rate (F, W mg21), as well as detritivore C∶N (DetCN), litter mass, and de-
tritivore fresh biomass (DetB) on predator (Pre) C∶N, fresh biomass, and
feeding rate. Land-use system nested within landscape was used as a random
effect for all models to account for the study design. Boldface P values indicate
significant resource C∶N effects plotted in figure 3. Litter mass, biomass, and
feeding rate were log10 transformed to meet the assumptions of normality. All
variables were normalized prior to analysis. Note that C∶N ratios refer to mass
leaf litter N concentration, while variation in consumer C∶N
ratios was relatively low compared to variation in leaf litter

092.009.058 on April 24, 2017 01:29:17 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



relationships. Note that C∶N ratios refer to mass percentages rather than molar percentages of C and N in dry tissue of animals and plants,
respectively.
C∶Nratios. Thus, despite the substantial variability in animal
body N concentration, we did not find evidence that differ-
ing resource stoichiometry drives consumer body stoichi-

ometry (C∶N ratio). As a result, there were large absolute
mismatches between consumers and resources, in particular
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All use subject to University of Chicago Press Term
between detritivores and the leaf litter. However, without ev-
idence for consumers significantly altering their body stoi-
chiometry (i.e., C∶N ratio) in response to differing resource
Figure 3: Left, linear mixed effects models (green lines and points) for detritivore C∶N (A), fresh biomass (C), and feeding rate (E) in response
to increasing litter C∶N. Right, linear mixed effects models (orange lines and points) for predator C∶N (B), fresh biomass (D), and feeding rate
(F) in response to increasing detritivore C∶N. For each site, n p 32. Relationships shown and P values presented are for just resource C∶N (see
table 1) from the best-selected models (see “Material andMethods”; box A2). E, F, Regression fits show the effect of C∶Nwhile holding additional
parameters constant at their mean. Feeding is per-unit-biomass feeding of the respective feeding guild per site. Solid lines show significant

000 The American Naturalist
quality, the stoichiometric-shift hypothesis (H1)was not sup-
ported by our data.
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quality effects on consumer biomass so that the avoidance
Avoidance of Low-Quality Resources

Under the avoidance hypothesis (H2), we expected con-
sumer biomass to decrease with resource-quality depletion,
but detritivore and predator biomass were not significantly
altered. If heterotrophs were stoichiometrically homeostatic
or maintained their feeding rates in response to decreas-
ing resource quality, the energy reaching the consumer level
would be reduced and, consequently, consumer biomass
would decline. Generally, experimental N or CNP enrich-
ment increases invertebrate biomass or abundance in soil
(Maraun et al. 2001) and grassland ecosystems (Haddad et al.
2000). Here, however we are looking at more subtle differ-
ences in resource stoichiometry rather than experimental fer-
tilization of the ecosystem, which confounds changes in re-
source quantity (primary production) and quality (resource
stoichiometry).

Although tests of the avoidance hypothesis are rare, other
studies have also shown that resource stoichiometry does not
necessarily affect consumer biomass or abundance. In this
vein, a recent paper investigating plant effects on decom-
poser and herbivore communities in grasslands found no
effect of plant C∶N ratios on decomposer abundance (Ebel-
ing et al. 2014). Nitrogen concentration in plants has also
been reported to yield no discernible effects on arthropod
communities in a shortgrass prairie (Kirchner 1977), while
other studies found strong arthropod responses to fertilizer
input (Haddad et al. 2000; Maraun et al. 2001). Our data on
detritivore and predator communities in tropical leaf-litter
systems did not show significant consumer biomass responses
to differing resource C∶N ratios. Therefore, in these systems,
another mechanism seems to enable maintenance of con-
sumer biomass and stoichiometric homeostasis across a range
of resource quality.

Recent work on temperate forests has shown resource
stoichiometry to affect biomass densities of litter macro-
invertebrates (Ott et al. 2014b). Specifically, higher N and
P availability (low C∶N and C∶P ratios) in the local leaf lit-
ter resulted in increased population biomass densities. Inter-
estingly, the positive effect of N availability on consumer bio-
mass was especially pronounced for large-bodied species.
When comparing the body sizes from our tropical data set
with those of Ott et al. (2014b), on average, the temperate
animals had much larger body masses (mean 5 SE p
18:405 0:63 mg fresh weight) than the tropical animals
(3:165 0:33mg freshweight). Furthermore, the tropical lit-
ter C∶N ratios (38:325 1:35) were higher than the temper-
ate ratios (28:675 0:50). Thus, the absence of a biomass re-
sponse to differing resourceC∶Nratio in our tropical data set
might be causally related to smaller body masses and higher
resource C∶N ratios compared to the temperate data set. De-

spite these differences, previous comparisons of these two
data sets have shown that, in both the temperate and tropical
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ecosystem, whole community energy flux is best predicted
by the same two community attributes, namely species rich-
ness and total biomass (Barnes et al. 2016). Interestingly,
there were stronger effects of environmental variation (e.g.,
stoichiometric properties of leaf litter) on community com-
position in the tropical than in the temperate system. Fur-
ther comparisons of such multitrophic tropical and temper-
ate data sets will help to reveal the underlying mechanisms
that describe how structural differences between the tropical
and temperate arthropod consumer communities lead to dif-
ferent consumer community responses to resource-quality
depletion. However, here we did not find significant resource-
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hypothesis (H2) was not supported by our data.

Compensatory Feeding to Account for Stoichiometric
Resource-Quality Depletion

Both detritivore and predator per-unit-biomass feeding in-
creased substantially with increasing C∶N ratios of their re-
sources (55% and 80% increase, respectively). This is in line
with prior reports of compensatory feeding in detritivores
confronted with poor resources (Ott et al. 2012) and herbi-
vores facing increasing stoichiometricmismatchwith their re-
sources (Hillebrand et al. 2009). Our study thus extends these
findings to the multitrophic community level of ecosys-
tems. Therefore, the condition supporting the compensatory-
feeding hypothesis (H3) was met by our data.
Because of the steeper increase of assimilation efficiency

with resource N concentration at lower food N content (ob-
served in the literature-derived scaling relationship; fig. 2), as
typical for detritivore diets, an increase in litter C∶N—indi-
cating decreasing N concentration and, thus, decreased as-
similation efficiency—likely elicits higher per-unit-biomass
feeding rates, given that biomass and metabolism are not al-
tered simultaneously. Variability in leaf-litter N concentra-
tion (0.8%–2.0%, with an average of 1.3%), combined with
the steep increase of assimilation efficiency at such low re-
source N levels and nonrandom changes in the other com-
munity parameters (see sensitivity analysis; box A4; fig. A3),
resulted in increased feeding rates. This steep increase in-
dicates the strong limitation of assimilation efficiency that
detritivores suffer at low N concentrations in their litter re-
sources. Notably, assimilation efficiency at predator-diet N
levels showed a weaker increase in assimilation efficiency
with increasing resource N concentration (fig. 2), but pred-
ator diets showed a large absolute variability inN concentra-
tion (5.0%–15.1%). Ultimately, the combination of resource
N variation and the varying slope of the scaling relationship
between resource N and assimilation efficiency at detritivore
and predator resource N levels facilitated increased per-unit-

biomass feeding with decreasing resource quality across tro-
phic levels. Interestingly, our sensitivity analysis strongly sug-

092.009.058 on April 24, 2017 01:29:17 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



sistently expressed response of consumers to low-quality re-
gests that these changes in assimilation efficiency with food
quality were not the sole driver of the significant positive re-
sponse of consumer feeding rates to higher resource C∶N.
On the contrary, depending on the other community param-
eters (consumer metabolism, consumer biomass, detritivore
relative abundance, and litter mass), feeding rates obtained
from our iterative randomization process only very rarely
led to significantly higher and sometimes even significantly
lower feeding rates in response to lower resource quality
(fig. A3). Thus, although we were not able to measure con-
sumer feeding rates in the field, our analysis provides strong
indication that decreasing assimilation efficiency, together
with nonrandom changes in other consumer community pa-
rameters, such as consumer metabolism, causes higher con-
sumer feeding rates in response to lower resource quality.

Our sensitivity analysis revealed that higher consumer feed-
ing rates at lower resource quality are not simply driven by
varying assimilation efficiency across the resource-quality
gradient but must at least partly be caused by nonrandom
changes in other community parameters. Given that con-
sumer biomass remained constant across the resource-
quality gradient (no support for H2), it is likely that differ-
ences in consumer community body size structure play an
important role here. Changes to community size structure
can have significant consequences for trophic interactions
and, thus, matter and energy flux through ecological net-
works (Brose et al. 2017). Interestingly, changing size struc-
ture of a single trophic level can affect whole communities
through cascading biomass and abundance effects (Jochum
et al. 2012). Such changes are, at least partly, mediated by
the impact of body size on consumer energy demand due
to higher individual metabolic rates but lower mass-specific
metabolic rates in larger animals (Brown et al. 2004). Even if
total biomass remains constant, shifting community body
size structure can therefore strongly impact patterns of feed-
ing rates, energyflux, and thus ecosystem functioning through
its impact on the metabolic demand of organisms (Barnes
et al. 2014). As such, our results provide an indication of how
varying community size structure in response to changes in
resource quality might impact feeding rates of invertebrate
communities; a pattern that warrants further investigation
to better understandmechanisms underlying consumer feed-
ing rates across environmental gradients.

While compensatory feeding has been shownbefore (Hil-
lebrand et al. 2009; Ott et al. 2012), we expand this knowl-
edge to community responses to resource-quality depletion
as we present data from multiple trophic levels. Our analy-
ses show that compensatory feeding is likely a general re-
sponse to lower resource quality across trophic levels and
consumer feeding guilds. Although our results show strong
support for community-level compensatory feeding, they still

000 The American Naturalist
do not provide experimental evidence for increased feeding
rates, as it was not possible to measure feeding rates in the
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field due to the lack of methods for in situ measurement of
macroinvertebrate feeding rates. However, despite this lim-
itation, our approach provides a strong theoretical indica-
tion of increased feeding rates in response to lower-quality
resources when compared alongside the lack of support for
the other hypotheses. Our results represent a community-
level trend that should not be mistaken for evidence that all
consumer populations comprising this community show
the same simple response as the community average. On
the contrary, these specific populations quite likely respond
with amixture of strategic adaptations (stoichiometric shift,
avoidance, compensatory feeding), which—depending on
the simultaneous changes in community body size struc-
ture—differentially impact consumer community stoichi-
ometry, biomass, andmetabolism (Ehnes et al. 2014). How-
ever, such fine-scale changes were not strong enough to
provide support for a community-level pattern consistent
with H1 (stoichiometric shift) and H2 (avoidance), whereas
we found patterns that are expected by H3 (compensatory
feeding). Even if our results were the product of a type II er-
ror that resulted in failure to detect existing stoichiometric
shifts (H1) or avoidances (H2), this would not affect the
clear support for H3 (compensatory feeding). It is impor-
tant to note, however, that there could be several mecha-
nisms acting in parallel, as should be expected to occur at
thecommunity level.Nevertheless,ouranalyses suggest that,
across trophic levels, compensatory feeding is themost con-
sources at the community level.

Future Directions

The feeding rate calculations in our study were partially
basedon the scalingof assimilationefficiencieswith resource
N concentration. However, rather than only using resource
element concentration, focusing on the stoichiometric mis-
match between consumer and resource body tissue and its
consequences forconsumptionandenergyfluxeswithineco-
systems is a promising next step. Furthermore, although we
focus on resource C∶N ratios, terrestrial arthropod com-
munities may also be limited in their biomass density and
feeding capacity by resource sodium (Na) and calcium (Ca)
concentrations, which are important for maintaining mem-
brane gradients (Kaspari et al. 2009, 2014) and building cal-
careous exoskeletons (e.g., isopods; Kaspari and Yanoviak
2009), respectively. Additionally, the P concentration of the
litter may stimulate microbial biomass production with po-
tential positive bottom-up effects on arthropod biomass (El-
ser et al. 1996; Kaspari et al. 2008). In this vein, two recent
field studies showed that arthropod biomass densities may
be driven by N and sulfur (S) concentrations in the litter of

American tropical forest stands (Kaspari and Yanoviak 2009)
or N, P, and Na in European forests (Ott et al. 2014a). While
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and led the writing, to which all authors contributed. The
the consistent importance of N supports the choice of this el-
ement for our study, future studies could thus employ our
approach to address the interactive role of N, P, and Na in
driving arthropod community responses to differing resource
conditions (Fagan and Denno 2004).

While soil food webs have a complex structure integrat-
ing up to six trophic levels (Scheu and Falca 2000; Digel et al.
2014), we have simplified our community approach to the
broad trophic groups of detritivores and predators. How-
ever, with better resolved trophic structure of these commu-
nities, investigating how relative amounts of N, P, Na, and
Ca vary along the food chain (Martinson et al. 2008) and
differently alter consumer responses to resource depletion
across trophic levels seems promising. Furthermore, inves-
tigating the effects of variation in other elements on con-
sumer diversity and feeding rates across trophic levels will
be a future challenge to unravel new patterns in commu-
nity structure. Additionally, our data present consumer-
community responses to differing resource quality at a sin-
gle point in time. Testing our hypotheses repeatedly over
time to detect possible differences in the consumer commu-
nities’ response could therefore lead to further insights on
the nature of the resource-quality effect. Moreover, as we
took a consumer community approach, our data do not al-
low investigation of how different lower-level consumer
taxa respond to differing resource quality. However, as our
hypotheses suggest, this is the level at which strategic adap-
tations would be expected to occur.While such species-level
consumer responses are tough to assess for macroinverte-
brates under field conditions, laboratory experiments could
adequately answer this question and are needed in order

to complement and further analyze our community-level

findings.

Conclusions

Our data highlight how reduced resource quality can trigger
increased consumption by consumers across trophic levels.
Small differences in resource stoichiometry can therefore
have far-reaching consequences for their consumers, which
need to increase their time and energy expenditure for feed-
ing, thereby decreasing time and energy available for other
crucial activities. In addition to providing insights into fun-
damental processes that structure communities and ecosys-
tems, our study also raises further questions on how global
agricultural expansion and intensification as well as climate
change might affect ecosystems by altering elemental avail-
ability for consumer organisms throughout trophic net-
works in these systems. Our results present a promising step
toward research on ecosystem-wide ecological stoichiometry
effects by taking into account the underlying mechanisms

that drive consumer-resource interactions at different tro-
phic levels.

This content downloaded from 130.
All use subject to University of Chicago Press Term
Acknowledgments

We thank R. R. V. Lasse, Megawati, R. Nazarreta, and K. D.
Putirama for assistance in the field and laboratory. D. Lake-
land prepared the animals for C∶N analysis, R. Ehnes pro-
vided additional metabolic rate regression parameters, and
M. Kotowska provided additional data on relative litterfall.
A. Knohl, A. Meijide, andO. Panferov and his teamprovided
climate data. This study was financed by the Deutsche For-
schungsgemeinschaft in the framework of the collaborative
German-Indonesian research project CRC990.We also thank
the village leaders, local plot owners, PT Restorasi Ekosistem
Indonesia, and Bukit Duabelas National Park for granting
us access to and use of their properties. M.J., A.D.B., and
D.O. acknowledge funding in the scope of the BEFmate proj-
ect funded by the Ministry of Science and Culture of Lower
Saxony. U.B. gratefully acknowledges the support of the
German Centre for Integrative Biodiversity Research Halle-
Jena-Leipzig funded by the German Research Foundation
(FZT 118). This study was conducted using organisms col-
lected based on permit 2695/IPH.1/KS.02/XI/2012 recom-
mended by the Indonesian Institute of Sciences and issued
by the Ministry of Forestry. M.J., A.D.B., and U.B. designed
the study,M.J. andA.D.B. carried out the field and laboratory
work, M.J. and A.D.B. prepared and analyzed the data, and
all authors interpreted the results. M.J. wrote a first draft

Multitrophic Compensatory Feeding 000
authors declare no conflict of interest.

Literature Cited

Anderson, T. R., M. Boersma, and D. Raubenheimer. 2004. Stoichi-
ometry: linking elements to biochemicals. Ecology 85:1193–1202.

Anderson, T. R., D. O. Hessen, J. J. Elser, and J. Urabe. 2005. Met-
abolic stoichiometry and the fate of excess carbon and nutrients
in consumers. American Naturalist 165:1–15.

Barnes, A. D., M. Jochum, S. Mumme, N. F. Haneda, A. Farajallah,
T. H. Widarto, and U. Brose. 2014. Consequences of tropical land
use for multitrophic biodiversity and ecosystem functioning. Na-
ture Communications 5:5351.

Barnes, A. D., P. Weigelt, M. Jochum, D. Ott, D. Hodapp, N. F.
Haneda, and U. Brose. 2016. Species richness and biomass explain
spatial turnover in ecosystem functioning across tropical and tem-
perate ecosystems. Philosophical Transactions of the Royal Society
B 371:20150279.

Borer, E. T., E. W. Seabloom, and D. Tilman. 2012. Plant diversity
controls arthropod biomass and temporal stability. Ecology Letters
15:1457–1464.

Brose, U., J. L. Blanchard, A. Eklöf, N. Galiana, M. Hartvig, M. R. Hirt,
G. Kalinkat, et al. 2017. Predicting the consequences of species loss
using size-structured biodiversity approaches. Biological Reviews
92:684–697.

Brose, U., and S. Scheu. 2014. Into darkness: unravelling the struc-
ture of soil food webs. Oikos 123:1153–1156.
Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West.
2004. Toward a metabolic theory of ecology. Ecology 85:1771–1789.

092.009.058 on April 24, 2017 01:29:17 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1890%2F02-0252
http://www.journals.uchicago.edu/action/showLinks?pmid=23020194&crossref=10.1111%2Fele.12006
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1890%2F03-9000
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F426598
http://www.journals.uchicago.edu/action/showLinks?pmid=26756137&crossref=10.1111%2Fbrv.12250
http://www.journals.uchicago.edu/action/showLinks?pmid=25350947&crossref=10.1038%2Fncomms6351
http://www.journals.uchicago.edu/action/showLinks?pmid=25350947&crossref=10.1038%2Fncomms6351
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Foik.01768
http://www.journals.uchicago.edu/action/showLinks?pmid=27114580&crossref=10.1098%2Frstb.2015.0279
http://www.journals.uchicago.edu/action/showLinks?pmid=27114580&crossref=10.1098%2Frstb.2015.0279


Cruz-Rivera, E., and M. E. Hay. 2000. Can quantity replace quality?
food choice, compensatory feeding, and fitness of marine meso-
grazers. Ecology 81:201–219.

Digel, C., A. Curtsdotter, J. O. Riede, B. Klarner, and U. Brose. 2014.
Unravelling the complex structure of forest soil food webs: higher
omnivory and more trophic levels. Oikos 123:1157–1172.

Ebeling, A., S. T. Meyer, M. Abbas, N. Eisenhauer, H. Hillebrand, M.
Lange, C. Scherber, A. Vogel, A. Weigelt, andW.W.Weisser. 2014.
Plant diversity impacts decomposition and herbivory via changes
in aboveground arthropods. PLoS ONE 9:e106529.

Ehnes, R. B., M. M. Pollierer, G. Erdmann, B. Klarner, B. Eitzinger,
C. Digel, D. Ott, M. Maraun, S. Scheu, and U. Brose. 2014. Lack of
energetic equivalence in forest soil invertebrates. Ecology 95:527–
537.

Ehnes, R. B., B. C. Rall, and U. Brose. 2011. Phylogenetic grouping,
curvature andmetabolic scaling in terrestrial invertebrates. Ecology
Letters 14:993–1000.

Elser, J. J., D. R. Dobberfuhl, N. A. Mackay, and J. H. Schampel. 1996.
Organism size, life history, and N∶P stoichiometry—toward a uni-
fied view of cellular and ecosystem processes. BioScience 46:674–
684.

Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A.
Huberty, S. Interlandi, et al. 2000. Nutritional constraints in ter-
restrial and freshwater food webs. Nature 408:578–580.

Fagan, W. F., and R. F. Denno. 2004. Stoichiometry of actual vs. po-
tential predator-prey interactions: insights into nitrogen limitation
for arthropod predators. Ecology Letters 7:876–883.

Fagan, W. F., E. Siemann, C. Mitter, R. F. Denno, A. F. Huberty, H. A.
Woods, and J. J. Elser. 2002. Nitrogen in insects: implications for
trophic complexity and species diversification. American Natural-
ist 160:784–802.

Fanin, N., N. Fromin, B. Buatois, and S. Hättenschwiler. 2013. An ex-
perimental test of the hypothesis of non-homeostatic consumer stoi-
chiometry in a plant litter-microbe system. Ecology Letters 16:764–
772.

Frost, P. C., and J. J. Elser. 2002. Growth responses of littoral mayflies
to the phosphorus content of their food. Ecology Letters 5:232–240.

Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen, and V.
Matzek. 2005. Are you what you eat? physiological constraints on or-
ganismal stoichiometry in an elementally imbalanced world. Oikos
109:18–28.

Haddad, N. M., J. Haarstad, and D. Tilman. 2000. The effects of long-
term nitrogen loading on grassland insect communities. Oecologia
(Berlin) 124:73–84.

Hättenschwiler, S., and H. B. Jørgensen. 2010. Carbon quality rather
than stoichiometry controls litter decomposition in a tropical rain
forest. Journal of Ecology 98:754–763.

Hillebrand, H., E. T. Borer, M. E. S. Bracken, B. J. Cardinale, J.
Cebrian, E. E. Cleland, J. J. Elser, et al. 2009. Herbivore metabolism
and stoichiometry each constrain herbivory at different organiza-
tional scales across ecosystems. Ecology Letters 12:516–527.

Hillebrand, H., J. M. Cowles, A. Lewandowska, D. B. Van deWaal, and
C. Plum. 2014. Think ratio! a stoichiometric view on biodiversity-
ecosystem functioning research. Basic and Applied Ecology 15:465–
474.

Jochum, M., A. D. Barnes, D. Ott, B. Lang, B. Klarner, A. Farajallah, S.
Scheu, and U. Brose. 2017. Data from: Decreasing stoichiometric
resource quality drives compensatory feeding across trophic levels

000 The American Naturalist
in tropical litter invertebrate communities. American Naturalist,
Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.n5h64.

This content downloaded from 130.
All use subject to University of Chicago Press Term
Jochum, M., F. D. Schneider, T. P. Crowe, U. Brose, and E. J.
O’Gorman. 2012. Climate-induced changes in bottom-up and top-
down processes independently alter a marine ecosystem. Philosoph-
ical Transactions of the Royal Society B 367:2962–2970.

Kaspari, M., N. A. Clay, D. A. Donoso, and S. P. Yanoviak. 2014. So-
dium fertilization increases termites and enhances decomposition
in an Amazonian forest. Ecology 95:795–800.

Kaspari, M., M. N. Garcia, K. E. Harms, M. Santana, S. J. Wright, and
J. B. Yavitt. 2008. Multiple nutrients limit litterfall and decomposi-
tion in a tropical forest. Ecology Letters 11:35–43.

Kaspari, M., and S. P. Yanoviak. 2009. Biogeochemistry and the struc-
ture of tropical brown food webs. Ecology 90:3342–3351.

Kaspari, M., S. P. Yanoviak, R. Dudley, M. Yuan, and N. A. Clay. 2009.
Sodium shortage as a constraint on the carbon cycle in an inland
tropical rainforest. Proceedings of the National Academy of Sciences
of the USA 106:19405–19409.

Kirchner, T. B. 1977. The effects of resource enrichment on the di-
versity of plants and arthropods in a shortgrass prairie. Ecology 58:
1334–1344.

Klarner, B., R. B. Ehnes, G. Erdmann, B. Eitzinger, M. M. Pollierer,
M. Maraun, and S. Scheu. 2014. Trophic shift of soil animal species
with forest type as indicated by stable isotope analysis. Oikos 123:
1173–1181.

Kotowska, M. M., C. Leuschner, T. Triadiati, S. Meriem, and D. Hertel.
2015. Quantifying above- and belowground biomass carbon loss
with forest conversion in tropical lowlands of Sumatra (Indonesia).
Global Change Biology 21:3620–3634.

Langel, R., and J. Dyckmans. 2014. Combined 13C and 15N isotope
analysis on small samples using a near-conventional elemental ana-
lyzer/isotope ratio mass spectrometer setup. Rapid Communications
in Mass Spectrometry 28:1019–1022.

Lease, H. M., and B. O. Wolf. 2011. Lipid content of terrestrial arthro-
pods in relation to body size, phylogeny, ontogeny and sex. Physi-
ological Entomology 36:29–38.

Maraun, M., J. Alphei, P. Beste, M. Bonkowski, R. Buryn, S. Migge, M.
Peter, M. Schaefer, and S. Scheu. 2001. Indirect effects of carbon
and nutrient amendments on the soil meso- and microfauna of a
beechwood. Biology and Fertility of Soils 34:222–229.

Margono, B. A., S. Turubanova, I. Zhuravleva, P. Potapov, A. Tyu-
kavina, A. Baccini, S. Goetz, and M. C. Hansen. 2012. Mapping and
monitoring deforestation and forest degradation in Sumatra (In-
donesia) using Landsat time series data sets from 1990 to 2010. Envi-
ronmental Research Letters 7:034010.

Martinson, H. M., K. Schneider, J. Gilbert, J. E. Hines, P. A. Ham-
bäck, and W. F. Fagan. 2008. Detritivory: stoichiometry of a ne-
glected trophic level. Ecological Research 23:487–491.

McFeeters, B. J., and P. C. Frost. 2011. Temperature and the effects of
elemental food quality on Daphnia. Freshwater Biology 56:1447–
1455.

McGroddy, M. E., T. Daufresne, and L. O. Hedin. 2004. Scaling of
C∶N∶P stoichiometry in forests worldwide: implications of terres-
trial Redfield-type ratios. Ecology 85:2390–2401.

Moe, S. J., R. S. Stelzer, M. R. Forman, W. S. Harpole, T. Daufresne,
and T. Yoshida. 2005. Recent advances in ecological stoichiome-
try: insights for population and community ecology. Oikos 109:
29–39.

Ott, D., C. Digel, B. Klarner, M. Maraun, M. Pollierer, B. C. Rall, S.
Scheu, G. Seelig, and U. Brose. 2014a. Litter elemental stoichiometry

and biomass densities of forest soil invertebrates. Oikos 123:1212–
1223.

092.009.058 on April 24, 2017 01:29:17 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?pmid=20120804&crossref=10.1890%2F08-1795.1
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F1312897
http://www.journals.uchicago.edu/action/showLinks?pmid=23521784&crossref=10.1111%2Fele.12108
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2745.2010.01671.x
http://www.journals.uchicago.edu/action/showLinks?pmid=25226237&crossref=10.1371%2Fjournal.pone.0106529
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1890%2F03-0351
http://www.journals.uchicago.edu/action/showLinks?pmid=23007084&crossref=10.1098%2Frstb.2012.0237
http://www.journals.uchicago.edu/action/showLinks?pmid=23007084&crossref=10.1098%2Frstb.2012.0237
http://www.journals.uchicago.edu/action/showLinks?pmid=19884505&crossref=10.1073%2Fpnas.0906448106
http://www.journals.uchicago.edu/action/showLinks?pmid=11117743&crossref=10.1038%2F35046058
http://www.journals.uchicago.edu/action/showLinks?pmid=19884505&crossref=10.1073%2Fpnas.0906448106
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1046%2Fj.1461-0248.2002.00307.x
http://www.journals.uchicago.edu/action/showLinks?pmid=25980371&crossref=10.1111%2Fgcb.12979
http://www.journals.uchicago.edu/action/showLinks?pmid=19392711&crossref=10.1111%2Fj.1461-0248.2009.01304.x
http://www.journals.uchicago.edu/action/showLinks?pmid=24669745&crossref=10.1890%2F13-0620.1
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1088%2F1748-9326%2F7%2F3%2F034010
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1088%2F1748-9326%2F7%2F3%2F034010
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.0030-1299.2005.14056.x
http://www.journals.uchicago.edu/action/showLinks?pmid=24933800&crossref=10.1890%2F13-1274.1
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F1935085
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1461-0248.2004.00641.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.0030-1299.2005.14049.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1890%2F0012-9658%282000%29081%5B0201%3ACQRQFC%5D2.0.CO%3B2
http://www.journals.uchicago.edu/action/showLinks?pmid=24677523&crossref=10.1002%2Frcm.6878
http://www.journals.uchicago.edu/action/showLinks?pmid=24677523&crossref=10.1002%2Frcm.6878
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2Fs11284-008-0471-7
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.baae.2014.06.003
http://www.journals.uchicago.edu/action/showLinks?pmid=21794052&crossref=10.1111%2Fj.1461-0248.2011.01660.x
http://www.journals.uchicago.edu/action/showLinks?pmid=21794052&crossref=10.1111%2Fj.1461-0248.2011.01660.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Foik.01670
http://www.journals.uchicago.edu/action/showLinks?pmid=18021246
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1600-0706.2013.00939.x
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F343879
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F343879
http://www.journals.uchicago.edu/action/showLinks?pmid=28308414&crossref=10.1007%2Fs004420050026
http://www.journals.uchicago.edu/action/showLinks?pmid=28308414&crossref=10.1007%2Fs004420050026
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Foik.00865
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-3032.2010.00767.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-3032.2010.00767.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2427.2011.02586.x


Ott, D., C. Digel, B. C. Rall, M. Maraun, S. Scheu, and U. Brose. 2014b.
Unifying elemental stoichiometry and metabolic theory in predict-
ing species abundances. Ecology Letters 17:1247–1256.

Ott, D., B. C. Rall, and U. Brose. 2012. Climate change effects on
macrofaunal litter decomposition: the interplay of temperature, body
masses and stoichiometry. Philosophical Transactions of the Royal
Society B 367:3025–3032.

Pandian, T. J., and M. P. Marian. 1985. Nitrogen content of food
as an index of absorption efficiency in fishes. Marine Biology 85:
301–311.

———. 1986. An indirect procedure for the estimation of assimila-
tion efficiency of aquatic insects. Freshwater Biology 16:93–98.

Persson, J., P. Fink, A. Goto, J. M. Hood, J. Jonas, and S. Kato. 2010.
To be or not to be what you eat: regulation of stoichiometric homeo-
stasis among autotrophs and heterotrophs. Oikos 119:741–751.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Development Core
Team. 2014. nlme: linear and nonlinear mixed effects models. R
package. Version 3.1-122.

R Core Team. 2015. R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna.

Redfield, A. C. 1958. The biological control of chemical factors in the
environment. American Scientist 46:205–221.

Sarakinos, H. C., M. L. Johnson, and M. J. Vander Zanden. 2002. A
synthesis of tissue-preservation effects on carbon and nitrogen sta-
ble isotope signatures. Canadian Journal of Zoology 80:381–387.

Scheu, S., and M. Falca. 2000. The soil food web of two beech forests
(Fagus sylvatica) of contrasting humus type: stable isotope analysis
of a macro- and a mesofauna-dominated community. Oecologia
(Berlin) 123:285–296.

Sterner, R. W. 1997. Modelling interactions of food quality and quan-
tity in homeostatic consumers. Freshwater Biology 38:473–481.

Sterner, R. W., and J. J. Elser. 2002. Ecological stoichiometry: the bi-
ology of elements from molecules to the biosphere. Princeton Uni-
versity Press, Princeton, NJ.

Urabe, J., and R. W. Sterner. 1996. Regulation of herbivore growth by
the balance of light and nutrients. Proceedings of the National Acad-
emy of Sciences of the USA 93:8465–8469.

Woods, H. A., W. F. Fagan, J. J. Elser, and J. F. Harrison. 2004. Allo-

metric and phylogenetic variation in insect phosphorus content.

Functional Ecology 18:103–109.

References Cited Only in the Online Appendixes

Bährmann, R. 2008. Bestimmung wirbelloser Tiere. 5th ed. Spektrum
Akademischer, Heidelberg, Germany.

Barton, K. 2015. MuMIn: multi-model inference. R package. Version
1.15.1.

Blakemore, R. J. 2010. Cosmopolitan earthworms, an eco-taxonomic
guide to the peregrine species of the world. 4th ed. VermEcology,
Yokohama.

Bocock, K. L. 1963. The digestion and assimilation of food byGlomeris.

Pages 85–91 in J. Doeksen and J. van der Drift, eds. Soil organisms.
North-Holland, Amsterdam.

This content downloaded from 130.
All use subject to University of Chicago Press Term
Buddle, C. M. 2010. Photographic key to the pseudoscorpions of
Canada and the adjacent USA. Canadian Journal of Arthropod Iden-
tification 10:1–77.

Centre for Land and Biological Resources Research. 1993. Hyme-
noptera of the world: an identification guide to families. H. Goulet
and J. Huber, eds. Research Branch, Agriculture Canada, Ottowa,
Ontario.

Chu, H. F. 1949. How to know the immature insects. W. C. Brown,
Dubuque, IA.

Cloudsley-Thompson, J. L. 1958. Spiders, scorpions, centipedes, and
mites. G. Watt, ed. Pergamon, New York.

CSIRO Division of Entomology. 1991. The insects of Australia. 2nd ed.
Cornell University Press, Ithaca, NY.

Edwards, C. A. 1959. Keys to the genera of the Symphyla. Journal of
the Linnean Society of London 44:164–169.

Enghoff, H. 2005. Myriapoda. Natural History Museum of Denmark
(Zoological Museum). University of Copenhagen, Copenhagen.

Fox, J., and S. Weisberg. 2011. An R companion to applied regres-
sion. Vol. 2. Sage, Thousand Oaks, CA.

Gere, G. 1956. The examination of the feeding biology and the humi-
ficative function of Diplopoda and Isopoda. Acta Biologica Acade-
miae Scientiarum Hungaricae 6:257–271.

Hansen, H. J. 1903. The genera and species of the order Symphyla.
Quaterly Journal of Microscopical Science 47:1–101.

Heiman, D. R., and A. W. Knight. 1975. The influence of temperature
on the bioenergetics of the carnivorous stonefly nymph Acroneuria
california Banks (Plecoptera: Perlidae). Ecology 56:105–116.

Jocqué, R., and A. Dippenaar-Schoeman. 2007. Spider families of the
world. 2nd ed. Royal Museum for Central Africa, Tervuren, Belgium.

Johnson, N. F., and C. A. Triplehorn. 2004. Borror and DeLong’s in-
troduction to the study of insects. 7th ed. Brooks Cole, Pacific
Grove, CA.

Lang, B., R. B. Ehnes, U. Brose, and B. C. Rall. In review. Tempera-
ture and consumer type dependencies of energy flows in natural
communities—a database analysis.

Markow, T. A., B. Raphael, D. Dobberfuhl, C. M. Breitmeyer, J. J.
Elser, and E. Pfeiler. 1999. Elemental stoichiometry of Drosophila
and their hosts. Functional Ecology 13:78–84.

Poboszny, M. 1997. Vergleichende Untersuchungen des Konsums bei
Männchen und Weibchen von Diplopoden. Opuscula Zoologica
Budapest 1997:29–30.

Prus, T. 1971. The assimilation efficiency of Asellus aquaticus L.
(Crustacea, Isopoda). Freshwater Biology 1:287–305.

Stehr, F. W. 2005. Immature insects. 1st ed. Kendall Hunt, Dubuque,
IA.

Steigen, A. L. 1975. Energetics in a population of Pardosa palustris
(L.) (Araneae, Lycosidae) on Hardangervidda. Pages 129–144 in
F. E. Wiegolaski, ed. Fennoscandian tundra ecosystems, ecological
studies vol. 17. Springer, Berlin.

Tho, Y. P. 1992. Termites of peninsular Malaysia. Forest Research
Institute Malaysia.

Multitrophic Compensatory Feeding 000
Associate Editor: Andrew J. Kerkhoff
Editor: Judith L. Bronstein

092.009.058 on April 24, 2017 01:29:17 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?pmid=25041038&crossref=10.1111%2Fele.12330
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1600-0706.2009.18545.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1139%2Fz02-007
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2427.1971.tb01564.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1096-3642.1959.tb01603.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1096-3642.1959.tb01603.x
http://www.journals.uchicago.edu/action/showLinks?pmid=11607696&crossref=10.1073%2Fpnas.93.16.8465
http://www.journals.uchicago.edu/action/showLinks?pmid=11607696&crossref=10.1073%2Fpnas.93.16.8465
http://www.journals.uchicago.edu/action/showLinks?pmid=23007091&crossref=10.1098%2Frstb.2012.0240
http://www.journals.uchicago.edu/action/showLinks?pmid=23007091&crossref=10.1098%2Frstb.2012.0240
http://www.journals.uchicago.edu/action/showLinks?pmid=28308733&crossref=10.1007%2Fs004420051015
http://www.journals.uchicago.edu/action/showLinks?pmid=28308733&crossref=10.1007%2Fs004420051015
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F1935303
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2435.2004.00823.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2FBF00393251
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1046%2Fj.1365-2435.1999.00285.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1046%2Fj.1365-2427.1997.00234.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2427.1986.tb00950.x

	1

